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Cuprates are d-wave superconductors which exhibit a rich phase diagram: they are

characterized by superconducting fluctuations even above the critical temperature, and

thermal disorder can reduce or suppress the phase coherence. However,

photoexcitation can have the opposite effect: recent experiments have shown an

increasing phase coherence in optimally doped BSCCO with mid-infrared driving. Time-

resolved terahertz spectroscopies are powerful techniques to excite and probe the

non-equilibrium states of superconductors, directly addressing collective modes, such

as amplitude (Higgs) oscillations. In this work, we calculate the full time evolution of the

current generated by a cuprate with a quench–drive spectroscopy setup. Analyzing the

response in Fourier space with respect to both the real time and the quench–drive

delay time, we look for the signature of a transient modulation of higher harmonics, as

well as the Higgs mode, in order to characterize the ground state phase. In particular,

this approach can provide a smoking gun for induced or increased phase coherence

when applied to the pseudogap phase. These results can pave the way for future

experimental schemes to characterize and study superconductors alongside incoherent

phases and phase transitions, including induced and transient superconductivity.
1. Introduction

High-temperature superconductors have attracted much of the attention in the
research on superconductivity since their discovery. In recent years, experiments
on high-temperature superconductors have revealed the presence of signatures of
superconducting uctuations above the critical temperature Tc. This behaviour
has been attributed to incoherent or pre-formed Cooper pairs, leading to third-
harmonic generation (THG) and enhancement of the reectivity change in
a pump–probe experimental conguration.1–3

Cuprates are the prototypical example of high-temperature superconductors,
exhibiting a complex phase diagram as a function of doping and temperature,
with a superconducting dome enriched by charge-density wave and pseudogap
phases.4 In fact, optimally doped Y-Bi2212 exhibits a superconducting phase
below Tc¼ 97 K, and a pseudogap phase above Tc and up to the temperature T*z
135 K.1,5–8 It has been argued that the pseudogap phase on top of the
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superconducting dome at optimal doping in unconventional superconductors is
driven by the loss of phase coherence between the Cooper pairs, rather than the
soening or vanishing of the pairing strength.9–11 Therefore, in the pseudogap
phase, the electrons are still paired, but their local phase is different from the
global phase of the order parameter, which is lowered as a consequence.

A variety of non-equilibrium experiments on cuprates have indicated the
importance and the interaction between collective modes, such as the amplitude
(Higgs) mode and Josephson plasmon; different setups have been used to
investigate this, from high-harmonic generation to pump–probe spectroscopy, to
reectivity measurements.2,3,12–14 Moreover, it has been recently shown that THz
pulses in the mid-infrared region can dynamically enhance the phase coherence
of Cooper pairs in optimally doped cuprates, which is lowered by thermal
disorder in equilibrium conditions.7

In this paper, we go beyond previous works of pump–probe spectroscopy on
cuprates, applying the quench–drive spectroscopy setup15–18 (see Fig. 1) recently
extended to study different features of superconductors,19 to superconductors
with anisotropic d-wave order parameters. In this conguration, a rst few-cycle
THz broadband pulse (quenching, red in Fig. 1) impinges on the material, fol-
lowed aer an adjustable delay time, Dt, by a multi-cycle THz narrow-band
(asymmetric) driving pulse (driving, green in Fig. 1). Then, the generated
current, which is experimentally addressed by measuring the change of the
transmitted electric eld or the nonlinear optical conductivity,20,21 can be
analyzed in transmission in real time aer ltering out the linear response
directly proportional to the incoming pulses. Quench–drive spectroscopy has
been shown to be a versatile and powerful tool to systematically analyze the
superconducting response, as well as characterizing the signatures of collective
modes, possibly enhancing the overall measured signal.19 This method goes
beyond standard pump–probe spectroscopy, where a short-time pulse drives the
system out of equilibrium, followed by a subsequent weak and short-time pulse
which probes the system (e.g., current, reectivity).22,23 In a quench–drive setup, in
fact, both the short-time pulse and the long-time drive can perturb the system,
and the non-xed relative geometry of the two pulses allows to shi the quench–
Fig. 1 Quench–drive setup. The figure shows the scheme of the quench–drive setup
used here: the quenching pulse (red) impinges on the material (grey). Then, after a delay
time (Dt, measured from the maximum peak of the quench to the maximum peak of the
drive) the driving pulse also interacts with thematerial; the nonlinear current output is then
generated and can be detected in real time.
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drive time delay. This provides an extended number of possible congurations,
allowing for the quenching pulse to overlap with the driving pulse , or even acting
on the driven superconductor aer the longer pulse. The analysis of the generated
nonlinear current in both time and Fourier space, for example, including not only
the real evolution but also the time-dependence of the quenching and driving
relative time, allows us to obtain a richer signal than the usual harmonic response
of the non-equilibrium material. In fact, the application of this spectroscopic
technique to conventional clean s-wave superconductors has demonstrated that it
can provide the nonlinear current signal due to the quasiparticles’ and collective
modes’ excitations, visible as distinctive features in the two-dimensional time and
frequency plots, respectively.19 Alongside the high-harmonic generation, both
transient excitation and dynamical modulation of the generated harmonics are
visible, and can be theoretically described by solving the real-time Heisenberg’s
equation of motion, or interpreted with a diagrammatic approach.

However, in quench–drive spectroscopy, the real and delay times are not fully
independent, since they both refer to the driving pulse, and are not able to catch
the decoherence processes. This mainly differs from other three-pulse tech-
niques, like pump–dump–probe, pump–push–probe or pump–repump–probe
mechanisms, which have been widely used to study molecular excitations and
transient states for decades.24–27 In pump–repump–probe spectroscopy, for
example, the rst pulse creates a macroscopic polarization which decays due to
dephasing, then the second one induces a population of the excited state, while
the probe converts it back to a coherent polarized state.28 An extension of our
scheme to a real two-dimensional coherent spectroscopy, with two independent
times and probing of decoherence processes, will be the object of a future work.

