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High-resolution mass spectrometry techniques are widely used in the environmental sciences to

characterize natural organic matter and, when utilizing these instruments, researchers must make

multiple decisions regarding sample pre-treatment and the instrument ionization mode. To identify how

these choices alter organic matter characterization and resulting conclusions, we analyzed a collection

of 17 riverine samples from East River, CO (USA) under four PPL-based Solid Phase Extraction (SPE)

treatment and electrospray ionization polarity (e.g., positive and negative) combinations: SPE (+), SPE (�),

non-SPE (�), and non-SPE (+). The greatest number of formula assignments were achieved with SPE-

treated samples due to the removal of compounds that could interfere with ionization. Furthermore, the

SPE (�) treatment captured the most formulas across the widest chemical compound diversity. In

addition to a reduced number of assigned formulas, the non-SPE datasets resulted in altered

thermodynamic interpretations that could cascade into incomplete assumptions about the availability of

organic matter pools for heterotrophic microbial respiration. Thus, we infer that the SPE (�) treatment is

the best single method for characterizing environmental organic matter pools unless the focus is on

lipid-like compounds, in which case we recommend a combination of SPE (�) and SPE (+) to adequately

characterize these molecules.
Environmental signicance

FTICR-MS is being increasingly utilized by the scientic community to characterize complex natural organic matter pools and how they are impacted with
environmental change. When using FTICR-MS for environmental research, researchers must make many decisions regarding sample pre-treatment and
instrument conguration (e.g., ionization method). Ideally, these critical decisions should be informed by data-driven patterns because they can alter results and
subsequent conclusions. Here, we analyze 17 riverine water samples using four separate analysis methods (extracted vs. non-extracted, positive ionization vs.

negative ionization) to provide data-driven guidance for future researchers.
Introduction

The development and increasing utilization of high-resolution
mass spectrometry (HRMS) techniques (e.g., FTICR-MS,
Orbitrap-MS, IMS-MS) has allowed scientists to characterize
the molecular compounds that constitute natural organic
matter1 (NOM). These approaches have been applied to samples
iversity, USA
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f Chemistry 2022
across a diverse range of environments,2–5 and have yielded new
insights into NOM processing. More recently, attempts have
been made to couple these high-resolution chemical analyses
with microbiome data to directly link measurements of micro-
bial function with changes in chemical species.6–8 One of these
approaches involves the analysis of dissolved organic matter
(DOM) in a thermodynamic framework through which the
nominal oxidation state of carbon (NOSC) can be calculated.
Specically, an empirical relationship between the NOSC and
the standard molar Gibbs free energies of the oxidation half
reactions of organic compounds9 allows researchers to quantify
the thermodynamic favorability of DOM pools as electron
donors for microbial respiration from HRMS data. One study
using this approach demonstrated that aerobic respiration
increased with increasing DOM thermodynamic favorability
Environ. Sci.: Processes Impacts, 2022, 24, 773–782 | 773
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under carbon limiting conditions.6 Similarly, a study of carbon
dynamics within an anoxic aquifer revealed the preservation of
DOM pools that yielded insufficient energy when coupled to the
reduction of sulfate.10 Other recent studies taking a similar
approach have further revealed relationships between DOM
thermodynamics and various ecological measurements,
including biogeochemical function and microbial community
assembly.7,11–13

There are many pre-treatment and instrument options to
choose when utilizing HRMS techniques that could bias the
resulting dataset. Environmental samples can be analyzed
without enrichment or treatment but are commonly pre-treated
using PPL-based solid phase extraction (SPE) to concentrate
DOM or remove species that may interfere with the ionization of
organic compounds14,15 (e.g., salts). During SPE, DOM is
retained on a sorbent then eluted using a solvent such as
methanol. Polymer-based sorbents (e.g., PPL) are commonly
used during SPE due to their high extraction efficiency and
representative character of retained DOM.16,17 However, DOM
recovery by SPE is incomplete and studies have shown that
single-sorbent SPEmethods can result in the preferential loss of
specic compound classes such as organo-sulfur compounds,18

aliphatic amines/amides, and tannin-like compounds with
a high oxygen content.19,20 Electrospray ionization (ESI) is
a common ionization technique in HRMS because it can ionize
a wide range of polar, hydrophilic molecules with diverse
functional groups common in DOM, results in minimal-to-no
fragmentation of DOM molecules (i.e., is a ‘so’ ionization
technique), and can be used in either positive or negative
mode.21 DOM can contain acidic functional groups that can be
readily deprotonated in ESI (�) or basic functional groups (e.g.,
amines) that can be readily protonated and ionized efficiently in
ESI (+). Thus, the chosen ESI mode can further govern the nal
HRMS DOM spectra and the chosen ESI mode has been found
to result in different mass spectra for the same sample.22,23

