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volatility distributions for organic
matter in biomass burning emissions†
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The volatility distribution of organic emissions from biomass burning and other combustion sources can

determine their atmospheric evolution due to partitioning/aging. The gap between measurements and

models predicting secondary organic aerosol has been partially attributed to the absence of semi- and

intermediate volatility organic compounds (S/I-VOC) in models and measurements. However, S/I-VOCs

emitted from these sources and typically quantified using the volatility basis framework (VBS) are not well

understood. For example, the amount and composition of S/I-VOCs and their variability across different

biomass burning sources such as residential woodstoves, open field burns, and laboratory simulated

open burning are uncertain. To address this, a novel filter-in-tube sorbent tube sampling method

collected S/I-VOC samples from biomass burning experiments for a range of fuels and combustion

conditions. Filter-in-tube samples were analyzed using thermal desorption-gas chromatography-mass

spectrometry (TD/GC/MS) for compounds across a wide range of volatilities (saturation concentrations;

−2 # log C* # 6). The S/I-VOC measurements were used to calculate volatility distributions for each

emission source. The distributions were broadly consistent across the sources with IVOCs accounting

for 75–90% of the total captured organic matter, while SVOCs and LVOCs were responsible for 6–13%

and 1–12%, respectively. The distributions and predicted partitioning were generally consistent with the

literature. Particulate matter emission factors spanned two orders of magnitude across the sources. This

work highlights the potential of inferring gas–particle partitioning behavior of biomass burning emissions

using filter-in-tube sorbent samples analyzed offline. This simplifies both sampling and analysis of S/I-

VOCs for studies focused on capturing the full range of organics emitted.
Environmental signicance

Organic emissions from biomass burning are a key contributor to atmospheric composition at all scales. Organic volatility dictates their gas–particle parti-
tioning and contribution to secondary organic aerosol formation. Previous studies have not addressed the volatility of the diverse range of biomass combustion
types, largely due to the complexity of quantifying organic volatility. Here, we present results from a novel sampling and analytical approach applied to a range of
biomass combustion systems (lab burning of wildland fuels, open grassland burning, residential wood combustion). Our results demonstrate that this relatively
simple and eld-deployable approach yields volatility distribution that are broadly consistent with previous estimates, but that are distinct between combustion
types. While organic PM emission factors ranged over two orders of magnitude across the sources tested, volatility distributions had smaller, though consistent
inter-source differences.
1. Introduction

Emissions from biomass burning signicantly inuence gas
and particle concentrations globally.1 These emissions include
major greenhouse gases like carbon dioxide (CO2), air
ineering, North Carolina State University,

du

d Modeling, US Environmental Protection

tion (ESI) available. See DOI:

the Royal Society of Chemistry
pollutants like carbon monoxide (CO), and volatile organic
compounds (VOCs) capable of undergoing photo-oxidation to
form secondary products. The products of incomplete
combustion from these emissions also include ne particles or
particulate matter smaller than 2.5 mm (PM2.5). PM2.5 is an
important atmospheric pollutant that has large yet uncertain
impacts on climate,1 air quality2 and adversely affects human
health.3,4 Modeling studies have shown that residential emis-
sions can make substantial contributions to ambient air
pollution (e.g. �20−50% of PM2.5 in India).5,6 Further, emission
inventories have estimated that 26−73% of global emission of
ne particulate organic matter can be ascribed to open biomass
burning and about 20% to residential biomass combustion.7–10
Environ. Sci.: Atmos., 2023, 3, 11–23 | 11

http://crossmark.crossref.org/dialog/?doi=10.1039/d2ea00080f&domain=pdf&date_stamp=2023-01-14
http://orcid.org/0000-0002-4029-8660
http://orcid.org/0000-0002-6470-9946
https://doi.org/10.1039/d2ea00080f
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2ea00080f
https://pubs.rsc.org/en/journals/journal/EA
https://pubs.rsc.org/en/journals/journal/EA?issueid=EA003001


Environmental Science: Atmospheres Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

7 
O

ct
ob

er
 2

02
2.

 D
ow

nl
oa

de
d 

on
 9

/2
1/

20
24

 2
:1

9:
27

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
This indicates that primary organic aerosol (POA) emitted from
biomass burning forms an important component of PM2.5. It is
now well understood that biomass burning POA is semi-volatile
in nature, i.e., the organic compounds that constitute POA can
partition between the gas and particle phases.11–14 This parti-
tioning can vary with atmospheric dilution and ambient
temperature, which shi the thermodynamic equilibrium,
inuencing the fate and lifetime of biomass burning POA.
Accounting for gas–particle partitioning in emissions invento-
ries can have important implications for predictions of chem-
ical transport models (CTMs) and enable more accurate
depictions of atmospheric aerosols. Gas–particle partitioning
also creates inconsistencies in the denitions of particulate
organic matter between regulatory measurements and air
quality research models/measurements.15,16 However, few
studies have made attempts to constrain the partitioning
behavior of biomass burning POA.

The gas–particle partitioning of POA in the atmosphere is
typically described using absorptive partitioning theory.17,18

This theory can be used in a semi-empirical fashion with a set of
surrogate or lumped species that describes the measured par-
titioning behavior of emissions.12,14 This surrogate set of
compounds is oen represented using a one-dimensional
volatility basis set, or VBS,18 which distributes organics over
a logarithmically spaced set of bins of effective saturation
concentration, Ci*. In this framework, resolution of POA at
a molecular level is not required as surrogate bins describe the
properties of compounds lumped in the bin (e.g., saturation
concentration). At phase equilibrium, the organic aerosol (OA)
emission factor (EFOA) and the mass fraction of organic emis-
sions residing in the particle phase (Xp) are expressed as:

Xp ¼
X

fi

�
1þ C*

i ðTÞ
COA

��1
¼ EFOA

EFTOT

(1)

where C*
i ðTÞ is the effective saturation concentration of species i

at temperature T, COA is the OA concentration, fi is the mass
fraction of species i, and EFTOT is the emission factor of all
lower-volatility organics (particle and gas phase) being
captured.