In the present work, we numerically solve the Heisenberg’s equation of
motion, derived within the pseudospin formalism,29,30 in order to describe the
superconducting state, and we support our interpretations and results with the
derivation of the nonlinear susceptibility by means of a diagrammatic approach.31
Fig. 2 Quench–drive spectroscopy. (a) Band structure in the first Brillouin zone used to
reproduce the optimally doped Bi2212; the red and green arrows represent the direction
of linear polarization of the quenching and driving pulses, respectively. The black arrow
indicates the direction of the measured current, i.e. along the x axis. (b) The figure shows
the external vector potential of the quenching (red) and the driving (green) pulses for an
example case with fixed quench–drive delay time, as well as the nonlinear current
response (black). (c) Time-dependent superconducting order parameter variation, dD(t) ¼
D(t) � D(0), due to the quenching and driving pulses in (b).
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Moreover, in order to treat the pseudogap phase, characterized by incoherent
pairs, we extend the pseudospin model, articially adding a phase to the Cooper
pairs,1 and solving the corresponding equations to obtain the time-evolution of
the order parameter and the generated nonlinear current (see Fig. 2(b) and (c)).

The paper is organized as follows: in Section 2, we describe the theoretical
models that we used. Starting from the pseudospin approach to solve the equa-
tions of motion in order to calculate the time-dependent superconducting gap
and the generated nonlinear current, we extend it in order to be able to describe
incoherent pairs. In addition, we perform the same calculations for the super-
conducting state using a diagrammatic approach, deriving the nonlinear
susceptibility responsible for the measured response. In Section 3, we show the
results of the numerical experiments for the quench–drive setup on a cuprate: we
analyze the two dimensional plots in the time and frequency domains, detecting
the presence of higher harmonics and signatures of quasiparticles’ and the Higgs
mode. Then, we repeat the calculation in the presence of incoherent pairs: we
show that even a moderate incoherence, which only slightly reduces the super-
conducting gap, can suppress the high-harmonic generation in the nonlinear
current, as well as the quasiparticles’ and amplitude mode’s response. Finally, we
provide a summary and an outlook on future applications and perspectives of
quench–drive spectroscopy in Section 4.
2. Theoretical background

In this section, we formulate the theoretical approach used to investigate the
current generated by a clean (high-temperature) superconductor subject to an
external eld. We rst develop the pseudospin model for a general supercon-
ductor, then we extend it in order to be able to describe incoherent pairs. Finally,
we show a diagrammatic approach, where we derive the nonlinear susceptibility
used to obtain the nonlinear current, disentangling the quasiparticles’ and Higgs’
contributions.
2.1 Pseudospin model approach

In order to describe the superconducting phase of a material, we adopt the BCS
model expressed by the mean eld Hamiltonian:

HBCS ¼
X
k;s

3kĉ
†
k;sĉk;s �

X
k

Dkĉ
†
k;[ĉ

†
�k;Y þ h:c:; (1)

where 3k is the electronic band dispersion and Dk the momentum-dependent
superconducting order parameter. The latter is described by a complex number
which satises the gap equation:

Dk ¼
X
k
0
Vk;k

0
D
ĉ�k

0
;Yĉk0 ;[

E
; (2)

with Vk,k0 being the (momentum-dependent) pairing interaction. It can be fac-
torized as Vk,k0 ¼ Vfkfk0, with fk being the form factor of the superconducting order
parameter: for s-wave pairing, fk ¼ 1, while for d-wave pairing,
f
dx2�y2

k ¼ ðcos kx � cos kyÞ=2. Therefore, it follows from eqn (2) that the gap func-
tion itself can be factorized as Dk ¼ D0fk.
128 | Faraday Discuss., 2022, 237, 125–147 This journal is © The Royal Society of Chemistry 2022
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We write the BCS Hamiltonian using the pseudospin formalism, as in ref. 30
and 32, namely

ĤBCS ¼
X
k

bkbsk; (3)

with the pseudospin vector

bsk ¼ 1

2
bJ†

ks bJk; (4)

which is dened in Nambu–Gor’kov space, with spinor Ĵ†
k ¼ (ĉ†k,[ĉ�k,Y) and the

Pauli matrices s ¼ (s1, s2, s3). The pseudo-magnetic eld is dened by the vector

bk ¼ (�D0fk, �D00fk, 3k), (5)

with 3k ¼ xk � m, xk being the fermionic band dispersion and m the chemical
potential.

In the presence of an external gauge eld represented by the vector potential
A(t) coupling to the electrons, the pseudospin changes in time according to

sk(t) ¼ sk(0) + dsk(t), (6)

with dsk(t) ¼ (xk(t), yk(t), zk(t)). The external electromagnetic eld is included in
the pseudo-magnetic eld by means of the minimal substitution k/ k � eA(t) in
the fermionic energy, resulting in

bk(t) ¼ (�D0(t)fk, �D00(t)fk, 3k�eA(t) + 3k+eA(t)). (7)

The Heisenberg equation of motion for the pseudospin can be written in the
Bloch form, vtsk ¼ 2bk � sk, providing the set of differential equations8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

vtxðtÞ ¼ �ð3k�eA þ 3kþeAÞyðtÞ � fk

Ek

3kdD
00ðtÞ

þ 2dD00ðtÞfkzðtÞ;
vtyðtÞ ¼ 23kxðtÞ þ 2

�
Dþ dD

0ðtÞ�fkzðtÞ
� dD

0
fk

3k

Ek

þ Dfk
2Ek

ð3k�eA þ 3kþeA � 23kÞ;

vtzðtÞ ¼ �2DfkyðtÞ � Dfk
2

Ek

dD00ðtÞ � 2dD00ðtÞfkxðtÞ:

(8)

Here, for simplicity of calculations andwithout loss of generality, we assumed a real
order parameter, therefore D00(t ¼ �N) ¼ 0 at equilibrium, so that y(�N) ¼ 0.