Ohno et al. (2016)24 found that ESI (+) was better at detecting
aliphatic and carbohydrate-like molecules and that the ioniza-
tion of these molecules was generally suppressed in samples
rich in aromatics ionized in ESI (�) mode. The selected ESI
mode can further impact downstream data through the gener-
ation of unintended adducts which can confound molecular
formula assignment. For example, ESI (�) can result in the
formation of chloride-containing ions due to salinity interfer-
ence.16 Finally, Hawkes et al. (2020)25 performed a cross-lab
comparability study of HRMS data from different instruments
to provide valuable metrics for future data benchmarking and
further revealed patterns based upon ionization modes.

Although other studies have analyzed impacts of instru-
mentation, sample preparation, or ionization modes, no study
has systematically examined the combined impacts of SPE and
ionization mode choices or discussed changes to thermody-
namic or microbial metabolic interpretations. Here, we analyze
a set of 17 surface and pore water samples from the East River,
CO, using four different Fourier transform ion cyclotron reso-
nance mass spectrometry (FTICR-MS) methods (SPE or non-
SPE, positive-ion or negative-ion ESI mode) with the goal of
providing guidance to researchers on what method is most
774 | Environ. Sci.: Processes Impacts, 2022, 24, 773–782
appropriate for their research question. While it is difficult to
completely standardize these treatments (particularly regarding
differences arising due to SPE), we have selected these because
they represent common routes of DOM analyses in complex
mixtures. We show that both sample pre-treatment and ESI
mode choice inuences the detection of different DOM mole-
cules and can therefore bias the interpretation of microbial
DOM processing within a given sample.
Methods
Sample collection

Surface and pore water samples (2 surface, 15 pore) were
collected from the East River (CO, USA) on a 200 m reach
encompassing one meander that lies within the U.S. Depart-
ment of Energy-supported Lawrence Berkeley National Labo-
ratory's Watershed Science Focus Area (Fig. S1†). This
combination of 17 previously-analyzed samples were selected
because they had representatives across all treatment types; see
Nelson et al. (2019)26 and Saup et al. (2019)27 for more detailed
information on sampling efforts and information on the
remainder of the samples. Briey, pore water samples were
collected from their respective depths (Table S1†) using a 0.6 cm
diameter, stainless steel pore water sipper with a screen length
of 5 cm attached to a syringe (MHE Products, MI, USA). One
tubing volume of approximately 30 mL was discarded before
sampling and sample was immediately ltered through 0.22 mm
Sterivex lters (housings made of Eastar co-polyester; Massa-
chusetts, USA). The 20 mL aliquot for the data presented here
was ltered into a pre-combusted amber glass vial and imme-
diately placed in a cooler on ice for transport back to the lab.
Dissolved organic carbon (DOC) concentrations and other
relevant metadata generated from previous manuscripts (e.g.,
Nelson et al. (2019)26 and Saup et al. (2019)27) can be found in
Table S1†.
Sample preparation and ESI-FTICR-MS data collection

Fourier Transform Ion Cyclotron Resonance Mass Spectrometry
(FTICR-MS) was used to provide ultra-high resolution organic
matter characterization. For the samples undergoing solid
phase extraction, aqueous samples (NPOC 0.33–0.99 mg C per
L) were acidied to pH 2 with 85% phosphoric acid and
extracted with Bond Elut PPL cartridges (Agilent, Santa Clara,
CA), following Dittmar et al. (2008).16 For those samples which
were not extracted, 250 mL of sample were mixed with 500 mL of
LC-MS grade MeOH. A 12 Tesla (12T) Bruker SolariX Fourier
transform ion cyclotron resonance mass spectrometer (Bruker,
Billerica, MA) located at the Environmental Molecular Sciences
Laboratory in Richland, WA was used to collect high-resolution
mass spectra of the organic matter found in each sample.
Samples were directly injected into the instrument using
a custom automated direct infusion cart that performed two
offline blanks between each sample.28 A Bruker SolariX elec-
trospray ionization (ESI) source was used in positive and
negative modes with applied voltages of +4.4 kV and �4.2 kV,
respectively. Ion accumulation time was optimized between 50
This journal is © The Royal Society of Chemistry 2022
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and 80 ms. One hundred and forty-four transients were co-
added into a 4MWord time domain (transient length of 1.1 s)
with a spectral mass window ofm/z 100–900, yielding an average
resolution of 265 K at m/z 400. Spectra were internally recali-
brated in the mass domain using homologous series separated
by 14 Da (CH2 groups) (File S1†). The mass measurement accu-
racy was typically within 1 ppm for singly charged ions across the
mass window. Bruker Daltonics DataAnalysis (version 4.2) was
used to convertmass spectra to a list ofm/z values by applying the
FTMS peak picking module with a signal-to-noise ratio (S/N)
threshold set to 7 and absolute intensity threshold to the
default value of 100%. Formularity29 was used to align peaks
using a 0.5 ppm threshold, and then assign chemical formulas
based on exact mass with a mass measurement error <0.5 ppm
while allowing for CHONS (Formularity formula settings: O >
0 AND (N + S) < 6 AND S < 3 AND P ¼ 0).

