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Towards an in silico integrated approach for
testing and assessment of nanomaterials: from
predicted indoor air concentrations to lung dose
and biodistribution†

P. Tsiros, ‡a N. Cheimarios, ‡b A. Tsoumanis, b A. C. Ø. Jensen, c

G. Melagraki, d I. Lynch, e H. Sarimveis *a and A. Afantitis *b

Integrated approaches to testing and assessment (IATA) provide a framework for combining information

from different sources (experimental, in silico) for hazard characterisation of chemicals, including

nanomaterials (NM), based on a weight of evidence approach. Experimentally acquiring the exposure,

hazard and characterisation data for NMs necessary to perform risk assessment is time-consuming and

costly, thus driving demand for in silico models to facilitate read-across from data rich NMs to data poor

ones, or to predict exposure or hazard. In this work, we present three integrated computational

approaches which can be used to generate data relevant to human health risk assessment, namely the

multi-box aerosol model for prediction of indoor air concentrations of NMs, the lung exposure model to

determine the lung burden of NMs following acute exposures and a physiologically based pharmacokinetic

(PBPK) model to determine the biodistribution of the NMs to other organs over longer timescales following

inhalation. The lung exposure application is based on empirical deposition equations for calculating the

deposited mass in the human respiratory system. The PBPK model extends the lung exposure model by

introducing clearance terms and translocation of the NMs to the systemic circulation after passage through

the air-blood barrier in the alveoli. Several exposure scenarios with varying conditions are introduced in

order to compare the models in relation to the accumulated mass of NMs in the alveolar, tracheobronchial

and head airways regions of the respiratory system, thus exploring their capabilities and weaknesses, and

potential contribution to a NM-specific IATA for occupational exposure.

1. Introduction

From sunscreen and cosmetics to clothes and printer toner,
nanomaterials (NMs) have become part of our daily lives. As
with many natural (e.g., viruses) and anthropogenic particles,
NMs enter the human body through the respiratory system,
and can, upon passing through the air-lung barrier, have
access to the circulatory system and the whole body.
However, as yet, risk assessment of the impacts of NMs on
human health is still an open issue and is dependent on
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Environmental significance

Nanomaterials (NMs) have become part of our daily life yet their long term and cumulative impact on human health is unknown. Experiments to
understand their biodistribution and clearance are costly and ethically challenging, such that existing data are limited to specific NMs and rodent models.
Computational tools are a promising way to assess the impacts of NMs exposure on humans. Despite their promise, such computational tools are currently
lacking, and those that are available are not aligned in terms of inputs and outputs to facilitate risk assessment. Here, an integrated computational
framework for assessing the internal deposition and distribution of NMs following exposure in an occupational setting is proposed. The computational
methodology for calculation of the spatiotemporal emission profile can be further extended to include, in addition to indoor exposure, NM emissions to
the surrounding environment. The tool integration connecting an external exposure model with internal exposure models for acute and chronic timescales
enables users to conduct a complete in silico environmental risk assessment.
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costly and time-consuming experiments on animals in many
cases. Risk assessment related to NMs requires information
on both the likelihood of exposure to the NMs, in terms of
concentration, duration and form, and the hazard posed to
the organisms the NMs come into contact with. Case-by-case
determination of exposure and hazard data for each
application and individual NM variant is not possible due to
the time and cost required, as well as the ethical challenges
inherent in animal experimentation, and thus there is a
strong motivation to develop in silico models that can predict
human exposure to, and impacts of, NMs based on a reduced
set of input parameters, as part of an integrated approach to
testing and assessment (IATA). An example of the use of
computational tools in the context of risk assessment was
introduced by Mollá et al.,1 who recently proposed
NanoSerpa, an application for the risk assessment of NMs in
the insurance sector, which was developed by integrating
hazard-related data and optimized exposure models. The
focus of NanoSerpa is on estimation of the insurance liability
arising from accidental NMs spills during production,
transport or use of NMs-containing products, based on input
data regarding the type of NM and the accident scenario,
utilising probabilistic models to predict emission, health
hazard values and risk indices.1 Other tools for risk
assessment of NMs are also emerging, including hazard
classification tools,2–4 screening level models for predicting
NMs transport and concentrations in the environment such
as SimpleBox4Nano,5,6 and probabilistic models of NMs
flows7,8 from production to waste treatment. However, the
various models have yet to be made inter-operable and
combined into an overall IATA in order to facilitate complete
(in silico) risk assessment.

Such integrated in silico models are potentially of
enormous value in the context of NMs risk assessment and
more broadly for life cycle impact assessment (LCIA), an
important approach for analysing, evaluating, understanding
and managing the environmental and health effects of NMs
based on inventories of inputs and outputs.9 Both risk
assessment (RA) and LCIA have two components, one
referring to and characterising the exposure to a toxicant and
one characterising the health effects that accompany the
exposure. In particular, external exposure models can
calculate the spatiotemporal evolution of the concentration
of NMs emitted from one or multiple sources, while
biokinetics models can transform the external concentration
into organ burdens. The internal mass can then be compared
with hazard thresholds to evaluate the risk associated with
possible adverse health effects. An example of a complete
LCIA workflow was presented by Tsang et al.,10 who proposed
a dynamic model that involved integration of multiple in
silico tools for quantifying the emissions and effects of NMs
to human health in an occupational setting. The tools
presented in our work aim at generating exposure data
relevant to RA and LCIA and the extensive comparison of the
lung models performed herein uncovers the relative strengths
and weaknesses of the different modelling approaches in

terms of their data input needs and the robustness and
utility of their outputs.