Moreover, in order to describe a quench–drive experiment, we choose the
appropriate total vector potential A(t)¼ Aq(t) + Ad(t)¼ Āq(t� tq) + Ād(t� td), where
Aq(t) is the quenching pulse centered at time t ¼ tq and Ad(t) is the driving eld
centered at t¼ td. The expression we used for the modulus of the quenching pulse
is a Gaussian-modulated wave,

Aq

�
t� tq

� ¼ Aq e
�ðt�tqÞ2

�
sq2 cos

�
uq

�
t� tq

��
; (9)
This journal is © The Royal Society of Chemistry 2022 Faraday Discuss., 2022, 237, 125–147 | 129
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while for the driving we adopted an asymmetric pulse (see Fig. 2(b)) in order to
induce an effective quenching of the superconductor at the initial time:

AdðtÞ ¼

8>><>>:
Ad

sinðudðt� tdÞÞ
1þ ðt� tdÞ2

ðt� tdÞe�ðt�tdÞ=sd2 ; for t$ td;

0; for t\td:

(10)

By introducing the quench–drive time-delay Dt ¼ td � tq and choosing td ¼ 0,
we can rewrite A(t) ¼ Āq(t + Dt) + Ād(�t). Therefore, the expressions in eqn (6)–(8)
depend on both t and Dt.

The solution of eqn (8) provides the full time-dependent pseudospin, from
which the time-dependent order parameter D(t) can be calculated, namely

DkðtÞ ¼ Vfk
X
k
0
fk0
�
sk;xðtÞ � isk;yðtÞ

�
; (11)

where sk,x(t) (sk,y(t)) is the x(y) time-dependent component of the full pseudospin.
The current generated by the superconductor in this quench–drive setup is given
by the expression

jðt;DtÞ ¼ e
X
k

vk�eAðt;DtÞ
D
ĉ
†
k;[ĉk;[ þ ĉ

†
k;Yĉk;Y

E
ðt;DtÞ; (12)

where the electron band velocity is calculated via vk�eA(t,Dt) ¼ Vk3k�eA(t,Dt). In
particular, if we consider measuring the current generated along the x direction, it
can calculated by the expression

jxðt;DtÞ ¼ e
X
k

v3k�eAðt;DtÞ
vkx

hn̂kðt;DtÞi: (13)

However, since the fundamental harmonic is dominant in this regime, while
the superconducting features are visible in the nonlinear response, we are
interested in the lowest order nonlinear current contribution. The rst non-
vanishing nonlinear term generated by the driving pulse is the third order
component, which reads

jð3Þðt;DtÞ ¼ �2e2
X
k

X
i¼x;y;z

Aðt;DtÞ$riðvkivkÞzkðt;DtÞ: (14)

Here, ri is the unit vector in the direction of axis i ¼ x, y, z, and A(t, Dt) is the total
vector potential. The non-equilibrium term of the third component of the pseu-
dospin, zk(t, Dt), contains a quadratic dependence on the full vector potential, A2,
and is characterized by oscillations with frequencies 2uq, 2ud and uq� ud, as well
as 2D, due to the quasiparticles’ and amplitude mode’s excitation. The Fourier
transform of the nonlinear current with respect to both the real time t and the
quench–drive delay time Dt, j(3)(u, uDt), provides the spectrum of the generated
harmonics.

By identifying the factor depending on the derivative of the velocity and the
direction of the external eld with Cx(k), we can write the x component of the third
harmonic generated current as
130 | Faraday Discuss., 2022, 237, 125–147 This journal is © The Royal Society of Chemistry 2022
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jx
ð3Þðu ¼ 3ud;uDt ¼ 0Þ ¼ �2e2Ad

X
k

CxðkÞzkðu ¼ 2ud;uDt ¼ 0Þ

� 2e2Ad

X
k

CxðkÞzkðu ¼ 4ud;uDt ¼ 0Þ; (15)

where the two terms provide the contribution with a sum- and difference-
frequency mechanism with the external driving eld, respectively. We used u as
the Fourier transform of the real-time variable t, and uDt for the Fourier transform
of the quench–drive delay time Dt. Analogously, the third order contribution to
the fundamental harmonic is given by

jx
ð3Þðu ¼ ud;uDt ¼ 0Þ ¼ �2e2Ad

X
k

CxðkÞzkðu ¼ �2ud;uDt ¼ 0Þ: (16)

Moreover, since the third component of the pseudospin has a (non-resonant)
peak in the frequency domain at u ¼ 2D, it is possible to obtain other local
maxima for the generated nonlinear current at u ¼ 2D � ud:

jx
ð3Þð2D� ud;uDt ¼ 0Þ ¼ �2e2Ad

X
k

CxðkÞzkðu ¼ 2D;uDt ¼ 0Þ: (17)

In addition to these contributions, other terms which involve the quenching
pulse are present, such as – among others – the nonlinear current term,

jx
ð3Þ�ud;uDt ¼ 2uq

� ¼ �2e2Ad

X
k

CxðkÞzk
�
u ¼ 0;uDt ¼ 2uq

�
: (18)

This expression involves a sum-frequency process of two photons of the
quenching pulse, each with frequency uq, embedded in the third component of
the pseudospin, zk, thus, the dependence zk(uDt ¼ 2uq), and it also implicitly
depends quadratically on the amplitude of the quenching pulse, Aq

2.

2.2 Extended pseudospin model for incoherent pairs

We now want to describe a state with a superconducting instability and charac-
terized by the presence of pre-formed incoherent pairs, which can be identied as
the origin of the pseudogap phase; in this regard, as in ref. 1, we use a new
articial equilibrium superconducting state obtained by adding a random
momentum-dependent phase fk to the original Cooper pairs’ state. Therefore, the
strength of the pairing potential remains unchanged, as well as the number of
total Cooper pairs, while the superconducting order parameter decreases due to
the reduced coherence. According to the maximum angle fmax, which denes the
range of the random phase fk, with fk ˛ [�fmax, +fmax], we are able to describe
different conditions of the material, from the pure superconducting phase for
fmax ¼ 0 to the complete loss of coherence for fmax ¼ p.