The R package msRanalysis30,31 was used to process the
report generated by Formularity and remove peaks that either
were outside the desired m/z range (150–900 m/z) or had an
isotopic signature, calculate nominal oxidation state of carbon
(NOSC), assign putative compound classes,32 and organize the
data. We have included a table that describes the number of
assigned peaks included aer each ltering step (Table S2†). In
order to contextualize our results, data published by Hawkes
et al. (2020)25 was downloaded in R from https://github.com/
BarrowResearchGroup/InterLabStudy using the provided R
package. The Hawkes et al. dataset consists of molecular
formulas obtained by analyzing four different organic matter
standards (Elliot Soil Fulvic Acid, Pony Lake Fulvic Acid,
Suwannee River Fulvic Acid, Suwannee River Natural Organic
Matter) with either FTICR-MS or Orbitrap-MS under varied
ionization modes. NOSC values were calculated and compound
classes were assigned to each molecular formula in order to
evaluate whether patterns observed using data from this
manuscript were broadly transferrable.
Thermodynamics calculations

We calculated the average thermodynamic potential factor (FT)
for the oxidation of average DOM pools coupled to the reduction
of O2 and SO4

2� at standard conditions.9,33 The FT was calcu-
lated as follows:

FT ¼ 1� exp

�
DGr þmDGATP

cRT

�
(1)

where DGr is the Gibbs energy of the reaction, m is the number
of moles of ATP synthesized per formula reaction (0.15 and 2
used for aerobic respiration and SO4

2� reduction, respec-
tively33), DGATP denotes the Gibbs energy to synthesize ATP
(50 kJ mol�1 used here33), c is the average stoichiometric
number for the reaction of interest, and R and T are the
universal gas constant and temperature, respectively. To
determine c for our complex DOM pools, we averaged the values
used for different compounds in the analysis presented in
LaRowe and Van Cappellan (2011)9 (i.e., averaging the stoi-
chiometric numbers used for amino acids, mononucleotides,
saccharides, complex organics, etc.).
This journal is © The Royal Society of Chemistry 2022
KEGG mapping

In order to evaluate differences in potential biogeochemical
interpretations, we assigned KEGG compound identiers (CPD
numbers) to observed molecular formulas by mapping them to
the KEGG database using the provided REST API.34 In order to
avoid potential duplication of CPD numbers, only exact formula
matches were considered. Using these CPD numbers, we iden-
tied corresponding pathways and qualitatively compared the
most represented pathways across treatments. Web scraping
was performed using the R package rvest35 and the KEGG
mapping scripts are available on GitHub at https://github.com/
danczakre/FTICR-Methods-Comparison.
Statistics and plot generation

The statistics program R was used to perform all statistical
analyses with the R package ggplot2 used to generate all
plots.36,37 Comparisons across treatment groups were performed
using Mann–Whitney U tests (wilcox.test) in order to identify
signicant differences in compound classication, elemental
composition, and average NOSC. An additional Kolmogorov–
Smirnov test (ks.test) was used to evaluate difference in NOSC
distributions within the Hawkes et al. dataset. Multivariate
differences across treatment types were investigated using
a nonmetric multidimensional scaling (NMDS) graph (met-
aMDS, vegan package v2.5-7) paired with a permuted analysis of
variation (PERMANOVA; adonis, vegan package v2.5-7). All R
scripts written to perform these analyses are available on
GitHub at https://github.com/danczakre/FTICR-Methods-
Comparison.
Results and discussion
Molecular formula detection signicantly varies based on
sample preparation and ionization type