Organics can be segregated into volatility groups based on
the nomenclature proposed elsewhere19,20 as: intermediate
volatility organic compounds, IVOCs (C* ¼ 300–3 � 106 mg
m−3), semi-volatile organic compounds, SVOCs (C* ¼ 0.3–300
mg m−3) and low volatility organic compounds, LVOCs (C* < 0.3
mg m−3). S/I-VOCs play an important role in describing gas–
particle partitioning from biomass burning emissions. S/I-VOCs
are also important precursors for secondary organic aerosol
(SOA) formation and likely play a key role in reducing the gap
between measurements and models predicting SOA forma-
tion.13,21 However, quantitative collection and chemical analysis
of this material, and especially IVOCs, is complex. For example,
in gas chromatography (GC) analysis, the vast majority of IVOCs
typically elute in the chromatogram as unresolved complex
mixtures (UCM), which is material that co-elutes and cannot be
separated into individual compounds.22,23 This is because
IVOCs, typically consisting of compounds with carbon numbers
12 | Environ. Sci.: Atmos., 2023, 3, 11–23
greater than 10, are associated with a larger number of consti-
tutional isomers, making them harder to resolve using tradi-
tional GC methods. As a result, little research has explored the
speciation of S/I-VOCs in both gas and particle phases from
biomass burning emissions. Previous studies have sampled
from controlled/closed burning and reported gas and particle
phase S/I-VOCs for three types of residential wood combustion
(RWC)24 and also measured RWC emissions with online
methods.25 Other studies have explored emissions from
uncontrolled/open burning emissions. For example, one anal-
ysis explored emissions from six foliar fuels using ion chro-
matography and wavelength dispersive X-ray uorescence
techniques.26 Another investigated emissions from a range of
fuel types and burning conditions, including laboratory, re-
place, and prescribed res using electron impact ionization gas
chromatography interfaced with mass spectrometry.27 A key
commonality of these studies of speciated S/I-VOC compounds
is that they typically only identify a fraction (40–50% or less) of
the total mass with the remaining fraction apportioned to the
UCM. Speciation methods thus have offered detailed chemical
information on the identied fraction but have thus far not
characterized the UCM (majority contribution in terms of
mass). On the other hand, bulk methods (e.g., thermooptical
lter measurements of OC) offer little chemical detail but,
depending on sampling media, are more likely to capture the
full range of mass sampled. Thus, there exists a tradeoff in
detailed speciation measurements and measuring the full
volatility range of organic mass.

Several methods have been used to estimate volatility
distributions of combustion emissions over the last decade. The
positive artifact on quartz lters has been used to provide an
estimate of gas–particle partitioning.14,28–30 Isothermal dilution
and temperature perturbations using thermodenuders have
been used to constrain gas–particle partitioning of biomass
burning aerosol from wood stoves31 and laboratory res.11

Several studies have shown that equilibrium cannot be assumed
when using thermal denuder systems, thus this tool typically
requires application of kinetic equations to estimate volatility
distributions.32–34 More recently, a study has estimated volatility
distributions of sewage incineration emissions using online
mass spectroscopy, capable of measuring low concentrations of
gas- and particle phase organics in real-time.35 Another strategy
has been the use of thermal desorption gas chromatography
mass spectrometry (TD/GC/MS) to infer POA volatility via
separation across the retention time in the GC column of
organics desorbed from sorbent tubes.22,30,36–39 The volatility
distributions derived from TD/GC/MS measurements have been
shown to be in agreement with distributions from isothermal
dilution/temperature perturbations with kinetic modeling for
diesel and gasoline engine emissions.28,30 This method allows
for the estimation of organic aerosol volatility from a single
sample and thus offers an important advantage over more
resource intensive online approaches (e.g., thermodenuders,
dilution). However, this method has not been previously used to
characterize biomass burning POA volatility. Moreover, a varia-
tion of this method with the lter placed inside the sample
collection tube allowing for sampling of gas and particle phase
© 2023 The Author(s). Published by the Royal Society of Chemistry
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organics for simultaneous analysis in the TD/GC/MS has not
been attempted for biomass burning emissions. This novel
lter-in-tube measurement approach would simplify both
sampling and analysis of sorbents for studies focused on
capturing the full range of S/I-VOCs emitted.

Biomass burning spans a spectrum ranging from residential
wood stoves to open burning resulting in complex mixtures of
organic compounds that span a wide range of volatility. Studies
have constrained the volatility distributions of biomass burning
POA emissions from wood stoves12 and also from laboratory
burns of 15 fuels over a range of combustion conditions.11 The
recommended distributions derived in May et al.11 have been
used in several modeling studies.40–42 Other studies have ob-
tained distributions for open-burning emissions via factor
analysis of ambient and thermally denuded OA.43 Another
approach was to sample on Solid Phase Extraction (SPE) lters
for untargeted analysis of gas-phase S/I-VOCs in biomass
burning smoke samples from a series of laboratory res and
subsequently derive volatility distributions from the speciated
data.44 However, there is still uncertainty in the amount and
composition of S/I-VOCs and how they are inuenced by factors
like fuel type and combustion conditions. Moreover, quantita-
tive comparison of samples of fresh emissions from lab simu-
lated open burning with those from real-world open burning is
lacking. Thus, there is a need to measure partitioning param-
eters across a broader range of biomass burning conditions and
compare them with existing parameterizations.

In this study, we address these knowledge gaps bymeasuring
the volatility distributions from three different types of biomass
burning emissions: open eld burns, laboratory-simulated
open burns and different phases of residential wood combus-
tion in a modern heating stove. S/I-VOC volatility was investi-
gated using a calibration built from n-alkane standards in TD/
GC/MS analyses. The objectives of this study are as follows: (1)
develop an approach and calibration to map TD/GC/MS data to
VBS space; (2) characterize deviations from n-alkane-based
calibration in deriving volatility distributions from TD/GC/MS
chromatograms; (3) compare volatility distributions from
different types of biomass burning using lter-in-tube sorbent
samples analyzed using a TD/GC/MS; (4) make comparisons of
the derived volatility distributions to existing distributions for
biomass burning in literature.