In this work we present two integrated approaches for
assessment of the accumulated doses of NMs in the human
respiratory system following exposure to NMs in indoor
environments, which can be used in risk assessment and
LCIA studies. The approach consists of two parts; the first
part is to evaluate the airborne concentration of the specific
NM in the indoor environment and the second part is to
compute the accumulated mass in the respiratory system.
The concentration of the NMs in the indoor environment is
calculated with a multi-box aerosol model. The multi-box
aerosol model is based on an aerosol dynamics particle
population balance equation.11 Although several models have
been proposed for the calculation of the concentration of the
NMs based on Eulerian,12 Gaussian plume,13,14

Lagrangian,15,16 and Markov chain models,17 the multi-box
aerosol model is the most well-established.18 The multi-box
aerosol model is based on the assumption of a well-mixed
chamber where the NM concentrations are instantly mixed in
the entire volume.11 However other models have also been
proposed of imperfectly mixed chambers19 or which consider
the existence of walls that restrict the flow20–23 or include
ventilation and recirculation.24–26

The second part of the model is the calculation of the
accumulated NM mass in the human respiratory system. In
the present work, two models are used and compared, the
lung exposure model and an advanced physiologically-based
pharmacokinetic (PBPK) modelling approach. The lung
exposure model is based on empirical equations built upon
the International Commission on Radiological Protection
(ICRP) model for the respiratory system27 while the PBPK
model is built using rat inhalation data which was
extrapolated to humans by adjusting a number of
physiological and substance specific parameters and use of
allometric scaling. Both models take as their input the
concentration of NMs over time as calculated via the multi-
box aerosol model. The lung exposure model supports
various NMs such as black toner, TiO2 and TiO2 embedded
with AgX, where X = O, Cl or pure Ag (so the particles are
TiO2–Ag, TiO2–Ag2O and TiO2–AgCl), as well as user-defined
particle size distributions, thus covering a broad range of
NMs. The PBPK model currently supports only TiO2 NMs for
which biodistribution data was available, although similar
models can be constructed in the future provided that
biodistribution data for other NMs become available. The
lung exposure model calculates the accumulated NM mass in
the alveolar, tracheobronchial (TB) and head airways regions,
while the PBPK model calculates the accumulated mass in
many regions of the human body, including heart, spleen,
brain, kidneys, liver, lower respiratory, blood, lungs
interstitium and capillaries, soft tissues and skin. Compared
to the Lung exposure model, the PBPK modelling approach
takes into account clearance processes, i.e., the removal of
the NMs from the human body, which makes it more
realistic especially over longer-term exposures or for
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evaluation of cumulative exposures. Freely available web
applications have been developed for both models, and for
the multi-box exposure model, which in turn constitute part
of an integrated computational framework to estimate the
deposited doses of NMs in the human respiratory system
after occupational/indoor inhalation as part of an overall risk
assessment and/or NMs life cycle assessment framework.

The computational framework consists of three
independent applications as shown in Fig. 1: a multi-box
aerosol model based application, the lung exposure dose
calculator and a PBPK model. The overall computation starts
by selecting the NMs size-resolved emission rate in the multi-
box aerosol model, which estimates the NM concentration
inside the different boxes (areas) that the indoor
environment has been partitioned into. The computed
airborne NMs concentration in the different areas are then
introduced into the lung exposure dose calculator which,
based on the exposure time and the respired volume rate,
estimates the deposited dose in the human respiratory
system. For a more detailed output regarding the whole-body
biodistribution and long-term kinetics, which takes into
account clearance rates, the computed NMs concentrations
from the multi-box aerosol model can also be provided to the
PBPK model, which estimates the internal doses of the NMs
in various tissues as a function of time. In the following
sections each model is presented in detail, and the outputs
are compared in terms of the utility for human risk
assessment and LCIA applications as part of an in silico IATA.

2. Materials and methods
2.1 The multi-box aerosol model

The multi-box aerosol model,11,28 is based on the aerosol
dynamics particle population balance equation:

dNk;i

dt
¼ jsource;k;i þ jexchange;k;i þ jcoagulation;k;i þ jdeposition;k;i (1)

where
dNk;i

dt
(m−3 s−1) is the change in particle number

concentration over time in box k for size bin i. NF represents
the near field and FF represents the far field zone relative to

the emission source (see Fig. 3). k assumes values, such as
NF, FF1, FF2, etc., depending on the chosen room geometry.

jsource,k,i is a single point NM generation term, assumed to
be at the center of the NF box:

jsource;k;i ¼ 0 if k≠NF and jsource;k;i ¼
Si
VNF

if k ¼ NF (2)

where Si (s−1) is the source strength estimated from
measurements, or simulated using a fixed lognormal particle
size distribution emission rate. In the latter case, the
emission rate, n, is calculated as a function of N (m−3), the
total number concentration of the particle distribution, σG,
the geometrical standard deviation of the distribution, and
μG (nm), the geometric mean diameter of the distribution:

n Dp
� � ¼ N

1
log σGð Þ ffiffiffiffiffiffi

2π
p exp

− log Dp=μG
� �� �2

2 log σGð Þ½ �2
( )

(3)

In eqn (3), Dp is the defined bin diameters of the NM size
distribution. In eqn (2), VNF (m3) is the volume of the NF box.