We evaluated 17 samples that were processed with or without
SPE and analyzed in ESI (+) or ESI (�) mode to investigate the
impact of method selection on FTICR-MS data. Initial multi-
variate analyses revealed clear differences in the collected data
betweenmethods (Fig. S2†). Considering the molecular formula
count for each treatment, the SPE (�) treatment yielded the
most assigned formulas (6218) while non-SPE (�) yielded the
fewest (1257) (Table S2†). More broadly, the SPE-treated
samples contained greater molecular formula counts than
non-SPE samples (Fig. 1) and shared more common formulas
(Table S1†). These results are expected because SPE is
a common method to concentrate DOM in a sample and reduce
the impact of salt during ionization.18,39. By ensuring that
carbon concentrations are higher, and that salts have a smaller
impact on ionization efficiency, more molecular formula will be
assigned. Differences in formula count between the two ioni-
zation modes are likely impacted by differences in the types of
compounds ionized; specically, river corridor organic matter is
typically acidic and oen has functional groups rich in oxygen
which renders it more likely to be detected using negative
mode.25,40 The noted increase in molecular formula observed
when comparing the non-SPE (�) vs. non-SPE (+), however, is
Environ. Sci.: Processes Impacts, 2022, 24, 773–782 | 775
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Fig. 1 Classification of formulas assigned from each method by composition (A) and compound class (B). Numbers above bars (A) indicate the
total number of detected and classified formulas for the sample set with each method. Trends are consistent in sample-resolved analyses of
compositional (C) and compound class (D) variation between methods.
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likely the result of the SPE selecting for compounds more
readily observed in negative mode. In other words, the molec-
ular formulas observed under non-SPE conditions are more
readily detectable in positive-mode or experience less ionization
competition due to salinity. Additionally, the acidication of
samples prior to SPE would result in more compounds readily
detectable in ESI (�) relative to ESI (+) and basic modication,
776 | Environ. Sci.: Processes Impacts, 2022, 24, 773–782
rather than acidication, prior to SPE may enhance the number
of identiable compounds in ESI (+).41 In these samples,
conductivity (used as a proxy for salinity) ranged from 267.8–
387.4 mS (Table S1†). PPL-based solid-phase extraction can also
lead to compositional shis in the detected DOM given that
some compound types have a higher affinity for the column
(e.g., sulfur-containing, hydrophobic, low O/C compounds).18,39
This journal is © The Royal Society of Chemistry 2022
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The affinity of sulfur-containing compounds for the PPL-
column is apparent in our dataset; SPE retention resulted in
more assigned CHONS formulas in non-SPE in both negative
and positive ionization mode (7.8% and 18.1%, respectively).

We observed the largest variation the proportion of formulas
assigned to be CHO-only, with values ranging from 10.2% in
non-SPE (+) to 49.3% in non-SPE (�) and signicant differences
in proportion between each condition (Mann–Whitney U p-
value � 0.001) (Fig. 1a). The SPE (�) samples had a similar
proportion of CHO-only molecular formula as the non-SPE (�)
samples (40.6% and 49.3%, respectively; Mann–Whitney U p-
value: 0.392), whereas the ESI (+) samples diverged in CHO-only
formula proportions (10.2% and 29.7% in non-SPE and SPE,
respectively). The large proportion of CHO-only formula in ESI
(�) are consistent with observations that ESI (�) is primarily
used to detect O-rich molecular formula.25,40 CHON- and CHOS-
containing formulas also demonstrated variability across
treatment conditions overall (ranging from 14.4% to 32.2% and
14.9% to 27.7%, respectively; Fig. 1a), while sample-resolved
analyses reveal more complex patterns. ESI (+) samples,
regardless of extraction method, consistently contained
a higher proportion of CHOS-containing formula than ESI (�)
samples (Mann–Whitney U test p-value � 0.001). These
patterns reect the potential for ESI (+) to capture more
compositionally complex spectra than ESI (�),23 whereas ESI (�)
is more ideally suited for capturing CHO-only formula. Because
environmental DOM is enriched by acidic, O-rich
compounds,24,40,42 the ESI (�) approach likely results in better
characterization of the riverine DOM pool studied here.