2. Materials and methods
2.1 Experimental setup of combustion experiments

Several different sample types were collected to capture a range
of biomass burning conditions, including in-eld open
burning, laboratory simulations of open burning, and labora-
tory testing of woodstoves. Sampling times and dilution ratios
for the S/I-VOC samples were designed to obtain approximately
the same amount of sample mass over the entire duration of
each process, while avoiding breakthrough conditions. Break-
through testing across several emissions testing environments
was conducted, including those examining wildre, residential
burning, and vehicle emissions. Breakthrough testing is nor-
mally accomplished by positioning two tubes in series and
© 2023 The Author(s). Published by the Royal Society of Chemistry
analyzing both using identical GC-MS methodology. At the ow
rates, dilution ratios, and concentrations in the present study,
compound breakthrough in the second tube has not been
observed. In addition, the recovery of the internal standards
spiked before sampling was monitored, and the d8-
naphthalene internal standard recovery would indicate break-
through issues during each sampling event.

In-eld open burning (also referred to as ‘eld’): emissions
were sampled from three in-eld burns of Tallgrass Prairie in
the Flint Hills region of Kansas in April 2019. Mobile
measurement platforms were positioned immediately down-
wind of the burning eld to capture fresh emissions (Fig. S1-A†).
Background air samples were taken on days when no burning
occurred. Concurrent measurements of CO, CO2, PM2.5, and
elemental (EC) and organic carbon (OC) were made using
a portable sampling package described elsewhere.45,46 Briey,
continuous measurements of CO2 were made with a nondis-
persive infrared analyzer (LiCor, Li-820) and CO with an elec-
trochemical sensor (SGX, EC4-500). Batch samples with Teon
(Teo, Pall) and quartz (Tissuquartz, Pall) 47 mm lters ben-
hind a PM2.5 impactor inlet were taken simultaneously with
a pressure-compensating pump at 10 l min−1 (Leland Legacy,
SKC). EC and OC were quantied using the modied NIOSH
5040 protocol described elsewhere.47

Laboratory simulations of open burning (also referred to as
‘burnhut’): fuel was collected from two locations in a conifer
forest in northern and central Minnesota. The fuel samples
consisted of four clip plots (two 1 m2 and two 0.25 m2) con-
sisting of mostly moss and tree litter and two peat cores taken
from the same sites. Open biomass burning was simulated in an
open burn test facility (OBTF) on the EPA campus in Research
Triangle Park, NC48 (Fig. S1-B†). The OBTF is a 70 m3 room with
a high-volume blower that pulls ambient air into the room and
out through an exhaust duct (12 inch diameter) to provide
excess oxygen conditions. Fuels were dried at 80 �C overnight in
an oven before burning. Fuels were evenly dispersed across a 0.5
m2 stainless steel pan lled with sand and covered with
aluminum foil and ignited with a propane torch. A nichrome
wire was used to ignite the peat cores at one end resulting in
smoldering combustion front propagating across the core.
Emissions measurements were all taken in the exhaust duct at
the same location. Batch samples for PM2.5, EC, OC were
collected through a 12 mmOD stainless-steel sample probe and
PM2.5 cyclone (URG). An aerosol splitter was used to split the
sample between 47 mm Teon lters (Teo, Pall) and 90 mm
quartz lters (Tissuquartz, Pall). S/I-VOC and black carbon
samples were collected through a 6 mm OD stainless-steel
sample probe. Continuous measurements of CO, CO2 (CAI,
600 series), NOx (EcoPhysics nCLD), and total hydrocarbons
(THC) (CAI, 600 series) were collected through a 6 mm OD
stainless-steel probe, heated lter, and heated Teon sample
line.

Laboratory testing of woodstoves (also referred to as ‘RWC’):
residential wood combustion (RWC) emissions were sampled
from an EPA 2015 certied woodstove (Englander, 30-NC)
following a modied cordwood test protocol (ASTM E3053). The
method includes a startup phase followed by a high re phase
Environ. Sci.: Atmos., 2023, 3, 11–23 | 13
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where the stove air inlets are fully opened and ending with a low
re phase where stove air inlets are fully closed. Tests were done
in triplicate for two fuel types: dry Red Oak and dry Sitka Spruce.
Fuel wood was cut to nominally 40 cm in length and split into
triangular pieces with the bark on (�0.5–2.5 kg). The test facility
is described in detail elsewhere49 and a schematic shown in Fig.
S1-C.† Briey, stove emissions are captured by a hood into an
exhaust duct and subsequently mixed with ltered air to reduce
temperatures and concentrations. Gas phase emissions (CO2,
CO, THC, NOx; CAI 600 series) were sampled through a stain-
less-steel probe, heated lter, and heated sample line from
the dilution duct. PM2.5 (47 mm Telfo, Pall) and EC/OC (47 mm
Tissuquartz, Pall) samples were taken from the duct through
6 mm OD stainless steel probes. A secondary dilution system
(DI-1000, Dekati) was used to further reduce pollutant concen-
trations so that SVOC samples could be collected over the entire
test phase duration and have concentrations comparable to the
eld and burnhut samples. SVOC and black carbon (MA350,
Aehtlabs) were sampled from a manifold connected to the
secondary dilution system. Emissions were sampled from the
exhaust duct with a stainless-steel probe (3/8′′) using an eductor
(DI-1000, Dekati) supplied with 20 l min−1 of dilution air dried
and scrubbed of CO2 (Van Air Compressed Gas Dryer) and
supplied to a stainless-steel (Schedule 40 2′′ pipe) sampling
manifold. The eductor provides a nominal 8 : 1 dilution ratio;
but is dependent on the absolute pressure in the exhaust so the
CO2 concentration in the diluted air was measured continu-
ously (LiCor, Li-820) to determine the dilution ratio. Back-
ground samples were taken from the dilution duct when the
stove was not operating.