We dene the gap of the pure superconducting state D(0)
k ¼ D(0)

0 fk, obtained
from the pure BCS gap equation, and the superconducting order parameter in the
presence of incoherent pairs of the pseudogap phase as ĉk

(f) ¼ ĉ(f)fk, such that

~D
ðfÞ ¼ Vfk

X
k
0
fk0

2 D
ð0Þ
0

2E
ð0Þ
k0
eifk0 ; (19)
This journal is © The Royal Society of Chemistry 2022 Faraday Discuss., 2022, 237, 125–147 | 131
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where V is the same pairing strength of the original state, and with the

quasiparticles’ energy Eð0Þ
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3k2 þ ðDð0Þ

0 f kÞ
2

q
. The superconducting gap in the

new equilibrium state can be written using the pseudospin formalism

~Dk

ðfÞ ¼ Vfk
X
k
0
fk0
�
~sk

0
;x � i~sk

0
;y

�
; (20)

where we have introduced the equilibrium pseudospin components8>>>>><>>>>>:
~sk;x ¼ sk;x cos fk ¼ fk

D
ð0Þ
0 cos fk

2E
ð0Þ
k

;

~sk;y ¼ sk;y sin fk ¼ �fk D
ð0Þ
0 sin fk

2E
ð0Þ
k

:

(21)

Analogously to the derivation in Section 2.1 for the original superconducting
phase, we can obtain the Heisenberg’s equation of motion

vt~sk ¼ ~b � ~sk, (22)

with the new pseudomagnetic eld dened as

~b ¼ (�ĉ0fk, �ĉ00fk, 3k). (23)

The solution of eqn (22) provides the time-dependent value of the pseudospin
~sk, from which the evolution of the new order parameter ĉ(f) can be obtained.
However, we notice that the complex order parameter can be written as

ĉ(f) ¼ jĉ(f)jeiq, (24)

where q is the global phase of the superconducting gap, which differs from the
local phase of the Cooper pairs in momentum space, fk. As a consequence, the
gap equation is not self-consistent anymore (see eqn (19)) and the value of the gap
is subject to some time-dependent noise due to the phase incoherence of the
preformed pairs.
2.3 Quasi-equilibrium nonlinear susceptibility

In this section, we tackle the problem of a quenched–driven clean superconductor
by means of a diagrammatic approach to calculate the nonlinear susceptibility;
this is provided only as a tool to interpret the numerical results obtained via the
pseudospin model.

Starting from the BCS Hamiltonian in eqn (1), we add the interaction of the
external eld that we treat perturbatively, which can be expressed as a sum of the
Feynman diagrams around a quasi-equilibrium condition. In particular, the current
generated by the perturbed superconductor in the quasi-equilibrium condition
satises a proportionality relation with the generalized density–density suscepti-
bility, namely j(u) � cgg(u0)A3(u � u0), with cgg(u) ¼ h~r~ri and ~r ¼P

k
gkhĉ†k ĉki.

Since we are considering a clean superconductor, the lowest non-vanishing
order of the nonlinear response is provided by the third-order nonlinear
132 | Faraday Discuss., 2022, 237, 125–147 This journal is © The Royal Society of Chemistry 2022
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susceptibility cgg
(3)(u),31 where gk is the diamagnetic light–matter (vertex) inter-

action strength, which can be written in the effective mass approximation as
gk ¼ P

i;j¼kx;ky

vij
23k:

33,34

The pure quasiparticles’ diamagnetic response is given by the bare density–
density susceptibility, which in Nambu notation within the Matsubara formalism
reads

cgg
ð3ÞðinmÞ ¼ T

X
k;iun

gk
2Tr
h
Ĝðk; iunÞs3Ĝðk; iun þ nmÞs3

i
; (25)

in the limit of the light momentum q / 0. Here, the Matsubara complex
frequency is iun, and T is the temperature. The Nambu–Green’s function in
matricial form is given by

Ĝðk; iunÞ ¼ 1

ðiunÞ2 � Ek
2

 
iun þ 3k �Dk

�D*
k iun � 3k

!
: (26)

This function can be expressed in its spectral form as

Ĝðk; iunÞ ¼ �1

p

ðþN

�N
du

Ĝ00ðk;uþ idÞ
iun � u

; (27)

where the imaginary part of the Green’s function in real frequency is

Ĝ00ðk;uÞ ¼ � p

2Ek

0@uþ 3k Dk

D*
k u� 3k

1A$

$½dðu� EkÞ � dðuþ EkÞ�:

(28)

Therefore, the expression in eqn (25) can be solved, obtaining

cgg
ð3ÞðuÞ ¼ �

X
k

gk
2 Dk

2

Ek
2

tanhðbEk=2Þ
ð2Ek þ uþ idÞð2Ek � u� idÞ: (29)

This is the pure quasiparticles’ contribution, obtained by neglecting the
oscillations of the order parameter for small perturbations. The Higgs propagator
is obtained by the random phase approximation (RPA) summation of the pairing
interaction in the amplitude channel:

DHiggs(q, u) ¼ �V/2 � V/2cff(q, u)DHiggs(q, u), (30)

which provides the expression

DHiggsðq;uÞ ¼ �1
2=V þ cff ðq;uÞ

; (31)

where cff(q, u) is given by

cff ðq;uÞ ¼ T
X
k;iun

fk
2Tr
h
s1Ĝðk; iunÞs1Ĝðk; iun þ inmÞ

i���
inm/uþid

: (32)
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We can include in the pure quasiparticles’ Raman response in eqn (25) the Higgs
contribution given by the propagator in eqn (31), obtaining the full Raman
response

cgGðinmÞ ¼ T
X
k;iun

gkTr
h
Ĝðk; iunÞs3Ĝðk; iun þ inmÞbGðk; inmÞi; (33)

where Ĝ(k, inm) is the vertex matrix, which contains the corrections due to the
Higgs mode. In the RPA, we can identify it as

bGðk; inmÞ ¼ gks3 �
V

2
s1fkT

X
k
0
;iun

fk0Tr
h
s1Ĝ

�
k
0
; iun þ inm

�bG�k0
; iun

�
Ĝ
�
k
0
; iun

�i
: (34)