Van Krevelen-based compound classes exhibited high vari-
ability across treatments as well (Fig. 1b). While the non-SPE (+)
treatment yielded more molecular formulas than non-SPE (�),
both non-SPE ionization modes resulted in similar proportions
of compound classes when all samples are considered together.
The SPE (�) treatment generated the highest proportion of
lignin- and tannin-like formulas (43.3% and 9%, respectively)
while the SPE (+) treatment yielded a high proportion of lipid-
like compounds (31.9%; Fig. 1b). Sample-resolved analyses
further showed these trends (Table 1). Non-SPE (�) samples had
a higher proportion of protein-like formulas than the other
treatments (Mann–Whitney U test p-value < 0.001) and non-SPE
(+) had signicantly greater representation of concentrated
hydrocarbon-like formulas (Mann–Whitney U test p-value �
0.001). Lignin-like and tannin-like formulas dominated SPE (�)
samples (Mann–Whitney p-value � 0.001) and both non-SPE
(�) and SPE (+) had increased lipid-like efficiency (Mann–
Table 1 Results of one sample (23 A, highlighted in Fig. S1) analyzed us
result in varying conclusions and thermodynamic interpretations

Method
Sample
NOSC Formula count C : N

SPE (�) �0.28 1971 32.8
SPE (+) �0.98 492 29.9
Non-SPE (�) �0.49 182 15.5
Non-SPE (+) 0.007 345 9.55

This journal is © The Royal Society of Chemistry 2022
Whitney p-value < 0.001). Given that both the lignin- and
tannin-like compound classes are characterized by higher O : C
ratios (>0.28 and >0.65 respectively), we argue that these
patterns reect the enhanced capability the PPL cartridge to
retain O-rich compounds.32,39 This suggests that solid phase
extraction has some combinatorial effect when used in
conjunction with ESI (�) due to the elevated potential for ESI
(�) to enrich for O-rich compounds, as we observed above. It is
also important to note that the acidication of sample prior to
SPE also likely selects for compounds more readily identiable
in SPE (�).

Thermodynamics vary substantially based upon extraction
methodology and ionization mode

The NOSC for a given sample was used to evaluate the potential
thermodynamic implications of the methodological differ-
ences. The NOSC metric can reveal the potential thermody-
namic favorability of a carbon substrate (or bulk DOM pool
favorability when averaged together), with higher NOSC values
theoretically yielding a lower overall DG

�
C ox (i.e., more favor-

able) when coupled to the reduction of an electron acceptor.9

We observed that each method yielded NOSC values signi-
cantly different from each other method (p < 0.001) and that
compounds detected in the non-SPE (+) treatment had higher
NOSC values overall while the average NOSC for detected
compounds in the SPE (+) was signicantly lower (Fig. 2).
Interestingly, the impacts of SPE on NOSC within each ioniza-
tion mode are ipped; in ESI (+) mode, the SPE samples have
signicantly lower NOSC values whereas, in ESI (�) mode, the
non-SPE samples have signicantly lower NOSC values. We
hypothesize that this could be due to potentially driven by the
higher average proportion of lipid-like molecular formulas in
both of these treatments, which have historically had lower
NOSC values.10 Thus, non-SPE (+) processing of these samples
would have yielded DOM compounds considered less thermo-
dynamically favorable in many biogeochemical analyses.6,10,43

To evaluate the transferability of observations derived from
our dataset, we performed similar analyses on data previously
utilized in Hawkes et al. (2020).25 In brief, these data consisted
of four separate organic matter standards (ESFA: Elliot Soil
Fulvic Acid, PLFA: Pony Lake Fulvic Acid, SRFA: Suwannee River
Fulvic Acid, SRNOM: Suwannee River Natural Organic Matter)
collected across international high-resolution mass spectrom-
etry instruments (e.g., FTICR-MS, Orbitrap-MS) in both ESI (+)
and ESI (�) modes. The fulvic acid samples were prepared by
isolating DOM onto XAD-8 resin and the SRDOM sample was
ing each of the four methods, indicating that the chosen method can

Lignin : N
FT, coupled to
O2 reduction

FT, coupled to
SO4

2� reduction

48.04 0.99 0.17
2.6 0.96 0
1.9 0.99 0
3.47 0.99 0.63

Environ. Sci.: Processes Impacts, 2022, 24, 773–782 | 777
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Fig. 2 The distribution of sample mean NOSC values across all four
FTICR-MS analysis methods. Jittered points represent the specific
NOSC means for a given sample. Colored circles indicate significant
differences between methods.