jexchange,k,i is the transport between the kth box and its
connected boxes. It is the main driver for the transport
processes for the size bin i (in m−3 s−1) in the system:

jexchange;k;i ¼
1
Vk

X
l

QlkNl;i −QklNk;i
� �

(4)

where l is a different box in the indoor environment as
defined by the geometry or is an inlet or exhaust, Vk (m3) is
the volume of the box l, and Qkl is the air flow rate (m3 s−1)
from box k to box l, positive or zero, by definition. This
equation also encompasses the introduction or removal of
particles from the system by the general room ventilation
inlet and exhaust. In the case of the inlet and exhaust, the
inflow concentration is generally assumed to be 0 m−3 if not
taking the influx of particles from elsewhere into
consideration.

jcoagulation,k,i is the coagulation due to Brownian collision,
Brownian coagulation, and turbulent collision of particles.
The number concentration change rate (m−3 s−1) from the
process of coagulation is determined as:

Fig. 1 Schematic of the data transfer from one module to the next in the integrated computational framework for in silico assessment of the
inhalation of aerosolized NMs.
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jcoagulation;k;i ¼
1
2

Xi−1
j¼1

Kj;i− jNk; jNk;i− j −Nk;i

X∞
j¼1

Ki; jNk; j (5)

where K (m−3 s−1) is the statistical coagulation coefficient
between spherical particles based on Brownian collision,
Brownian coagulation, and turbulent collision.29 Here,
coagulation removes particles of specified Dp size bins and
adds the agglomerated particles to the appropriate Dp size
bins in order to keep the total volume constant, assuming a
sphere diameter of similar volume. When two particles

collide and are assigned to the largest size bin, the number
concentration is adjusted to conserve mass.

jdeposition,k,i describes the removal of aerosol particles that
adhere to surfaces in the room:

jdeposition;k;i ¼ − 1
Vk

X
r

Ak;ruk;r;iNk;i (6)

where A is the area (m2) that is available for deposition in
direction r, upwards, downwards, and u is the size-dependent

Fig. 2 Schematic representation of the structure of the TiO2 NM PBPK model. PC stands for phagocytizing cells which take up NMs and transport
them into/between model subcompartments.
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deposition velocity (m s−1). The deposition velocity was
calculated according to Lai and Nazaroff.30

2.2 The lung exposure model

The lung deposition model is based on a simplified version
of the International Commission on Radiological Protection
(ICRP) model.31 The ICRP model was initially developed for
estimation of the deposition dose to organs and tissues
resulting from the inhalation of radioactive particles, and
uses empirical equations based on experimental data and
theory to estimate the deposition dose in various regions of
the human respiratory system. The developed lung
deposition model focuses on three regions, namely alveolar
(AL), tracheobronchial (TB) and head airways (HA). The
model equations for the deposited dose in the AL (eqn (7)),
TB (eqn (8)) and HA (eqn (9)) regions are:

DFAL ¼ 0:0155
Dp

� �
exp −0:416 ln Dp

� �þ 2:84
� �2h i

þ 19:11 exp −0:482 ln Dp
� �

− 1:362
� �2h in o

(7)

DFTB ¼ 0:0352
Dp

� �
exp −0:234 ln Dp

� �þ 3:40
� �2h i

þ 63:9 exp −0:819 ln Dp
� �

− 1:61
� �2h in o

(8)

DFHA ¼ IF
1

1þ exp 6:84þ 1:183 ln Dp
� �� �þ 1

1þ exp 0:924 − 1:885 ln Dp
� �� �

( )

(9)

where:

IF ¼ 1 − 0:5 1 − 1
1þ 0:00076D2:8

p

 !
(10)

is the inhalable fraction (IF). Eqn (7) and (8) consider the IF
implicitly, since they are fitted to data that include the effect of
inhalability. The deposited dose fraction as a function of
particle size, Dp, is shown in Fig. S1,† along with the geometric
mean diameter (GMD) of the NM emissions used in this work.

In order to calculate the dose, the mass size
distribution is calculated from the NM number size

distribution, assuming spherical particles and a NM
density, d (eqn (11)):

mi = 1/6π Dp,i
3d (11)

where i refers to the different size bins. The NM mass, Mx,
deposited at timepoint t as a result of the particle
concentration in the defined box reads:

Mx x¼AL;TB;HAð Þ;t ¼
X
i

miCNMs;i;t DFx; x¼AL;TB;HAð Þ;i
� �

(12)

where CNMs is the NMs concentration coming from the multi-
box aerosol model. The deposited doses in the three lung
regions (AL, TB and HA) are computed as the sum of the product
of Mx,(x=AL,TB,HA),t, with the respiratory volume (Vr), and time
between each time point for the simulation, Δtexpo, given as:

Dosex; x¼AL;TB;HAð Þ ¼
X
t

Mx; x¼AL;TB;HAð Þ;tΔtexpo (13)

2.3 PBPK model for inhalation exposure to TiO2 NMs

The PBPK model developed herein to describe the
biodistribution of TiO2 NMs after inhalation is based on the
structural model presented in ref. 32. Inhalation is
considered as the main risk-relevant exposure route in
occupational settings, since the amount of particles reaching
the systemic circulation through skin penetration can be
considered negligible.32,33 Initially, a PBPK model was
developed for rats and was then extrapolated to humans. The