Additional corrections can be included in this vertex with different forms.
The linearized equations of motion obtained by removing higher-order terms

in eqn (8) provide the same result of the nonlinear susceptibility calculated from
the diagrammatic contributions of the density–density response including the
RPA summation of the amplitude mode, responsible for the value of dD(u). The
real part of the oscillation of the order parameter, namely the amplitude (Higgs)
mode, reads in frequency space

dD
0ðuÞ ¼ �2

P
k
0

gk
0 fk0

2
3k0Dmax

Ek
0
�
4Ek0

2 � u2
�

1=V �P
k
0

23k0
2fk0

2

Ek
0
�
4Ek0

2 � u2
� : (35)

The vertex in eqn (34) aer analytic continuation of the complex Matsubara
frequency can be written, including explicitly the amplitude mode in eqn (35), as
Ĝ(k, u) ¼ gks3 + dD0(u)fks1.

The expression of the vertex factor gk depends on the symmetry of the response
which is measured; however, if we consider the experimental congurations with
linearly polarized light along high-symmetry crystallographic directions, we can
replace the factor gk with the tensor gij(k) ¼ vij

23k, and dene the corresponding
susceptibility from eqn (25) as follows:

cijlm
ð3ÞðinmÞ ¼ T

X
k;iun

gijðkÞglmðkÞTr
h
Ĝðk; iunÞs3Ĝðk; iun þ nmÞs3

i
: (36)

For example, for quenching and driving pulses with nonzero components
along both the x and y directions, the third-order nonlinear response current
generated along the x axis will be given by

jx
ð3Þ�u0�

f
X
i;j¼x;y

cijxx
ð3ÞðuÞAiðu1ÞAjðu2Þd

�
u

0 � u� u1 � u2

�
; (37)

where u0 is obtained by energy conservation and the vector potential Ai,j is the i,
j¼ x, y-component of the total vector potential, given by the sum of the quenching
and driving pulses.

We notice that, in contrast to the solution of the Heisenberg’s equations of
motion which are valid on a general basis, the diagrammatic approach is valid for
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small perturbations of the superconducting order parameter D. Therefore, when
the intensity of the external pulses is such that the gap is signicantly enhanced
or suppressed, so that a new (transient) equilibrium value of the gapD0 is reached,
the quasi-equilibrium susceptibility calculation fails to catch all the features of
the corresponding nonlinear response, requiring a full non-equilibrium
calculation.

Moreover, this approach cannot be easily applied when pre-formed pairs or
superconducting islands are present in the material, such as in the pseudogap
phase of a cuprate, giving rise to long-range incoherence of the Cooper pairs.
3. Numerical results

We now present the results obtained from the numerical implementation of the
time-dependent Bloch equations and expressions for the current derived from
the pseudospin model in Sections 2.1 and 2.2. For the calculations, we used the
electronic band dispersion 3k ¼ �2t(cos kx + cos ky + m/2), where the wave
vector’s components are expressed in units of the lattice constant a. We used
the values of t ¼ 125 meV for the nearest-neighbour hopping energy and
chemical potential m ¼ �0.2, in units of t, in order to obtain an electron
occupation n ¼ 0.9, as in ref. 1; the corresponding band structure is shown in
Fig. 2(a). For the d-wave order parameter with symmetry Dk ¼ Dmax(cos kk �
cos ky)/2, we adopted the value Dmax ¼ 31 meV; the calculations were performed
with a summation over the full Brillouin zone with a homogeneous square
sampling and a total number of k points Nk ¼ 106. For the time-dependent
evolution, we used a time-step of dt ¼ 3 � 10�4 ps, and for the quench–drive
delay dDt ¼ 2.5 � 10�2 ps.

For the pulses, we used a Gaussian-shaped few-cycle qeuenching and an
asymmetric long-duration driving pulse, as expressed in eqn (9) and (10) and
shown in Fig. 2(b), linearly polarized along the (1, 1) direction (Fig. 2(a)), with
parameters sq

2 ¼ 0.01 ps2 and sd
2 ¼ 5 ps2, respectively. The maximum intensity

used for each pulse is provided for the corresponding vector potential in units of
ħ/(ea), where e is the electron charge and a the lattice constant; the conversion to
the value of the electric eld for each frequency is provided in Table 1. Table 2
reports the conversion of each frequency (in THz) of the pulses used for the
calculations to the energy scale (in meV).
3.1 Quench–drive response of the superconducting state

We rst focus on the response of a cuprate in its superconducting phase, at
optimal doping; in particular, we rst analyze the features of the current response
as a function of both the real-time evolution and the quench–drive delay time.
Then, we investigate the effect of both the quenching and driving pulses on the
superconducting order parameter and its amplitude oscillations.