Fig. 3 The Gibbs free energy of the oxidation of the average C pool
plotted against the thermodynamic potential factor (FT) for the C
oxidation coupled to O2 (top) or SO4

2� (bottom) reduction at standard
conditions, colored by analysis method. Underlying colored density
plots represent the distribution of FT values across each method.
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prepared using reverse osmosis. Across each standard alone
and a composite of all standards, we observed consistently
lower NOSC in data collected in positive mode than in negative
mode (Wilcoxon Test & Kolmogorov–Smirnov Test p values �
0.001; Fig. S3†). The results help assert that the impact of
ionization mode is similar across sample pre-treatment
methods and sample types (e.g., ESFA is a soil standard vs.
our freshwater samples).

To further explore the thermodynamic implications of the
FTICR-MS methods, we calculated the average thermodynamic
potential factor (FT) for the oxidation of the average DOM pools
coupled to reduction of O2 and SO4

2� at standard conditions
(Fig. 3). Briey, FT is a dimensionless value derived from tran-
sition state theory that couples the rate of reaction to the Gibbs
free energy of reaction. A value of 1 indicates that bioenergetic
limitation is ignored, the reaction is more kinetically controlled,
and, if there is substrate available, there will likely be a positive
reaction rate until substrate is consumed.9,33 Thus, FT values are
helpful for identifying differences in potential organic matter
degradation rates between different environments or samples.
Data resulting from the non-SPE (+) treatment consistently
yielded the highest FT values for reduction of both O2 and
SO4

2�, while the FT values calculated from SPE (+) analyses were
generally the lowest of the four treatment conditions (Fig. 3).
This indicates that the suite of compounds detected by non-SPE
(+) would have the fewest thermodynamic constraints if utilized
for sulfate reduction and that oxidation of the compounds
detected by SPE (+) have the highest thermodynamic constraint
when coupled to aerobic respiration. The compounds detected
in SPE (�) consistently had high FT values when coupled to
aerobic oxidation and had a large range for sulfate reduction
(0.02–0.51; Fig. 3). As we observed with the NOSC values, we
778 | Environ. Sci.: Processes Impacts, 2022, 24, 773–782
suggest that this is a result of non-SPE (�) and SPE (+) selecting
for larger proportions of comparably thermodynamically unfa-
vorable high H : C, low O : C formulas (e.g., lipid-like). As this
approach is commonly coupled to FTICR-MS data,44 it is
important to understand how the pre-treatment and instrument
method inuences nal FT calculations and further biogeo-
chemical interpretations.
Divergent ecosystem interpretations arise due to extraction
methodology and ionization mode

We observed variability in elemental and lignin composition
across ESI � and can leverage this to further evaluate the
organic matter detected by each ionization mode. For example,
lignin : N and C : N ratios have been used as an index of organic
matter stability and as a means to estimate decomposition
rate.45,46 We calculated these widely used ratios for each of the
datasets and found that the methods study here greatly impact
these values (Fig. S4†). The non-SPE (+) dataset had
This journal is © The Royal Society of Chemistry 2022
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a signicantly lower C : N (here, organic C to organic N) than
each other dataset and the SPE (�) dataset had a signicantly
higher lignin : N ratio due to the high detection of lignin-like
compounds and no acidication prior to analysis (Fig. 1). This
would lead to an interpretation that the DOM pool detected in
non-SPE (+) has a higher residence time than those detected in
the other methods. The higher lignin : N ratio in the SPE (�)
dataset cascades into an interpretation where we would assume
lower decomposition rates in this dataset relative to the others.

To identify whether the trends seen in the bulk dataset held
for sample-resolved analyses, we chose a representative sample
for direct comparison of selected measurements between the
four methodologies (Table 1). A single representative sample
was selected to focus specically on the thermodynamic rela-
tionships across the treatment methodologies in one physical
location, rather than broad scale biogeochemical processes
explored elsewhere.26 Overall, there were clear differences in the
formula count, with SPE (�) still resulting in the most assigned
formulas (1971). Additionally, despite variability in NOSC values
across the sample treatments, measured DOM pools for this
sample have few to no thermodynamic restraints for the
reduction of O2 (i.e., FT values close to 1 – Fig. 3a). Conversely,
these same treatment-derived differences in NOSC result in
greater variability in the FT parameter when oxidation of DOM is
coupled to reduction of SO4