Fig. 3 (a) The computational domain, i.e., the Room, indicating the near field (NF) where the source of the NMs is located and the far field (FF)
where the exhaust is located. The dimensions of each area used in the integrated model are shown. (b) The size-resolved emission rate
distributions of the NMs used in this work. Besides the user defined TiO2 (22 nm), all distributions are based on experimental data.37,39–41

(7)

(8)

(9)
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parameters of the model were recalibrated using the
biodistribution data produced by Kreyling et al.,34 in which
20 adult Wistar Kyoto rats were divided into 5 groups and
exposed to slightly different doses of 48V-radiolabeled 20 nm
TiO2 NM aerosol for 2 hours via an endotracheal tube. Each
group was exsanguinated and dissected to extract
biodistribution data and the quantities of TiO2 NMs in
specific tissues were calculated indirectly using 48V
radioactivity, measured with γ-spectrometry, which was then
matched to TiO2 through mass and radioactivity balances.
The first rat group was sacrificed immediately after exposure,
and then the second, third, fourth and fifth groups were
euthanized 4 hours, 24 hours, 7 days and 28 days post
exposure, respectively.

The tissue compartments for which measurements were
reported were the total lungs, lavaged lungs, bronchoalveolar
lavage cells (BALC), which refers to cells retrieved from the
broncho-alveolar lavage procedure, bronchoalveolar lavage
fluid (BALF), i.e., free TiO2 NMs in the BALF, trachea, liver,
spleen, kidneys, heart, brain, uterus, blood, carcass, skeleton,
soft tissue, secondary organs and skin. From those, total
lungs, skeleton, soft tissues and secondary organs were not
used since they included biodistribution information from
combinations of other compartments. With regard to excreta,
cumulative faeces and urine data were drawn from the
respective plots provided in ref. 35 for the 28 days rat group.

The structural model was mostly guided by the
compartments for which biodistribution data were
available.34 The most significant compartments were the
trachea, BALF, BALC and lavaged lungs. The nature of the
exposure is such that most NMs were either deposited in the
lung region or excreted, whereas only a small amount were
translocated across the air-blood-barrier into the systemic
circulation.34 The lung biodistribution is expressed through 4
compartments, one for the tracheobronchial region, one for
the alveolar region, one for the interstitium and one for the
capillary blood of the lungs. In the first two compartments
the NMs exist in a “free” state, while in the alveolar and
interstitium regions the NMs can be endocytosed by
macrophages which are phagocytizing cells (PCs). In relation
to the rest of the tissues, three sub-compartments were
considered, one for the capillary blood, one for the tissue
interstitium and a compartment for phagocytosis by tissue
resident PCs. The capillary blood exchanges NMs with the
interstitium compartment, which is also in contact with the
PCs sub-compartment.

The TiO2 NMs enter the system via three compartments,
namely the tracheobronchial region, the alveolar region and
the upper airways. Apart from the respiratory tract, the rat
PBPK model contains two blood pools, the arterial and
venous, and 8 tissue compartments, namely the liver, spleen,
kidneys, heart, brain, uterus, skin and rest of the body, which
incorporates all remaining tissues that have not been stated
explicitly. Excretion of the NMs takes place via three
compartments: (a) in the liver, through hepatobiliary
excretion from the liver tissue to faeces, (b) in the kidneys,

where NMs are excreted to urine, and (c) through
tracheobronchial clearance. The schematic presentation of
the developed PBPK model is illustrated in Fig. 2. The model
includes a number of physiological (organism-specific) and
substance-specific parameters. Organism-specific parameters
are the regional blood flows, tissue volumes, volumes of
vascular and interstitial spaces, the inhalation volume and
rate, and the typical number of PCs in each organ. Regarding
the substance specific parameters, these include the
deposition fractions, tissue permeability coefficients, tissue:
blood partition coefficients, the maximum uptake rates by
PCs, the maximum uptake capacity of PCs, the release rate of
NMs from PCs, the clearance rates and, finally, the various
transfer rates in the respiratory system. The PBPK model
equations are presented in section 1 of the ESI† file.

After defining the structural model, the next step was to
integrate the information contained in the data with prior
information found in the literature regarding the parameters
of the ordinary differential equations system. This was
performed using a dynamic form of the Hamiltonian Monte
Carlo (HMC) algorithm, the No-U-Turn Sampler.35 Prior
literature knowledge in the form of distributions was drawn
from ref. 32 and 36. The statistical model is described in
more detail in ref. 37.

After building the rat model, a simple extrapolation
approach was followed to acquire a human TiO2 NM
inhalation PBPK model. The first extrapolation step involved
the replacement of the rat physiological parameters with
those of the human. Thiel et al.38 showed that scaling of the
physiological parameters was the most efficient univariate
change when conducting cross-species extrapolation for a
series of drug compounds. Due to the lack of human
biokinetic data, the kinetic substance-specific parameters, i.e.
, clearances, transfer rates, uptake rates etc., could not be
precisely extrapolated. Therefore, those parameters were
scaled using allometric scaling.36 The parameters of the rat
and human models are presented in Tables S1–S4.†

2.4 Computational specifications for integration of the 3 models

The computational framework consists of three parts. The
first part is the multi-box aerosol application which is used
to compute the concentrations of the NMs in the closed
environment, namely the Room. A two-box layout is used, i.e.
, the Room is partitioned into two areas, an NF area in which
the source of the NMs is located and a FF area where the
exhaust of the system is located (see Fig. 3a). The Room size
is 4 × 4 × 4 m3 which is a common working room size. The
NF size is 1 × 1 × 1 m3. A two box layout is selected since this
provides the most accurate results while maintaining the
computational cost at reasonable levels.11 The flow rate
between NF and FF is set to 10 m3 min−1 and the exhaust
flow rate is set to 5 m3 min−1, similar to the values used in
ref. 10 and 11. A parametric analysis of the input values and
their impact on the overall computational outputs is the
subject of a forthcoming publication.