S/I-VOC emissions were sampled using lter-in-tube sorbents
near the source or from the exhaust ducts (Fig. S1†). A ow of 0.07
l min−1 through the sorbent tubes was maintained using a pump
(SensidyneMicro Air Diaphragm pump) andmass ow controller
(Alicat, MC series). Actual sample ow was checked with a TSI
ow calibrator before and aer each sampling period. S/I-VOC
sampling media consisted of 40 mm of Carbotrap-F (20/40
mesh) and 20 mm of Carbotrap-C (20/40 mesh) sorbents
(purchased already lled in sorbent tubes by Sigma-Aldrich) with
previously baked (550 �C for 8 hours) quartz lter punches (0.385
cm2) placed in the Gerstel tube upstream of the sorbent beds to
capture both particle and gas phase emissions. This sorbent
conguration was chosen as the measurement of hydrocarbons
was a focus in our experiments, since they formed the basis of our
volatility distribution estimation method (described in detail in
Section 2.3). The sorbent tubes themselves were baked in a Ger-
stel TDS3 thermal desorption system to thermally clean them
before packing. Prior to sampling and subsequent TD/GC/MS
analysis, each tube was spiked with 1 microliter of a deuterated
internal standard (Wisconsin State Lab of Hygiene Internal
Standard #4, deuterated n-alkanes) to track analyte recovery. The
internal standard solution contained six deuterated n-alkanes
ranging from n-pentadecane-d32 (C15H32) to n-hexatriacontane-
d74 (C36H74).

Sorbent tube samples with quartz ber lter punches
upstream of the sorbent material (“lter-in-tubes”) were
analyzed using a thermal desorption gas chromatography mass
14 | Environ. Sci.: Atmos., 2023, 3, 11–23
spectrometer (TD/GC/MS) (Gerstel TDS2, MD, USA) measuring
total ion chromatograms (TIC), which we use to indicate the
mass of gas- and particle-phase (i.e., total) S/I-VOCs sampled.
During desorption, the TD was ramped from an initial
temperature of 25 �C to a nal hold temperature of 300 �C (7
min) at 60 �C s−1. The Cooled Injection System (CIS) was held at
an initial temperature of −100 �C during sample transfer. The
GC was equipped with an Agilent HP-5 MS capillary column (30
m � 0.25 mm inner diameter). The GC method used a column
ow of 1 mL min−1. The initial GC oven temperature was xed
at 65 �C (held for 10 minutes) and ramped up to 300 �C at a rate
of 10 �Cmin−1 then held for 26.5 minutes. TheMS was operated
in scan mode to obtain total ion chromatograms reporting all
measured signals. Other operational details regarding TD/GC/
MS operation are furnished in Table S1.†

2.2 TD/GC/MS calibration experiments

In separate experiments, sorbent tubes were prepared with
calibration spikes of n-alkanes, PAHs, sugars and methox-
yphenols with constituents listed in Table S2.† Calibration
spikes of 10 ng of each compound in the standard mixture were
prepared by diluting with a HIB solvent solution (hexanes –

40%, isopropanol – 20%, benzene – 40% by volume). Aer the
spike, nitrogen (N2) was owed through the tube at 50 mL
min−1 for 90 seconds to ensure proper transfer across the
adsorbent material.

2.3 Chromatograph analysis

Before analyzing a sorbent tube collected from a biomass
burning experiment, a calibration run using an n-alkane stan-
dard containing even alkanes ranging from C10–C38 was rst
analyzed in scan mode. Fig. S2† depicts the subsequent steps
involved in the derivation of volatility distributions from TICs of
a biomass burning sample using the VBS framework. First, the
TIC of the biomass burning sample was corrected for column
bleed by deriving a correction factor, calculated as the ratio of
the contribution of m/z 207 to the TIC signal in the chromato-
gram retention time window between 40 and 45 minutes, where
column bleed dominates the signal. The column bleed cor-
rected TIC was then divided into 29 bins in GC retention time
space. The roughly equal width of the bins was dictated by GC
retention times of n-alkanes ranging from C10–C38. The elution
time of n-alkanes was used to dene the volatility bin edges
calculated as follows: if Cn represents the elution time of an n-
alkane, the start point for the bin would be: (Cn + Cn−1)/2 and
the end point would be: (Cn + Cn+1)/2. The only exceptions were
the start of the C10 bin which was calculated as:

C10 �
�
C10 þ C11

2
� C10

�
and the end point of the C38 bin

calculated as: C38 þ
�
C38 � C37 þ C38

2

�
. An n-alkane series

was chosen as the basis of this calibration for several reasons.
First, since the GC column used a non-polar stationary phase,
the retention times of aliphatic compounds corresponded to
their boiling points and consequently, vapor pressures. Next,
the saturation concentration of n-alkanes vary systematically
© 2023 The Author(s). Published by the Royal Society of Chemistry
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with carbon number.36,50 It has also been shown that there is an
approximately linear relationship between retention time and
saturation concentration for hydrocarbons measured by the
same analytical protocol.36

Next, the integrated areas within each GC retention time bin
were calculated from the TIC. Each GC retention time was
ascribed a carbon number bin based on the 29 n-alkane bins
constructed during the previous step. The integrated bin areas
are then calculated by summing within carbon number bins. A
response factor, dened as the ratio of peak area to concen-
trations, was calculated for each sample using the deuterated n-
alkane internal standard, and applied to the 29 integrated bin
areas to convert them to bin masses. A minimum detection
limit (MDL), dened as the bin area normalized to the corre-
sponding internal standards, was determined from blank runs
and applied as a threshold to each bin. This binning approach
allowed us to calculate the mass fraction of total organics in
each bin as the fraction of the integrated bleed-corrected TIC
signal in each bin. In the nal step, n-alkane carbon bins are
mapped to saturation concentration (C*) using a group contri-
bution method, SIMPOL,51 to represent volatility distributions
in terms of the VBS framework.

Our approach assumes that the UCM, which dominates the
TIC signal, behaves similar to n-alkane compounds used in our
calibration. A similar approach has been used by another study,
where m/z 57 was analyzed instead of the TIC.36 The entire TIC
signal has also been previously used for determination of
volatility distributions from vehicle emissions.37,38 This method
captures the volatility distribution for all species which elute (in
the UCM or otherwise) but cannot account for compounds
which may not elute/only partially elute from the GC column
(like some oxygenated compounds).
2.4 Data reduction

Emission factors. Fuel-based emission factor (EF) values
were calculated for particle-phase pollutants (PM2.5, OC, EC)
using the carbon balance method described elsewhere,52 to
allow for comparison across different sources and fuels and
enable comparisons to values in literature. EFs in units of g of
pollutant kg−1 of fuel were calculated by:

EFX ¼ DX

ðDCO2 þ DCOþ DTHCÞ �
1

WC

�mfC (2)

where DX is background corrected pollutant (g m−3) and DCO2,
DCO, and DTHC are the background corrected CO2, CO and
total hydrocarbon (THC) concentrations (mol m−3), respec-
tively. WC is the atomic weight of carbon (12 g mol−1) and mfC
represents the mass fraction of carbon in biomass for which we
assumed a value of 0.5, consistent with other work.52 Total
hydrocarbons were not measured in eld combustion samples,
so are not included in those calculations. However, THC
contributes 3% of total emitted carbon for RWC tests, for which
combustion conditions are most similar (Fig. 2), so we expect it
has minor inuence on calculated emission factors. Modied
combustion efficiency (MCE) was calculated using background
corrected CO2 and CO values (MCE ¼ DCO2/(DCO2 + DCO)).
© 2023 The Author(s). Published by the Royal Society of Chemistry
Volatility distributions. The nal volatility distributions
presented in Section 3.4 are obtained based on the following
steps: (1) derive the bin masses as a function of C* (in the range
10−2 mg m−3 # C*#106 mg m−3) using the raw TIC as described
in detail in Section 2.2 and divide by sample ow to calculate
concentration in each bin; (2) correct the concentration in all
bins with a correction factor, derived based on the ratio of the
organic mass collected on quartz lters to the organic mass as
estimated from the partitioning equation of the lter-in-tube
TD/GC/MS samples (correction factor derivation is described
in detail in Section S1†); (3) calculate volatility-bin-specic
emission factors using the carbon balance method (eqn (2));
(4) normalize each C* bin emission factor by the total emission
factor to calculate the bin mass fraction (fi).

3. Results and discussion
3.1 TD/GC/MS calibration with standard mixtures

To interpret the full scan TICs collected from biomass burning
emission samples, calibration experiments described in Section
2.2 were conducted. Fig. 1A shows the resulting calibration for
C* as a function of GC elution time for a suite of standard
compounds including straight chain alkanes, PAHs, methox-
yphenols, levoglucosan and saturated acids. Within
a compound series, more volatile compounds (higher C*) elute
earlier. The plot suggests that compounds in the PAH standard
can be described by a similar C* calibration curve as n-alkanes
indicated by similar slopes, intercepts and R2 values (log C* ¼
−0.41� retention time + 13.6, R2¼ 0.97, ts not pictured in Fig.
1A). However, separate curves may be necessary for methox-
yphenols and saturated acids. These differences may be driven
at least partly by differences in polarity53 that shi elution times
for the alkanes/PAHs relative to the other classes of compounds
explored here.

The vertical dashed lines in Fig. 1A show the boundaries of
the C* bins dened based on n-alkane retention times. The bins
are dened such that compounds half a decade greater and
lesser than the bin center in saturation concentration are
included in a given bin. For example, the bin representing
log C* ¼ 5 includes all compounds with 4.5 # log C* < 5.5.
Material eluting aer 38 minutes in the chromatogram cannot
be resolved further and is lumped with C* ¼ 10−2 mg m−3 bin,
which will be in the condensed phase under essentially all
atmospheric conditions. Quantifying emissions in bins up to
log10 C* ¼ 6 captures S/I-VOCs, which likely represent
a substantial fraction of SOA precursors.12 Fig. 1A illustrates
how compounds from the TIC (including UCM) can be ascribed
to C* bins based on the corresponding n-alkane eluting in that
bin.

Fig. 1B shows response factors for different classes of
compounds as a function of n-alkane carbon bins. As shown in
Fig. 1A, the n-alkane carbon bin number of a compound is
based on the GC retention time of the corresponding eluting n-
alkane. In this way, methoxyphenols, PAHs and levoglucosan
are presented on the same ‘equivalent’ n-alkane basis. The
response factors were derived from calibration runs where
known amounts of standard compounds are spiked onto
Environ. Sci.: Atmos., 2023, 3, 11–23 | 15
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Fig. 1 (A) Estimated saturation concentration, C*, plotted against GC retention time for calibration compounds – n-alkanes, PAHs, methox-
yphenols, saturated acids and levoglucosan (delineated by color). Vertical dashed lines denote the boundaries ofC* bins where the number at the
top of the bins indicate log C* for each bin. Error bars show� one standard deviation of 4 replicates of alkane standards. (B) Response factor for
calibration compounds – n-alkanes, methoxyphenols (MPs), PAHs and levoglucosan (sugar) (delineated by color) as a function of the n-alkane
equivalent eluting carbon number bin. The solid black line represents a degree 3 polynomial fitted to describe the variation in response factors of
n-alkanes (equation: y¼ 1.7–0.1x− 0.01x2 + 0.0004x3) while the dotted black lines show the 95% confidence interval on the fit. The grey boxes in
panel A are where the calibrated (labels on top of bin ranges) and estimated C* overlap. Note: C* vs. GC retention time data for saturated acids
were collected fortuitously from another calibration exercise; a separate calibration for response factor was not completed and hence this data is
missing from (B).

Fig. 2 PM2.5 emission factors (PM2.5 EF) as function of modified
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a sample medium along with an internal standard and analyzed
by the TD/GC/MS. We t a cubic function to describe the vari-
ation in response factor of n-alkanes vs. n-alkane bin (used as
a proxy for GC retention time); t parameters are given in Fig. 1
caption). Data across four calibration runs are included in this
t (error bars show standard deviation of replicates). The
response factors for the n-alkanes calculated from these cali-
bration experiments were consistent as indicated by the coeffi-
cient of variation (0.12 � 0.08) calculated on the average
response factors across the calibration experiments (N ¼ 4).
Response factors show a marked variation across the carbon
number range, with average response factors for C10 to C19 and
C31 to C40 n-alkanes 111% and 416% greater than those for C20

to C30 n-alkanes. The compounds in the methoxyphenol stan-
dard eluted in the same retention time intervals as C10–C14

straight-chained alkanes and show a response factor larger than
corresponding alkanes eluting in these bins by an average of
27% � 18%. Levoglucosan also had a response factor 20%
larger than the corresponding eluting n-alkane (C15). In
contrast, the PAHs elute later, across a larger range (C15–C33

alkanes) and with a lower response factor compared to the
alkanes by an average of 48%� 8%. The condence intervals on
the n-alkane response factor t generally included the response
factors from the other calibration compounds explored here,
suggesting that we can constrain the uncertainty introduced by
varying response factors across compound classes.
combustion efficiency (MCE) for different source emissions– burnhut,
field, RWC phases (delineated by color). Faded markers represent test-
averaged observations from individual integrated filter measurements
while darker markers show the average PM2.5 EF and MCE from an
emissions source type with the error bars denoting the standard
deviation across individual tests.
3.2 Particulate matter emission factors