3.1.1 Nonlinear current generation. We consider a quench–drive setup with
both pulses linearly polarized along the diagonal direction (1, 1), and we analyze
the nonlinear current generated along the x axis, with the geometry shown in
Fig. 2(a). Here, we used a quenching pulse with frequency uq ¼ 7.80 THz (�Dmax)
and amplitude of the vector potential Aq ¼ 0.8, corresponding to an electric eld
Emax ¼ 76.1 kV cm�1.
This journal is © The Royal Society of Chemistry 2022 Faraday Discuss., 2022, 237, 125–147 | 135
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Table 1 This table shows the conversion of some values of the vector potential maximum
intensity, Amax, at a given central frequency, as used in the calculations, into the maximum
value of the corresponding electric field, Emax. Here, the calculation of Emax has been done
considering the value of the lattice parameter a ¼ 5.4 Å

Frequency (THz) Amax Emax (kV cm�1)

4.57 0.4 22.3
5.09 1.6 99.3
7.16 0.2 17.5
7.16 0.4 35.0
7.80 0.8 76.1
8.28 0.4 40.4
11.14 0.8 109
12.73 0.8 124

Table 2 This table shows the conversion of the frequency values of the pulses used for the
numerical calculations from THz to the energy scale in meV

Frequency (THz) Energy (meV)

4.57 18.90
5.09 21.05
7.16 29.61
7.80 32.26
8.28 34.24
11.14 46.07
12.73 52.65
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In Fig. 3(a), we show the nonlinear current jNL(t, Dt) generated by the super-
conductor as a function of the real evolution time t and for different quench–drive
delay times, labeled asDt. The diagonal line represents the current induced by the
quenching pulse, while the vertical signal is due to the asymmetric driving eld
which sets in at time t ¼ �2 ps. The triangular area for 0$ t$ Dt, for Dt ˛ [�2, 0]
ps is characterized by a response due to the overlap (wave mixing) of both the
quenching and driving pulses.

A Fourier analysis of this plot can provide information about the harmonics
present in the current itself. In Fig. 3(b), we present the same results as a function
of the frequency u, obtained by Fourier transforming the time evolution, t, and
the delay time, Dt. We can clearly distinguish the fundamental and the third
generated harmonic, which are modulated by the delay time as the quenching is
swiped with respect to the driving eld. This is in accordance with previous
theoretical ndings on conventional s-wave superconductors.19 However, we also
observe that faded modulated responses appear for Dt > �2 ps, both at
frequencies slightly higher than ud and 3ud, respectively; they also show
a modulation in the delay time, as with the other two aforementioned harmonics.
Since their appearance and intensity modulation match the time at which the
driving eld sets in, these features can be attributed to the wave mixing pattern
due to the overlap in time of the quenching and the driving elds.
136 | Faraday Discuss., 2022, 237, 125–147 This journal is © The Royal Society of Chemistry 2022
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Fig. 3 Two-dimensional plots of the generated nonlinear current. (a) Nonlinear current
response, j,NL as a function of real time, t, and quench–drive delay time, Dt. The quenching
frequency is uq ¼ 7.80 THz, the driving frequency ud ¼ 5.09 THz, while the maximum gap
value Dmax ¼ 31 meV. The maximum intensities of the pulses used were Aq ¼ 0.8 and Ad ¼
1.6, respectively. The diagonal line represents the current due to the quenching pulse,
while the vertical lines correspond to the oscillations induced by the asymmetric driving
field, which sets in at t ¼ �2 ps. (b) The figure corresponds to the same in (a), where the
horizontal axis of the real time t has been Fourier transformed to u, whose values are
referred to as the drive frequency ud. (c) 2D Fourier transform of the signal in (a), repre-
senting the nonlinear current as a function of u and uDt.

Paper Faraday Discussions

This journal is © The Royal Society of Chemistry 2022 Faraday Discuss., 2022, 237, 125–147 | 137

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

2 
M

ar
ch

 2
02

2.
 D

ow
nl

oa
de

d 
on

 2
/2

0/
20

26
 1

0:
59

:3
9 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2fd00010e


Faraday Discussions Paper
O

pe
n 

A
cc

es
s 

A
rt

ic
le

. P
ub

lis
he

d 
on

 0
2 

M
ar

ch
 2

02
2.

 D
ow

nl
oa

de
d 

on
 2

/2
0/

20
26

 1
0:

59
:3

9 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
In Fig. 3(c), the full two-dimensional Fourier transform of the nonlinear
current is shown, with the frequency scales referring to the driving frequency ud.
The bright spots along the vertical axis at uDt ¼ 0 correspond to the static
harmonics generated by the driving eld only, while the diagonal stripes are given
by wave mixing of the quenching and the driving pulses.

3.1.2 Transient excitation of quasiparticles and Higgs. In order to disen-
tangle the main features, it is useful to separately extract one-dimensional tracks
along high-interest directions in this 2D spectrum. In Fig. 4(a), we highlight the
spectral intensity of the nonlinear current obtained by a vertical cut at uDt ¼ 0 in
Fig. 3(c). The frequency values are provided there in THz. However, despite the
value of the absorption frequency uDt ¼ 0, this is not completely equivalent to the
case of a driven superconductor in the absence of the quenching pulse. In fact,
a peak at u z 10 THz ¼ 2ud shows up; a second harmonic generation (SHG),
however, cannot be generated in a driven material without breaking spatial
inversion symmetry, which is not the case here. However, the presence of such
SHG can be interpreted as a transient signal due to the overlap of the quenching
and the driving pulses; as can be seen in Fig. 3(c), in fact, the weak peak at u ¼
2ud, uDt ¼ 0 is the result of the sideband contribution of the diagonal feature
given by wave mixing of the external eld’s components. Moreover, in addition to
the fundamental and third harmonics, a h harmonic is present, in accordance
with what has been previously reported in literature.35

In Fig. 4(b), we present the spectrum of the generated third harmonic with
respect to the absorption frequency, uDt; this corresponds to tracking the values at
u ¼ 3ud, parallel to the horizontal axis, or, equivalently, to analyze the modula-
tion spectrum of the third harmonic in Fig. 3(b). In fact, the third harmonic signal
is modulated by the quench–drive delay time, with intensity peaks at frequencies
of multiples of ud. However, the peak at uDt z 15 THz is particularly sharp with
respect to the others because of the resonance condition with the quasiparticles’
and Higgs energies 2Dmax being Dmax ¼ 31 meV z 7.5 THz. Therefore, the
dynamical modulation of the third harmonic is here enhanced by the transient
excitation of quasiparticles and the Higgs mode, the latter of which is responsible
for the amplitude oscillation of the order parameter, which will be discussed in
the next section. Indeed, the enhancement of the broadband quenching funda-
mental signal by these two contributions can also be detected in Fig. 4(c), where
the track of u ¼ �uDt + ud from Fig. 5(c) is shown.