Environmental Science: Nano Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

5 
Fe

br
ua

ry
 2

02
2.

 D
ow

nl
oa

de
d 

on
 8

/4
/2

02
5 

8:
27

:0
8 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d1en00956g


1288 | Environ. Sci.: Nano, 2022, 9, 1282–1297 This journal is © The Royal Society of Chemistry 2022

The initial Dp distributions of the four NMs used in this
work are shown in Fig. 3b, namely carbon black (black toner)
with a GMD of 25 nm, TiO2 with a GMD of 560 nm, TiO2:AgX
particles with a GMD of 44.6 nm and a user defined distribution
which corresponds to TiO2 with a geometric average diameter
of 22 nm. TiO2 (22 nm) is theoretically constructed via eqn (3)
with N = 2.5 × 1012, σG = 2.1 and μG = 22 nm. The emission rate,
n, is chosen so that a realistic occupational exposure scenario is
generated. Specifically, the average NM concentration in the NF
using the selected n value results in a time weighted average
(TWA) of around 5.8 mg m−3 for the NF and 3.9 mg m−3 for the
FF for an 8 hours work shift. These values have a regulatory
relevance, since the US National Institute for Occupational
Safety and Health (NIOSH) has suggested that for TiO2 NMs a
value of 0.3 mg m−3 is the recommended exposure limit (REL)
over a 10 hours workday and 40 hours week,42 while 1.2 mg m−3

has been proposed by the Japanese Industrial Technology
Development Organization (NEDO).43 The occupational
exposure scenarios for comparing the NMs deposition data
generated from the lung exposure and the PBPK model utilised
the 22 nm TiO2 NMs, as the PBPK model was constructed using
biodistribution data referring to 22 nm TiO2 and, thus, the
PBPK simulations for TiO2 NMs with similar diameter are
considered to be the most credible currently.

The lung exposure and PBPK applications take as input
the NM concentrations from each exposure area (room) and
compute the deposited dose of the NMs in the various
regions of the human respiratory system (and throughout the
body in the case of the PBPK model). Using eqn (3), a
theoretical lognormal particle size distribution is generated
based on 30 size bins. Using the NM density, the particle
concentration is converted into mass concentration, which is
then provided as input to the two models. Following that, the
two models calculate the deposited mass per bin for each
lung region, and the deposited mass summation of all bins
for each region is the final reported product. All exposure
simulations refer to spherical particles.

The lung exposure application can compute the deposited
dose in the alveolar, head airways and tracheobronchial
regions, while the PBPK application, besides the
aforementioned regions, offers the ability to simulate the
resulting biodistribution in the organs of the systemic
circulation, i.e., the translocation of the NMs through the air-
lung barrier. The inhalation rates used as inputs to the lung
exposure and PBPK models in order to simulate different
inhalation conditions are shown in Table 1.

Although all three model applications are independent,
the lung exposure and PBPK applications have an embedded

module allowing the generation of NM concentration-time
profiles using the multi-box aerosol model, but also give to
the user the ability to provide custom-made occupational
exposure scenarios. All applications are freely available and
can be found at:

Multi-box aerosol application: https://aerosol.cloud.
nanosolveit.eu/

Lung exposure: https://lungexposure.cloud.nanosolveit.eu/
PBPK: https://exposurepbpk.cloud.nanosolveit.eu/
These web applications are offered to the community

through the NanoSolveIT44 cloud platform (https://cloud.
nanosolveit.eu/) and contribute to implementation of a
comprehensive nanoinformatics-driven decision-support strategy
that promotes nanosafety based on innovative in silico methods,
models and tools, while reducing reliance on animal testing,
which is the major goal of the project. Presenting the developed
nanoinformatics tools as freely available, user-friendly web
applications accompanied by appropriate model documentation
and user guides significantly increases model accessibility and
usage, even by non-experts. Enhanced understanding, utilization
and acceptance of nanoinformatics tools can bridge the gap
between nanosafety-related regulators and industry, thus
accelerating the industrial and commercial exploitation of
nanomaterials in a variety of consumer applications, whilst
minimising their environmental and human health impacts.

3. Results

Given that no human in vivo data are available for validating
the models, we compare the results obtained from the lung
exposure and the PBPK model with the output of the
multiple-path particle dosimetry (MPPD) model,45 which is
considered the gold standard in the calculation of particle
deposition in the respiratory system. Then, the deposited
doses reported by the two models are compared against each
other for different time intervals, room regions, exercise
levels and sexes. This comparison aims at exploring the effect
of NM clearance and translocation from the lung into the
blood circulation, which are included in the PBPK model but
not in the lung exposure model, on the exposure dose, and
thus the likely effects over time, which future iterations of
our IATA will also incorporate. Finally, additional simulations
are performed using the lung exposure model in order to
estimate the deposited dose of various NMs in the NF and FF
areas of the computational domain.