2�. All the DOM pools detected
using the SPE (+) and non-SPE (�) treatment yielded an FT value
of 0, indicating that sulfate reduction would be thermody-
namically inhibited. In contrast, the non-SPE (+) produced the
highest FT when coupled to SO4

2� reduction, indicating fewer
thermodynamic constraints. Lastly, similar to the bulk dataset
analysis (Fig. S4†), the ratio of lignin-like compounds to N
(lignin : N) was signicantly higher in the SPE (�) dataset due to
the large number of lignin-like compounds detected (Fig. 1B)
and the C : N ratio was still the lowest in the non-SPE (+). Thus,
this example further illustrates how DOM treatment can inu-
ence our interpretation of likely redox reactions and potential
decomposition rates occurring in each sample.

Given the observed patterns of unique and shared molecular
formula acrossmethodologies, extractionmethod and ionization
mode have signicant implications for biogeochemical
modeling. In the case of recent multi-omics analysis, environ-
mental metabolite data collected via high resolution MS can be
incorporated into pathway models to understand carbon ux or
organismal metabolism.47 Differences in the types of formula
detected during data collection could have profound impacts on
inferred metabolic pathways. Given the low percentage of shared
molecular formula across methods (Table S3†), detected path-
ways may be divergent resulting in different predicted paths for
carbon ux. Using the data presented within thismanuscript, for
example, we observe variation in the non-specic “Metabolic
pathways” and “Biosynthesis of secondary metabolites” cate-
gories across the methods with SPE (�) having the highest
absolute abundance and non-SPE (+) having the lowest (Fig.S6†).
We also observe pathways unique to methods; for example,
“Degradation of aromatic compounds” and “Flavonoid biosyn-
thesis” were only present in SPE (�) data while we only saw
“Limonene and pinene degradation” in SPE (+) (Fig. S6†). Other
This journal is © The Royal Society of Chemistry 2022
types of biogeochemical analyses, such as those relying on
substrate-explicit modeling, will also be signicantly impacted
due to the shi in understood thermodynamic availability of
each compound.12 Specically, the analysis proposed by Song
et al. (2020)12 relies heavily on the predicted Gibb's free energy of
various carbon reactions to estimate reaction kinetics and stoi-
chiometric coefficients of catabolic and anabolic reactions. Shis
in the average NOSC values will cascade into divergent predic-
tions of biogeochemical rates.

Conclusions

We achieved the highest number of assigned formulas (11 072)
and representation from all molecular and van Krevelen-based
compound classes when combining the four datasets (Fig. S5†).
Although combining methods would most holistically charac-
terize DOM pools, experimental design clearly depends on (1)
instrument availability, (2) available sample volume, and (3)
funding resources. We therefore provide some of the following
recommendations to help researchers prioritize their desired
outputs. Our analyses rst conrm that SPE treatment yields the
largest number of molecular formulas from these riverine DOM
samples and that ESI (�) captures the most formulas and is
relatively sufficient for capturing broad chemical diversity (Fig. 1).
However, if lipid-like compounds (e.g., formulas with low O : C
and high H : C) are the overall target, extracted samples run with
ESI (+) would be a better recommendation. If the aim is a ther-
modynamic analysis of the DOM pools, SPE (+) appears to detect
compounds with signicantly lower NOSC values (Fig. 2) than the
other methods, potentially altering downstream thermodynamic
predictions. We therefore recommend that SPE (�) or SPE (�)
combined with SPE (+) is used for most applications. Non-SPE
yields the lowest number of formulas and has the most limited
applications due to salinity and other interferences. While it may
be used if the laboratory has either time or funding constraints,
we highlight the potential for saline interference in data capture.
If samples are not treated with SPE, we recommend the use of ESI
(+) instead of ESI (�) because it not only yields more formulas but
also results in more formulas from each Van-Krevelen-based
compound class, likely resulting in a more holistic characteriza-
tion of the DOM pool (Fig. 1). However, if the study is focusing on
thermodynamics, ESI (�) detects compounds more representa-
tive of the DOM pool (Fig. 2). These recommendations should be
taken into consideration when performing experimental design.
Furthermore, given that we observe signicant differences in
methodological decisions, we believe that more systematic
comparisons across methods (e.g., different ionization tech-
niques, extractions, storages, etc.) are needed to aid scientists in
developing well-designed experiments utilizing FTICR-MS.