3.1.3 Superconducting order parameter and amplitude mode. Additional
information can be obtained by investigating the behaviour of the super-
conducting order parameter by using the same two-times plots, similarly to the
nonlinear current analysis. Indeed, as shown in Sections 2.1 and 2.3, the order
parameter oscillates due to the pseudospins’ precession in momentum space,
and this collective amplitude (Higgs) mode contributes to the enhancement of the
nonlinear response, shown in the previous section.

In Fig. 5 we compare the gap variation, dD, for different parameters of the
external elds, plotting them as a function of the time evolution, t, and the delay
time of the quenching and driving pulses, Dt.

In Fig. 5(a), we use a quenching pulse with frequency uq ¼ 8.28 THz and
intensity Aq ¼ 0.4 and a driving pulse with ud ¼ 12.73 THz and Ad ¼ 0.8. The
oscillations of the order parameter have an amplitude dDmax < 1 meV; they are
overall positive for the duration of the quenching pulse and the driving pulse, but
138 | Faraday Discuss., 2022, 237, 125–147 This journal is © The Royal Society of Chemistry 2022
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Fig. 4 One dimensional plots of the nonlinear current. Plots of the nonlinear current jNL

extracted from Fig. 3(c) along some relevant directions. (a) Current spectrum for uDt¼0 as
a function of u, corresponding to a vertical cut in the two-dimensional Fourier spectrum.
(b) Spectrum of the modulation of the third harmonic (TH), corresponding to a cut at u ¼
3ud parallel to the x axis. (c) Current intensity for u ¼ �uDt + ud, corresponding to the
diagonal feature in Fig. 6(a), starting from the fundamental harmonic at u ¼ uq, uDt ¼ 0.
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they become negative at longer times until a new equilibrium value of the gap
(smaller than the initial one) is reached. In Fig. 5(b), the frequencies of the pulses
are set as uq ¼ 5.09 and ud ¼ 12.73, while their intensities are Aq ¼ 0.8 and Ad ¼
1.6, respectively. Due to the higher uence of both pulses, the oscillations of the
gap are higher (up to 4–5 meV) and the effect of the pump becomes stronger; even
during the time overlap of the quenching and driving pulses, in fact, the gap is
suppressed and characterized by an intensity modulation in the delay time, Dt.

As shown in Fig. 5(c), we reduced the quenching frequency to uq ¼ 7.80 THz,
obtaining the same parameters of the calculations of the previous section on the
This journal is © The Royal Society of Chemistry 2022 Faraday Discuss., 2022, 237, 125–147 | 139
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Fig. 5 Two-dimensional plots of the amplitude mode. The plots represent the amplitude
mode, i.e. the variation of the order parameter dD(t, Dt) ¼ D(t, Dt) � Dmax, as a function of
real time, t, and quench–drive delay time, Dt, for different quenching and driving pulses. (a)
Quenching frequency uq ¼ 8.28 THz, intensity Aq ¼ 0.4, driving with ud ¼ 12.73 THz and
Ad ¼ 0.8. (b) Pulse frequencies uq ¼ 5.09 and ud ¼ 12.73, intensities Aq ¼ 0.8 and Ad ¼ 1.6.
(c) The same parameters as in (b) were used, except for the quenching frequencyuq¼ 7.80
THz.
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nonlinear current. The suppression of the gap by the quenching pulse is
enhanced here due to the approaching of the resonance condition uq z Dmax,
and the intensity modulation in Dt for t > 2 ps, namely when the quenching and
the driving pulses overlap, is increased.

Therefore, we can conclude that higher uences are associated, for higher
frequencies, with a suppression of the gap and an enhancement of its oscillations
at the same time, which leads to a more intense amplitude mode and a sizeable
response in the nonlinear current. On the contrary, for lower frequencies, the gap
is transiently enhanced during both the quenching and the driving, in accordance
with previous results.1
3.2 Quench–drive response of incoherent pairs

Similarly to the study of the pure superconducting phase of cuprates of the
previous section, we now focus on the response of the same cuprate structure in
the presence of reduced phase coherent giving rise to pre-formed incoherent
Cooper pairs, as described in Section 2.2. In particular, for our calculations, we
adopted a random phase within the range [�p/2, p/2], which decreases the initial
gap value of Dmax ¼ 31 meV to ĉ(f) ¼ 27.92 meV. We also used the same duration
and shape parameters for both the quenching and the (asymmetric) driving
pulses.

3.2.1 Nonlinear current generation. We study here the nonlinear current
generated by the superconductor with incoherent pairs under the application of
a quenching pulse and a driving pulse, with the same setup described before. In
particular, we focus directly on the two-dimensional Fourier spectrum of the
current, since all the other features in the time domain are qualitatively similar to
those of the pure superconducting case.

In Fig. 6(a), we show the result for Aq ¼ 0.4, uq ¼ 7.16 THz, Ad ¼ 0.8 and ud ¼
11.14 THz. While a third harmonic generated by the driving eld is still present,
its intensity is strongly suppressed (notice the log scale used). This is conrmed
also by the one dimensional track in Fig. 7(a), which shows a 6 orders of
magnitude difference between the rst and third generated harmonics.

In Fig. 7(b), the spectrum of the TH modulation is shown. While the 2ud and
4ud are still present, the peak at 2D is suppressed, in contrast to the result of the
pure superconducting state (Fig. 4(b)). The same conclusion can be reached from
Fig. 7(c), which shows the diagonal track of Fig. 6(a), corresponding to u¼�uDt +
ud, where the broadband signal of the quench pulse is visible, which is not
enhanced here by the quasiparticles’ and Higgs resonance, in contrast to the pure
superconducting case.