Fig. 2 demonstrates the diverse types of biomass burning (eld,
burnhut and RWC) studied by showing test-averaged PM2.5 EF
16 | Environ. Sci.: Atmos., 2023, 3, 11–23
(from integrated lter measurements) plotted against MCE.
PM2.5 EFs are inversely related with MCE across the different
sources, as has been typically observed.54,55 Amongst the sources
© 2023 The Author(s). Published by the Royal Society of Chemistry
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studied here, eld burns had the highest average MCE (0.94 �
0.02) while burn hut burns were the least efficient (MCE� 0.79),
resulting in larger PM2.5 EFs. An MCE threshold of 0.9 has oen
been used to demarcate smoldering vs. aming combustion
conditions56 indicating burnhut combustion was primarily
smoldering while the others were mostly aming conditions.
The RWC-high phase had the lowest average PM2.5 EF (4.4� 3.3
g kg of fuel−1). PM2.5 EFs for eld burns were consistent with
other work where a range of 6.26 g kg of fuel−1 (crop residue) to
15.3 g kg of fuel−1 (boreal forest) was reported.55 PM2.5 EFs from
RWC emissions overlapped with observations from literature
where PM2.5 EFs of 2.2 � 1.2 g kg of fuel−1 was recorded across
various fuels.57 Fig. S3† shows OC and EC EFs plotted against
MCE where OC EFs are inversely related to MCE (like PM2.5 EFs)
while EC EFs generally increase with MCE. PM and OC EFs from
the combustion sources in this study span two orders of
magnitude indicating diversity in emission characteristics.
PM2.5 mass is dominated by OC with OC/PM ratios of 54� 16%,
63� 9% and 66� 7% for RWC, eld and burn hut, respectively.
EC/PM was signicantly more variable and largest for RWC (10
� 8%) and comparable for eld and burnhut (4 � 4% and 2 �
2% respectively). OM/OC ratios were estimated as: (PM EF−EC
EF)/OC EF in the absence of more detailed chemical informa-
tion (e.g. parameterization of aerosol mass spectra58). The
average OM/OC ratio across all experiments was 1.53 � 0.18
consistent with literature values;59,60 this average was applied to
OC EFs to infer OM EFs. The estimated OMEF + EC EF is plotted
against PM2.5 EF in Fig. S4.† In this study we emphasize the
consistency in relationship between PM2.5 and MCE across the
different types of biomass burning and conditions rather than
the absolute EF values. Fig. 2 shows that the samples included
in this evaluation of the volatility distribution estimation
method span a range of biomass burning emissions. However
future work should systematically vary combustion and
sampling parameters to explore sensitivities not explicitly
considered here.
3.3 Volatility distribution proles of biomass burning
sources

Fig. 3A shows normalized volatility distributions (fi) inferred
from TD/GC/MS chromatograms of lter-in-tube biomass
burning samples. The volatility distributions are presented as
the mass fraction in log-spaced C* bins applying the method
described in Section 2.4. To compare the volatility distributions
of different source emissions we group the bins into the three
volatility ranges labeled on the plot: IVOC, SVOC and LVOC.
IVOCs dominate the volatility distribution with average contri-
butions of 75 � 9%, 80 � 6%, 84 � 15% and 90 � 15% of total
organic emissions for burnhut, eld, RWC – high and RWC –

startup, respectively. The bins with log C* ¼ 6 dominate across
the different combustion sources, with 50−80% of total IVOC
emissions contained in this bin. SVOCs represent 13 � 3%, 6 �
1%, 13� 2% and 8� 1% of total organic emissions for burnhut,
eld, RWC – high and RWC – startup, respectively. Finally,
LVOCs contribute 12 � 4%, 14 � 9%, 3 � 2% and 1 � 1% for
burn hut, eld, RWC – high and RWC – startup, respectively.
© 2023 The Author(s). Published by the Royal Society of Chemistry
The differences in contributions to LVOCs and SVOCs across
the different combustion sources could play important differ-
ences in POA partitioning behavior. For example, a higher OA
concentration will be required for RWC – high emissions to
achieve the same particle mass fraction relative to eld emis-
sions because of higher SVOC and lower LVOC contributions,
assuming that all other atmospheric conditions are the same.

Fig. S5† shows paired scatter plots of the mass fractions in
each log C* bin for the different source emissions to compare
the distributions across burn types. Since the contribution in
the log C* ¼ 6 bin is larger by more than a factor of 3 than the
other bins, linear ts would be inuenced by high leveraging.
Instead, we calculate the root mean square error (RMSE) to the
1 : 1 line to quantify deviations from complete agreement,
indicated by an RMSE of 0, between two distributions and
interpret the RMSEs in a relative manner. The RMSE was
calculated in the vertical/horizontal direction, both giving the
same result, as well as orthogonal to the 1 : 1 line however only
the latter is printed in Fig. S5† since the relative differences were
the same across methods. According to this metric, the most
similar distribution pairs were RWC high – RWC startup, eld –

RWC high and burn hut – eld. In contrast, the burnhut – RWC
startup comparison had the least similar distribution by this
metric.

In Fig. 3B we show the volatility distributions as EFs by
normalizing the mass emitted in each log C* bin by the amount
of fuel burnt as described in eqn (1). The bin mass emission
factors span two orders of magnitude across the biomass
burning combustion sources indicating variation consistent
with PM emission factors discussed in Section 3.3. This indi-
cates that fuel composition and combustion conditions inu-
ence contributions to log C* bins and PM from integrated lter
measurements.
3.4 Comparison of volatility distributions with literature

Fig. S6† shows comparisons of the volatility distributions
shown in Fig. 3 with the distributions derived in May et al.11 The
measurement range in May et al.11 spans log C* ¼ −2 to 4 bins
and thus our distributions are re-normalized aer removing the
contributions from the log C* ¼ 5 and 6 bins to allow direct
comparisons. Fig. S7† shows scatter plots of mass fractions in
each log C* bin from our source emissions and May et al., with
the largest differences arising from the bins: −2, 3 and 4.
However, RMSEs calculated to the 1 : 1 line were of similar
magnitude across our various source distributions when
compared to the May et al. distribution. Therefore, the variation
within our different source type distributions is similar to that
between ours and the May et al. distribution, and thus our
distributions are similar to the May et al. distribution.