Abbreviations
SPE
 Solid phase extraction

HRMS
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Data availability

All of the FTICR-MS data used throughout this study is available
at the DOE's data archive ESS-DIVE at https://data.ess-
dive.lbl.gov/view/doi:10.15485/1813303.38

Conflicts of interest

There are no conicts of interest to declare.

Acknowledgements

A portion of this research was performed under the Facilities
Integrating Collaborations for User Science (FICUS) program
(award # 504279 to MJW) and used resources at the Environ-
mental Molecular Sciences Laboratory (EMSL), which is a DOE
Office of Science User Facility. The EMSL facility is sponsored by
the Biological and Environmental Research (BER) program and
operated under Contract No. DE-AC05-76RL01830. Another
portion of this research was performed under DE-SC0016488 as
part of the BER's Subsurface Biogeochemical Research SFA
funding of MJW. Sampling efforts were funded through a grant
from the Geological Society of America to ARN. This research
was also supported by the U.S. DOE-BER as part of BER's River
Corridor Research Program (RC). This contribution originates
from the RC Scientic Focus Area (SFA) at the Pacic Northwest
National Laboratory (PNNL). We would like to acknowledge the
Worldwide Hydrobiogeochemical Observation Network for
Dynamic River Systems (WHONDRS) for their support in data
collection and analysis. We would also like to acknowledge
William Kew for his assistance and guidance in the preparation
in this manuscript.

References

1 J. A. Hawkes, T. Dittmar, C. Patriarca, L. Tranvik and
J. Bergquist, Evaluation of the Orbitrap Mass Spectrometer
for the Molecular Fingerprinting Analysis of Natural
Dissolved Organic Matter, Anal. Chem., 2016, 88(15), 7698–
7704, DOI: 10.1021/acs.analchem.6b01624.

2 R. E. Danczak, R. K. Chu, S. J. Fansler, A. E. Goldman,
E. B. Graham, M. M. Tfaily, et al., Using metacommunity
ecology to understand environmental metabolomes, Nat.
Commun., 2020, 11(1), 6369, http://www.nature.com/
articles/s41467-020-19989-y.

3 A. M. Kellerman, A. Arellano, D. C. Podgorski, E. E. Martin,
J. B. Martin, K. M. Deuerling, et al., Fundamental drivers of
dissolved organic matter composition across an Arctic
effective precipitation gradient, Limnol. Oceanogr., 2020,
65(6), 1217–1234.
ron. Sci.: Processes Impacts, 2022, 24, 773–782
4 A. M. Kellerman, T. Dittmar, D. N. Kothawala and
L. J. Tranvik, Chemodiversity of dissolved organic matter
in lakes driven by climate and hydrology, Nat. Commun.,
2014, 5(1), 3804, http://www.nature.com/articles/
ncomms4804.

5 M. M. Tfaily, N. J. Hess, A. Koyama and R. D. Evans, Elevated
[CO2] changes soil organic matter composition and
substrate diversity in an arid ecosystem, Geoderma, 2018,
1–8, DOI: 10.1016/j.geoderma.2018.05.025.

6 V. A. Garayburu-Caruso, J. C. Stegen, H.-S. Song, L. Renteria,
J. Wells, W. Garcia, et al., Carbon Limitation Leads to
Thermodynamic Regulation of Aerobic Metabolism,
Environ. Sci. Technol. Lett., 2020, 7(7), 517–524, DOI:
10.1021/acs.estlett.0c00258.

7 E. B. Graham, A. R. Crump, D. W. Kennedy, E. Arntzen,
S. Fansler, S. O. Purvine, et al., Multi ’omics comparison
reveals metabolome biochemistry, not microbiome
composition or gene expression, corresponds to elevated
biogeochemical function in the hyporheic zone, Sci. Total
Environ., 2018, 642, 742–753, DOI: 10.1016/
j.scitotenv.2018.05.256.

8 E. B. Graham, M. M. Tfaily, A. R. Crump, A. E. Goldman,
L. M. Bramer, E. Arntzen, et al., Carbon Inputs From
Riparian Vegetation Limit Oxidation of Physically Bound
Organic Carbon Via Biochemical and Thermodynamic
Processes, J. Geophys. Res.: Biogeosci., 2017, 122(12), 3188–
3205, http://www.nature.com/articles/175238c0.

9 D. E. LaRowe and P. Van Cappellen, Degradation of natural
organic matter: A thermodynamic analysis, Geochim.
Cosmochim. Acta, 2011, 75(8), 2030–2042, http://
www.sciencedirect.com/science/article/pii/
S0016703711000378.
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