3.1 Comparison of the models with MPPD in the TiO2 NM case

The lung exposure, PBPK and MPPD applications were used
to collect and compare biodistribution simulation results,
regarding exposure of female and male workers to 22 nm
TiO2 NMs, under light exercise as part of an 8 hours work
shift (Fig. 4). The MPPD does not include an option for
providing a detailed exposure time series, but only allows for
an hourly variation of the external concentration, and, thus, a
steady concentration equal to 5.85 mg m−3 was used in all
three models. Additionally, the Yeh/Schum symmetric lung

Table 1 Inhalation rate in L min−1 (ref. 24) per gender and physical
activity level

Female Male

Sitting 6.5 9
Light exercise 20.8 25
Heavy exercise 45 50
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deposition model was used for the MPPD calculations.46

Since deposition eqn (7)–(9) refer to nose breathing, the same
breathing route was considered for the MPPD model.
Regarding inhalation and lung parameters, all models used
the same values to ensure that any differences between them
are related to the underlying model. The input data provided
to the MPPD are presented in Table S5.†

The slight differences in the deposited mass between the
lung exposure application and the MPPD arise from
differences in the deposition fractions. Specifically, in the
lung exposure application the deposited mass in the alveolar
region is slightly greater than that recorded by the MPPD
model, while the reverse behaviour is applied to the head
airways. The two models estimate a similar deposited mass
for the tracheobronchial region. The greater differences
between the deposited mass of these two models and the
PBPK model in the alveolar and head airways regions are due
to the pulmonary clearance terms included in the PBPK
model, i.e., tracheobronchial and head airways NM clearance,
and the translocation of NMs from the lung into the systemic
circulation, which are initiated as soon as the first particles
are deposited in the respiratory system.

3.2 Lung exposure versus PBPK model performance in the
TiO2 NMs case – effect of clearance

The effect of clearance on the final deposited dose was
investigated via a series of in silico experiments, in which the

22 nm TiO2 NMs were used. Two scenarios were considered;
a short term exposure lasting 600 seconds and a long term
one, which represented a full 8 hours working day i.e., 28 800
seconds. In the first case the source was active for the first
300 seconds. For the working day, the simulation time was
partitioned into 16 timesteps of 1800 seconds (30 minutes)
each with the source being active for the first 900 seconds of
each step. The evolution of the average NM concentration,
over the Dp distribution, for the NF (i.e., close to the NMs
source where the worker is performing the handling
operation) is shown in Fig. 5.

Fig. 6 presents the TiO2 NM deposited doses after 600 s of
exposure in the NF and FF areas, respectively, for both female
and male workers under different exercise levels. As expected,
the accumulated mass decreases as we move from the NF,
where the source of the NMs is located, to the FF, where the
exhaust is located, and increases from sitting to heavy
exercise. Male workers register the largest amount of
accumulated mass during heavy exercise, due to the higher
underlying inhalation rate. In all cases, the alveolar region
records the largest amount of accumulated particle mass
followed by the tracheobronchial and the head airways
regions respectively, in terms of the estimated deposition
fractions obtained from the Hinds' equations for the
particular particle diameter (Fig. S1†).

Comparison of the lung exposure and PBPK models under
the short-term exposure scenario case (Fig. 6) reveals small
differences in terms of the computed accumulated NM

Fig. 4 Comparison of the accumulated mass of TiO2 NMs in the three
different lung regions determined using the lung exposure, PBPK and
MPPD models for (a) female and (b) male humans under light exercise
level physical activity during occupational exposure for 8 hours to 22
nm TiO2 NMs.

Fig. 5 Average concentration evolution of TiO2 NMs (22 nm) in the NF
for (a) 600 s simulation time with the source being active for the first
300 s, and (b) over the working day (28 800 s equivalent to 8 h) of
simulation time. In (b) the simulation time is partitioned into 16
timesteps of 1800 s (30 min) each with the source being active for the
first 900 s (15 min) of each step.
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masses. This is an expected result, because the two models
use the same equations for estimating the deposition in the
various respiratory regions. Furthermore, the exposure

duration is too short compared with the clearance kinetics of
the PBPK model to result in substantially reduced
accumulated TiO2 mass over short exposure times.

Fig. 6 Accumulated mass of the particles from the TiO2 NMs (22 nm) emission computed for 600 s by the lung exposure and PBPK models for
female and male workers under different inhalation conditions (sitting, light exercise and heavy exercise) in the (a) NF and (b) FF areas.
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Fig. 7 presents the computed accumulated mass over a
full working day in both the NF and FF areas. In this case the
exposure duration is long enough for evident alterations in
the final deposited mass estimated by the two models to be

recorded. In the alveolar region, the clearance term of the
PBPK model is slow, since it refers to long term clearance
mediated by macrophages (phagocytosing cells as shown in
Fig. 2), and the final accumulated mass is not affected

Fig. 7 Accumulated mass of particles from the TiO2 NMs (22 nm) emission scenario computed for a working day (8 h) by the lung exposure and PBPK
models for female and male workers under different inhalation conditions (sitting, light exercise and heavy exercise) in the (a) NF and (b) FF areas.
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significantly by it, as in the short-term exposure case. On the
other hand, the clearance from the tracheobronchial and the
head airways regions, which directs trapped NMs to the
gastrointestinal tract, is fast enough that the decrease in the
accumulated mass is important.