If we further decrease the intensity of the pulses, we obtain a complete
suppression of the third harmonic with respect to the fundamental, which is
shown in Fig. 6(b), where we used Aq ¼ 0.2, uq ¼ 7.16 THz, Ad ¼ 0.4 and ud ¼
4.57 THz. In this case, even approaching the resonance condition ud z ĉ(f), the
third harmonic is not present, as well as the dynamical modulation of the
harmonics.

3.2.2 Superconducting order parameter and amplitude mode. We now
analyze the time-dependent response of the superconducting order to the
quench–drive setup in the same conditions and with corresponding parameters
of the nonlinear current to those discussed above. Indeed, the interpretation of
This journal is © The Royal Society of Chemistry 2022 Faraday Discuss., 2022, 237, 125–147 | 141
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Fig. 6 Two-dimensional plots in Fourier space of the generated nonlinear current. (a)
Nonlinear current (log scale) generated by the superconductor with quenching intensity
Aq ¼ 0.4 and frequency uq ¼ 7.16 THz, driving intensity Ad ¼ 0.8 and frequency ud ¼ 11.14
THz. (b) Nonlinear current (log scale) generated by the superconductor with quenching
intensity Aq ¼ 0.2 and frequency uq ¼ 7.16 THz, driving intensity Ad ¼ 0.4 and frequency
ud ¼ 4.57 THz.
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the previous results of the nonlinear current can be supported by the study of the
amplitude mode of the superconducting order parameter.

In Fig. 8, we present the plots of the time-dependent change of the super-
conducting order parameter dD(t, Dt), corresponding to the same setup condi-
tions of the results in Fig. 6. In particular, we observe that stronger quenching and
driving pulses enhance the gap for the duration of the perturbation itself, except
when the quenching overlaps in time with the driving eld, i.e. t ˛ [�2, 0] ps (see
Fig. 8(a)). On the contrary, weak pulses do not signicantly enhance the super-
conducting gap, nor activate amplitude oscillations (Fig. 8(b)). As deduced from
the nonlinear current response described in the previous section, the amplitude
mode is suppressed by the presence of incoherence in the Cooper pairs; physi-
cally, this can be understood by the fact that instead of one coherent amplitude
mode with a denite phase, we have a dispersion of modes with different phases
142 | Faraday Discuss., 2022, 237, 125–147 This journal is © The Royal Society of Chemistry 2022
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Fig. 7 One dimensional plots of the nonlinear current. These plots represent the nonlinear
current jNL in log scale extracted from Fig. 6(a) along some relevant directions. (a) Current
spectrum for uDt¼0 as a function of u, corresponding to a vertical cut in the two-
dimensional Fourier spectrum. (b) Spectrum of the modulation of the third harmonic,
corresponding to a cut at u¼ 3ud parallel to the x axis. (c) Current intensity for u¼ �uDt +
ud, corresponding to the diagonal feature in Fig. 6(a) starting from the fundamental
harmonic at u ¼ uq, uDt ¼ 0.
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and signs, which tend to cancel each other out. Therefore, unless strong pulses
increase the superconducting gap and, hence, the phase coherence, the Higgs and
quasiparticles’ modes are suppressed.
4. Conclusions

In this work, we have studied the quench–drive spectroscopy response of cuprate
superconductors, which are interesting for their anisotropic d-wave super-
conducting order parameter and their rich phase diagram. In this work, we have
This journal is © The Royal Society of Chemistry 2022 Faraday Discuss., 2022, 237, 125–147 | 143
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Fig. 8 Comparison of the time-dependent order parameter. Plot of the time-dependent
gap change dD(t, Dt), referred to as the equilibrium value. The results shown in panels (a
and b) are obtained with the same parameters of the corresponding plots in Fig. 6,
respectively.
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explored two different situations: the pure superconducting state and the phase
with incoherent pre-formed Cooper pairs, which can reproduce the results of the
pseudogap phase, or even originate from other conditions. With this method, we
have moved a step forward with respect to previous experiments and calculations,
where only a pump (short quenching or longer driving) of cuprates was consid-
ered. In fact, in the common pump–probe conguration, only the real time
evolution of the system driven out of equilibrium by the pump was tracked by the
probe and analyzed. On the contrary, we have shown that in the quench–drive
setup, both the short-time and the long-time pulses can act as out-of-equilibrium
drivers on the material, affecting both the order parameter and the nonlinear
current response. Moreover, this setup has an additional temporal degree of
freedom with respect to the pump–probe setup, namely the quench–drive delay
time is continuously swiped in order to gain insight into the dependence of the
response on the absorption frequency uDt. This has allowed us to investigate the
high-harmonic generation, the modulation of such harmonics in the quench–
144 | Faraday Discuss., 2022, 237, 125–147 This journal is © The Royal Society of Chemistry 2022
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drive delay time and the role of the amplitude mode in the features of the
nonlinear current. In particular, we have detected a h harmonic (visible at u ¼
5ud z 25 THz) generated by the superconductor in some conditions, as well as
a peak at the energy 2D, which can be attributed to quasiparticles and the
amplitude (Higgs) mode, as shown by the analysis of the uence and frequency
dependence of the change of the order parameter.

Furthermore, we have applied quench–drive spectroscopy to a cuprate with
incoherent pre-formed pairs, articially adding a random noise phase to the
Cooper pairs in momentum space. The results have shown that, even for
moderate incoherence, the decrease of the superconducting gap is accompanied
by the partial or total suppression of the third harmonic response, as well as the
amplitude mode contribution to the nonlinear current. These results can be
experimentally addressed and tested by the measurement of the transmitted
electric eld or the nonlinear optical conductivity.

A more detailed and systematic analysis of the response of incoherent pairs
and the amplitude mode of their superconducting gap will be the subject of
a future work. We further speculate that an extended conguration, such as
a pump–pump–probe scheme, could be used to add an independent time degree
of freedom on the real time evolution and the pump–probe delay time, as already
used to study molecular excitations and semiconductors.28,36
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