To explore the implications of differences in volatility
distributions, Fig. 4A shows the particle mass fraction (Xp)
predicted from the partitioning equation (eqn (1)) as a function
of COA. We used the volatility distributions shown in Fig. S6†
(normalized aer removing log C* bins 5 and 6) to derive these
curves to enable comparison with partitioning behavior from
May et al.11 . Fig. S8† shows both the partitioning curves
Environ. Sci.: Atmos., 2023, 3, 11–23 | 17
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Fig. 3 (A) Volatility distributions of biomass burning combustion sources (burnhut, field, RWC – high and RWC – startup; delineated by color)
presented as mass fraction in each log-spaced saturation concentration (log C*) bin. Themass fraction shown in each bin is the average binmass
from replicate (N¼ 3) samples while the error bars show the standard deviations of replicates. (B) Biomass burning source emission (delineated by
color) volatility distributions presented as emission factors by normalizing the mass emitted in each log C* bin by amount of fuel burnt. The bin
emission factor showed in each bin is the average bin emission factor from replicate (N ¼ 3) samples while the error bars show the standard
deviations of replicates.
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generated from these truncated volatility distributions and with
those in Fig. 3A (including log C* bins 5 and 6) for comparison,
with the latter showing lower Xp values, especially at lower COA.
Across the different source types, we observe maximum differ-
ences in predicted Xp at lower COA, with decreasing divergence
Fig. 4 (A) Partitioning plot showing the particle mass fraction (Xp) calcula
logC* bins 5 and 6 and re-normalized to match observations from Ma
burning sources are delineated by color, with the thin lines showing the p
showing the average for each biomass burning type. Also plotted are
chamber dilution experiments (dark gray oval), (2) predictions from the
(light gray region), (3) predictions using their recommended biomass burn
emission factor (POA EF) as a function of organic aerosol concentration
butions shown in Fig. 3B (including all bins). The predicted partitioning fo
biomass burning type delineated by color. The closed circles indicate the
while the open circles use the volatility distributions to predict POA EF
conditions.

18 | Environ. Sci.: Atmos., 2023, 3, 11–23
for increasing COA. This is due to the relatively larger differences
in LVOC and SVOC contributions across the different source
emissions. As the OA concentration increases, the differences in
the contributions of lower and semi-volatile compounds matter
less to POA partitioning as these bins are saturated. Between the
ted using eqn (1) and volatility distributions shown in Fig. S6† (omitting
y et al. (2013a)) vs. organic aerosol concentration (COA). The biomass
redicted partitioning from individual experiments and the thicker lines
observations from May et al. (2013a): (1) range of observations from
range of feasible solutions obtained from fitting thermodenuder data
ing distribution (at 25 �C) (dotted black line). (B) Primary organic aerosol
(COA) derived using the partitioning equation and the volatility distri-
r each replicate tube sample is shown with an individual line with each
POA EFs measured at the sampling concentration of each experiment
at COA ¼ 10 mg m−3 to represent an equivalent EF at dilute/ambient

© 2023 The Author(s). Published by the Royal Society of Chemistry
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RWC phases, the average predicted Xp for startup conditions is
greater than that for high re conditions by a maximum relative
difference of 12.9% (at 5.8 mg m−3), which decreases to <10% at
68 mg m−3 with increases in COA leading to further decreases in
difference of Xp. This indicates that there are only minor
differences in the predicted partitioning between the RWC
phases. The difference in average predicted Xp is larger between
burnhut and eld burn conditions with a 40% difference at 10
mgm−3, reducing to 24% at 100 mgm−3 and <10% at 790 mgm−3.
The greater differences here are mainly driven by larger Xp

predictions from one replicate sorbent sample (relative to the
other two) taken under eld conditions. The difference in pre-
dicted Xp between burnhut and the other eld samples (thin
blue lines in a lower clustering in Fig. 4A) are <5% across all
modeled COA. Thus, the Xp predicted for most samples collected
from burnhut and eld burn emissions are generally consistent,
even though PM2.5 EFs are >2 larger for burnhut compared to
eld emissions (Fig. 2). Finally, the difference in average pre-
dicted Xp between RWC – high and burnhut conditions is 43%
at 10 mg m−3 and decreases to 13% at 100 mg m−3. Overall, we
see that the difference in Xp is about 10% (or lower) across the
biomass burning sources at COA larger than 100 mg m−3 indi-
cating relative similarity in volatility distributions and that
partitioning is less sensitive to variations in distributions at
higher concentrations.

Fig. 4A also plots gas–particle partitioning behavior from
distributions developed by May et al. To compare predicted
partitioning behavior from the current work, we consider three
sets of results from this study: (1) observed partitioning from
chamber dilution experiments; (2) predictions made from the
range of feasible solutions obtained from tting thermode-
nuder data; (3) predictions from the study's ‘best overall’
biomass burning distribution (at 25 �C). We see that our gas–
particle partitioning proles are generally well constrained
within observations from dilution experiments (dark gray oval)
and the range of statistically acceptable solutions from tting
thermodenuder data (light gray region) except for one eld
prole. The average burnhut proles compared to the best
solution prole from May et al. (dotted black line in Fig. 4A)
shows a difference in predicted Xp of <5% throughout the
modeled COA range, indicating close agreement in distributions
from distinct methods but relatively consistent combustion
methods (lab burns of diverse biomass types). Consistency in
the predicted proles from our study and May et al. support the
viability of deriving volatility distributions by analyzing lter-in-
tube sorbents using a TD/GC/MS for biomass burning
emissions.