To further explore the effect of clearance on the
accumulated NM mass we performed simulations for a
longer duration using the PBPK model. Specifically, the same
8 hours exposure for a female worker under heavy exercise
load in the NF was used as input and the model simulated
the evolution of the biodistribution for an extra 98 hours
(100 hours of total simulation time). The results are
presented in Fig. 8 and illustrate that the alveolar clearance
by phagocytizing cells is slow, meaning that the TiO2 mass
accumulates in the alveolar region. The tracheobronchial
clearance is fast for the first 40 h leading to a rapid decrease
in the accumulated mass, but after 40 h, the accumulated
mass decreases at a much slower rate. Finally, the clearance
of the head airways is fast, meaning that all of the TiO2 dose
is removed within 50 h.

3.3 Accumulated mass computations for other NMs

Since the PBPK model does not currently support other NMs
besides TiO2, we employed the lung exposure model to
compute the accumulated mass of the other NMs, i.e., TiO2:
AgX (44.6 nm), TiO2 (460 nm) and carbon black from toner
(25 nm), for a working day, using the exposure scenario
described previously (8 h exposure, split into 16 segments of
30 minutes with the NMs source active for the first 15
minutes of each time segment) using the particle emission
rates shown in Fig. 3b. The results are shown in Fig. S2–S4.†
As in the case of the TiO2 NMs (22 nm), the accumulated
mass of all NMs decreases as we move from NF to FF and
increases from sitting to heavy exercise.

Fig. S2–S4† show that most of the particle mass is
deposited in the head airways. While the TiO2 (22 nm)
distribution was constructed using eqn (3), the distributions
of the other NMs were derived from experimental data
meaning that background particles or other aerosol dynamic
effects, such as e.g., aggregation and agglomeration, may

influence the measured particle number size distributions
and thus the calculated size-resolved emission rates. In the
case of TiO2 (560 nm), sanding fragments containing
nanosized TiO2 were measured.

From the materials studied, the maximum accumulated
mass is 1148.5 mg and is observed in the head airways for
TiO2 (560 nm), for male workers during heavy exercise
located in the NF, which corresponds to approximately 2.8 ×
1017 TiO2 particles of different sizes according to the
experimentally derived size distribution. In terms of
maximum accumulated particle number, the same scenario,
i.e., male workers during heavy exercise in the NF, TiO2:AgX
yields the highest deposition in the head airways, with
roughly 1.85 × 1018 particles (see Fig. 9). This outcome is

Fig. 8 Evolution of the accumulated TiO2 NM (22 nm) mass over 100
hours following 8 hours of exposure of a female worker under heavy
exercise conditions in the NF predicted using the human PBPK model.

Fig. 9 Particle number distribution for (a) TiO2:AgX, (b) black tonner
and (c) TiO2.
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expected since NMs with bigger particle sizes have lower
particle numbers in equivalent mass.

To understand the impact of the variance of the size
distribution on the deposited dose, we introduce an example
using the distribution of TiO2:AgX (44.6 nm), with the analysis
holding for all other NMs. The value of σG (unitless), the
geometrical standard deviation of the particle size distribution,
for the experimental distribution of TiO2:AgX (44.6 nm) is 2.5.
Using eqn (3), we constructed two alternative distributions with
σG = 2.1 and 1.5 (Fig. 10a). The computed accumulated NM
masses are shown in Fig. 10b for a female worker during light
exercise in the NF area. The results are normalized against the
maximum deposited mass in each case, in order to avoid
comparability issues, since the accumulated mass varies
significantly in each case. As expected, as σG decreases and the
distribution becomes narrower around the geometric mean,
the ratios of the accumulated NMs masses come into line with
the deposition fraction calculated according to Hinds' equation
for a particle with a GMD of 44.6 nm. In other words, for
similar GMDs, the greater the σG the higher the deposition in
the head airways regions.

3.4 Which model provides the optimal predictions for RA
and LCIA?

Two in silico approaches for assessing the deposition of NMs
in the human respiratory system in an occupational setting
are presented, namely the multi-box aerosol model coupled
with the lung exposure model and the integration of the
multi-box aerosol model with a PBPK model, which form the
basis for next generation risk assessment through in silico
determination of exposure and consequent human health. At
first glance, there seems to be a significant overlap between
the two approaches, because both models use the same
empirical equations for deriving the deposition fractions.
However, the PBPK model includes additional equations to
describe in a more holistic manner the biodistribution of
TiO2 NMs in the human body after inhalation exposure,
which allows simulation of long-term exposure scenarios with
more accurate results. Still, the derivation of a PBPK model is
a demanding task and requires a comprehensive set of
experimental data, such that PBPK models are currently

limited to only a handful of NMs, as in the present work for
the case of TiO2 NMs. On the other hand, the lung exposure
model can calculate the deposited NM mass only in the head
airways, alveolar and tracheobronchial regions but for any
NM where the inhaled size distribution is known.

A weakness of the lung exposure model covered by the
PBPK model is the absence of systemic clearance. Therefore,
using the lung exposure model under acute exposure
scenarios can lead to safe results regarding the deposited
mass of NMs in the respiratory system. For longer exposure
durations, be it a working day, week, month or year, using
the lung exposure model can induce notable overestimations
in the calculated mass accumulation, which for precautionary
reasons in the context of risk assessment for human health
may be beneficial. Thus, the lung exposure application can
provide an upper limit for the deposited dose resulting from
occupational exposure scenarios to varying concentrations of
a NM with a known size distribution, in the absence of more
complex mechanistic models.