Fig. 4B shows partitioning plots in terms of POA emission
factor as a function of COA using the volatility distributions
presented in Fig. 3B along with the partitioning equation. Also
shown are the POA EFs measured at OA sampling concentra-
tions (which ranged between 1300 and 40 000 mg m−3) repre-
sented by the closed markers. These concentrations are
comparable to those in near-eld re plumes and much higher
than typical ambient concentrations. The differences in
combustion conditions and congurations (e.g. open vs. closed
combustion) and fuel compositions result in POA emission
© 2023 The Author(s). Published by the Royal Society of Chemistry
factor proles spanning two orders of magnitude for the
different biomass burning sources (POA EFs range from 0.9–49
g kg of fuel−1). Based on the partitioning equation, smaller POA
emission factors are expected at lower COA such as those found
at ambient conditions. In Fig. 4B we show the estimated POA
emission factor at 10 mg m−3 for individual test data using open
markers. 10 mg m−3 is chosen as an arbitrary dilute/ambient
concentration and was also used to model ambient scenarios
in the analysis of Robinson et al. (2010). We acknowledge that
ambient concentrations may be higher in re impacted envi-
ronments like those from woodstove emissions (tens of mg m−3)
and wildre (tens or hundreds of mg m−3) but choose this value
for illustrative purposes. Predicted POA emission factors at 10
mg m−3 are 56−77%, 20–62% and 50–77% lower than POA
emission factors measured at the sampling concentration for
burnhut, eld and RWC emissions respectively, demonstrating
the dominant contribution of I/SVOCs on POA emissions. These
ranges are a function of both volatility distributions and
sampling conditions. If the volatility distributions are known,
POA EFs can be estimated under any sampling conditions.
4. Implications, limitations, and future
work

In this work, we quantied the contributions of S/I-VOCs from
biomass burning sources with different combustion conditions
and fuel types in the VBS framework. We measured both gas
and particle phase concentrations of emitted organic aerosol by
sampling on sorbent tubes inset with quartz lters, which
allowed the observation of a larger range of volatility species (−2
# log C*# 6) than either samplingmedium alone. This method
was novel in its application for characterizing biomass burning
emissions. We showed that, while there were notable differ-
ences in volatility distributions across burn types, the predicted
partitioning using this method is consistent with previous
observations from chamber dilution and thermodenuder
experiments.11 This agreement highlights the potential of pre-
dicting partitioning behavior of biomass burning emissions
using lter-in-tube sorbent samples. The main advantages of
using this method are: (1) the derived volatility distributions are
more comprehensive since both gas and particle phase organics
are measured together; (2) estimations can be made based on
the analysis of a single sample using standard TD/GC/MS
analytical instrumentation, and; (3) POA mass distributions
can be constrained in the lowest volatility bins without the
requirement of equilibrium with the gas phase during
sampling. Gas–particle equilibrium is a requirement in
dilution-based studies (which do not incorporate kinetic
modeling) aimed at estimating volatility distributions and is
challenging, especially at lower concentrations.12 Further, this
relatively simple sampling approach makes in situ measure-
ments possible allowing future studies to characterize in-eld
measurements of the actual sources as opposed to relying on
laboratory simulations.

An advantage of this approach is the potential to quantify
emissions in higher C* bins (log C*¼ 5, 6), which may allow for
Environ. Sci.: Atmos., 2023, 3, 11–23 | 19
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more accurate parameterizations of SOA formation potentials
or gas–particle partitioning at very high sampling concentra-
tions (100−1000 mg m−3). The volatility distributions derivable
from this method can also be useful for application in CTMs,
the performance of which have previously benetted from the
addition of volatility information.61–63 CTMs are important tools
that can inform policy and regulations and thus, the addition of
these distributions to model OA in CTMs can result in improved
predictions relative to traditional approaches.

The volatility distributions derived for the biomass burning
sources sampled here were generally consistent. IVOCs domi-
nated the volatility distributions, accounting for 75–90% of the
total contribution across the biomass burning sources, while
SVOCs and LVOCs were responsible for 6–13% and 1–12%,
respectively. Consistency in volatility distributions and pre-
dicted partitioning across the sources was observed despite PM
emission factors spanning two orders of magnitude. However,
substantial differences were also observed in the SVOC and
LVOC contributions across the sources studied, which have
implications on POA partitioning behavior. The inuence on
POA partitioning behavior is most pronounced at lower organic
loadings. Although we did not perform molecular chemical
speciation, the variability in composition from different types of
biomass smoke has been observed previously.64–66 Recent work
has also shown the key inuence of combustion temperature/
phase on VOC emission characteristics.67 The partitioning
behavior of biomass burning emissions is governed by thou-
sands of semi-volatile species with varying chemical identities,
vapor pressures and mixing properties. However, when
considered together, the overall partitioning behavior of all
these mixtures was similar enough to be represented using
similar volatility distributions. In our analyses, we binned the
TICs based on standard compound behavior. However, there is
a potential to deconvolve the mass spectra further and extract
more detailed chemical information. This chemical informa-
tion can be used to inform yields for SOA production, with
applications in air quality models or source apportionment.
One of the key assumptions of this method is that compounds
in the UCM behave like n-alkanes and have similar response
factors. Analysis of calibration samples showed that polynomial
ts describing response factors for a set of standard calibration
compound classes were roughly constrained within the varia-
tion between different compounds. The resulting t was best
constrained between C15 and C30 while predicted response
factors for later- and earlier-eluting compounds were more
uncertain. However, combustion of biomass can also emit
oxygenated IVOCs68 which may not be measured by the TD/GC/
MS or remain in an unresolved state. The application of
hydrocarbon response factors to these compounds may under-
estimate the mass in the IVOC bins as polar compounds tended
to have lower response factors than hydrocarbons. Another key
assumption involves correction of the organic mass estimated
using thermal desorption gas chromatography mass spec-
trometry (TD/GC/MS) chromatograms with organic carbon (OC)
lter measurements. The need for this correction factor likely
arises because oxygenated compounds may not elute and thus
are omitted from the UCM in chromatograms but are collected
20 | Environ. Sci.: Atmos., 2023, 3, 11–23
on lter samples. Our correction assumes an even bias across
the volatility range; this assumption cannot be tested with our
methods but may be probed using more advanced gas chro-
matography methods. More complete speciation of organic
compounds present in the gas and particle phase of combus-
tion emissions is increasingly possible with the development of
novel instrumentation and techniques.39,68,69 Future work
should derive POA volatility using these resources to validate
these key assumptions in this method.
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