The deposited mass estimated by both models was similar
to the one reported by the MPPD. MPPD is a robust tool that
includes a multitude of mechanistic models for estimating
the deposition of a wide variety of materials under different
exposure scenarios. However, one of its major drawbacks is
that it doesn't offer the ability to provide complex
concentration-time profiles. This makes it a tool that is more
suited to controlled experimental conditions rather than
occupational exposure scenarios stemming from complex
industrial applications. The lung exposure and PBPK
applications fill this gap, allowing for deposition estimation
of complex, real-world applications.

Fig. 11 introduces the proposed framework for lung
internal deposition prediction. If the spatiotemporal
evolution of the concentration of the NM is not known, then
it can be estimated using the multi-box aerosol model. The
concentration-time profile can then be parsed as input to one
of the two biodistribution models. If the exposure is of acute
nature, e.g., the result of an accident, then the lung exposure
model can be used to estimate the deposited mass in the
respiratory system without significant loss of precision due to
the absence of clearance mechanisms. The PBPK model is a
better tool for estimation of mass deposition following a

Fig. 10 TiO2:AgX (44.6 nm) (a) distributions and (b) computed accumulated mass for σG = 2.5, 2.1 and 1.5 for a female undertaking light exercise
in the NF area over an 8 h working day.
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chronic exposure. It has to be noted that so far, the PBPK
model can be used for assessing the internal exposure of TiO2

(preferably around 22 nm) NMs, but can be extended to
include more NMs as in vivo data become available or as read-
across models increase in power. The lung exposure model
can be used for exposure to TiO2, TiO2:AgX, black tonner and
carbon black, but can also be used for any NM provided that
the particle size distribution emission rate is known.

The underlying goal of deposition prediction is to link it
with the toxicity of the material. For conventional chemicals,
toxicity is directly related to the amount of administered
material, so the most common dose metric in the case of
inhalation is the total deposited mass. In the case of NMs,
chemical composition is not the only driver of toxicity, with
other factors, e.g., NM size, playing an important role as well.
Therefore, administered mass alone is not sufficient as a
metric to account for the toxicity of a NM, so depending on
the exposure conditions, route, NM etc., different dose
metrics such as particle number, particle volume or surface
area should be examined.47 For instance, Braakhuis et al.48

concluded that in the case of pulmonary inflammation due
to inhalation exposure to silver NMs, the appropriate dose
metric is the particle surface area in the alveoli. The tools
developed in this work report the final deposited mass in
three regions of the respiratory system after inhalation
exposure, but can be extended to report different dose
metrics, e.g., particle number as illustrated in the previous
section, or an even more advanced output with particle
number per size bin.

The natural next step for enabling risk characterization of
occupational inhalation exposure to NMs is the inclusion of
hazard values as a toxicity metric related to the NM exposure.
For human health risk assessment, the derived no-effect level
(DNEL) or occupational exposure limit (OEL) are used to
derive the maximum levels of exposure to a chemical that
humans should be exposed to. These values can be combined

with the results of the models presented here to form the risk
characterization ratio (RCR), with the exposure estimator as
the numerator and the DNEL or OEL as the denominator.
The risk to humans can be considered acceptable if the
estimated exposure levels do not exceed the hazard values,
i.e., if RCR < 1.

Unfortunately, due to the multitude of NMs and the range
of their toxicological responses, such hazard values are rarely
found in literature. Using in vivo dose–response data, the
benchmark dose (BMD) approach49–51 can be used to derive
the point of departure (POD), also known as a reference
point, which is the dose above which adverse effects start to
emerge. Dividing the POD by a series of appropriate
uncertainty factors can produce the corresponding DNEL. An
alternative approach is to estimate the hazard values using
predictive modelling. More precisely, nano-Quantitative-
Structure–Activity-Relationship (nanoQSAR)52,53 models can
build a mapping from the structure and physicochemical
characteristics of the NMs to the desired response, in this
case the hazard values, utilizing data-rich NMs to make
predictions about data-poor ones.

Finally, the output of the deposition model could be
linked to relevant adverse outcome pathways (AOPs),54 a tool
in toxicology and risk assessment for representing biological
knowledge spanning multiple biological levels. The AOP links
a biological perturbation caused by a stressor through the
molecular initiating event to an adverse outcome through a
series of key events.

Several NMs-specific AOPs have already been proposed,
including a putative AOP for lung fibrosis, in which high
exposure, in terms of mass, duration or both, leads to loss of
tissue elasticity and reduced lung function and the resulting
chronic inflammation is also linked to onset of cancer and
other diseases.55 More recently, a putative AOP for deposition
and retention of NMs in the lung leading to cancer has been
proposed that includes in silico prediction of lung deposited
dose.56 The latter example demonstrates how tools for
predicting mass deposition in the respiratory system can be
linked to AOPs.

4. Conclusion

The presented framework illustrates two different approaches
to predict the internal deposition and distribution of NMs
following inhalation exposure in an occupational exposure
setting. The developed tools have been presented as ready-to-
use, well-documented web applications, to support risk-free
use of NMs in the near future. In this direction, the
integration of hazard values for different NMs along with
inclusion of different personal protective equipment into the
applications will enable the conduction of a complete
occupational risk assessment, and assessment of the
effectiveness of various risk mitigation measures as part of
the risk management. Extension of the approach to develop
an overall framework for assessment of environmental
exposures to NMs is also underway.

Fig. 11 Proposed framework for NMs internal deposition prediction,
depending on the available input information.
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