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The New York City (NYC) urban region and locations downwind (ie., Long lIsland) are currently
characterized as one of the critical regions for studying ozone pollution with special emphasis on the
interplay of the urban plume and marine breeze on warm summer days. We use the data from a new air
quality monitoring site at the Long Island south shore to provide a contrast to the existing measurements
along the north shore and middle of the island. We find different mechanisms for high ozone cases at
the north shore vs. those resulting in high ozone at the south shore. The north shore high ozone cases
mainly result from (1) a calm condition favoring high ozone formation over NYC urban regions and
western Long Island, (2) a sea-breeze front originating from south Long Island diverting the high ozone
plume to the north shore, and (3) the stagnation of the sea-breeze front over the Long Island north
shore (and coastal Connecticut) for several hours. The cases with higher elevated ozone on the south
shore are rarely reported due to the limited measurements and are highlighted in this study. They
resulted from more varied wind flow patterns, but in each case involved westerly or southwesterly flow
and polluted air transported to the site over the ocean in the late afternoon (around 17:00 local time).
Different from the previous studies over other regions in the world where the high ozone area generally
happened further inland following the sea breeze front movement, the narrow high ozone band mainly
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. summer beach. This study highlights the necessity of setting up more air quality monitors sites along the
DOI-10.1039/d2€a00061; Long Island south shore and provides guidance for other shore regions for focusing on the potential for

rsc.li/esatmospheres narrow high ozone bands concentrated over near coastal areas.

Environmental significance

Ground-level ozone pollution remains a stubborn problem for many cities and downwind locations, including NYC, Long Island, and coastal Connecticut. As
a secondary pollutant, ozone is formed from the combination of precursor emissions, most rapidly under warm temperatures, and high solar insolation. Ozone
is often most efficiently formed somewhat downwind from the source of the precursor emissions, and high ozone concentrations are carried further downwind
by prevailing winds before being diluted to lower levels. This study explores the complicated formation and transport dynamics downwind of NYC on Long
Island, where the circulation is also influenced by sea-breeze, shore-breeze, low-level jet, and other more local circulation patterns. Measurements with a high
spatial resolution are required to fully explain this complex situation.

1. Introduction

Despite the reduction of emissions of anthropogenic pollutants
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o ] ) ) exceedance issues,” which has caused much concern for regu-
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and data gaps associated with this problem, the 2018 Long
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www.nescaum.org/documents/listos) was established to help
explore the evolving nature of summertime O; formation and
transport in the NYC urban region and locations downwind.
In addition to LISTOS in the NYC-LI-CT region, similar recent
multi-agency campaigns in the United States include the 2013
Deriving Information on Surface Conditions from Column and
Vertically Resolved Observations Relevant to Air Quality
(DISCOVER-AQ) Texas campaign;® the 2017 Lake Michigan
Ozone Study (LMOS);” the 2017/2018 Ozone Water-Land
Experimental Transition Study (OWLETS) over the Chesapeake
Bay;'” and the 2019 Satellite Coastal and Oceanic Atmospheric
Pollution Experiment along the Louisiana Coast (SCOAPE).** All
these above regions are currently characterized as the critical
regions for studying ozone pollution, with a focus on the
interplay of urban ozone precursor emissions (NO,, volatile
organic compounds (VOCs)/volatile chemical products (VCPs),
etc.),"* summertime extreme meteorological conditions (i.e.,
heatwave days)'®'” and especially the influence of the sea breeze
at coastal regions.'®>

The mesoscale sea breeze, most frequently occurring during
summertime, is triggered by the thermal contrast between the
warmer air over land and the cooler air over water.>*>® This
circulation from the marine boundary layer onto the coastal
land area can, at times, return aged polluted air onto the coastal
area and degrade the air quality.”” These polluted plumes can
originate directly from the fresh urban emissions, which meet
the onshore sea breeze and follow it, or from the nighttime/early
morning urban emissions, which are transported to the marine
surface by the nighttime/early morning offshore wind, undergo
photochemical reactions to form ozone, and back inland
following the afternoon development of the sea breeze.**
Besides the above coastal regions in the United States, recent
studies of the influence of the sea breeze on the urban high
ozone pollution have also been reported at (1) the southern/
Mediterranean countries in Europe,®®* (2) the Yangtze River
Delta of eastern China,**** Hong Kong and Pearl River Delta of
southern China,* (3) the west coast of Indian,* (4) the Seoul
metropolitan area of Korea,* (5) Boston region of United
States,* etc. For the 2018 LISTOS study, our recent work has
highlighted the occurrence of sharp surface ozone heteroge-
neity over 18 ppb km ™" at the Long Island south shore with the
maximum ozone concentration over 100 ppb covering a narrow
range (around 1 km) of the coastal boundary.?® The mechanism
for this phenomenon is different from the prevalent mecha-
nism for elevated downwind ozone, which suggests pollution
precursors from the urban core are transported by a slowly
moving southwesterly flow allowing ozone formation and build
up over the Long Island north shore and even the whole of Long
Island Sound. However, there is limited information about this
mechanism for the high ozone over a narrow range of Long
Island south shore and the occurrence frequency due to the lack
of monitoring sites along the south shore. To make up for this,
a new Long Island south shore special monitoring site at
Heckscher State Park (HSP, Fig. S11) was set up in 2021 for
collecting relevant air pollutants and meteorological measure-
ments during the ozone season from May to September 2021,
2022, and 2023, to help identify the details of these mechanisms
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in conjunction with the ozone and meteorological data from the
observation networks and a high-resolution model.

2. Methods

2.1 Heckscher State Park monitoring site

The monitoring site is located at Heckscher State Park, close to
the shore of Great South Bay (Fig. S1T). Measurements include
continuous Oz from a Teledyne Advanced Pollution Instru-
mentation (TAPI) T400, NO, from a TAPI N500, and meteoro-
logical parameters (including Temperature, RH, Pressure,
wind speed, and wind direction) from a Lufft weather station at
1 minute temporal resolution through the mid-spring to early
fall (May 1 to Sep. 30) from 2021 to 2023. Instruments for
measuring ozone and NO, were calibrated using a TAPI T700U
calibrator, with the ozone generation and NO cylinder stan-
dard certified by the Quality Assurance Bureau of the New York
State Department of Environmental Conservation. On site QA
activities included (1) full multi-point calibrations at the
beginning and end of each ozone season, and (2) calibration
checks every week during the measurement periods. In addi-
tion, EPA standard VOC canister whole air and 2,4-dini-
trophenylhydrazine (DNPH) cartridge samples were collected
every-6-days, with analysis (following US EPA Method TO-15
and PAMS for whole air and US EPA Method TO-11A for
cartridges, respectively) by New York State Department of
Environmental Conservation (NYS DEC).

2.2 Other data sources

In this study, the hourly averaged ozone concentration from the
NYS DEC monitor sites over the New York metropolitan area
were used, including the site at Fresh Kills West (FKW, Staten
Island west of NYC urban), City College of New York (CCNY,
NYC urban), Queens College (QC, east of NYC urban and west of
Long Island), Flax Pond (FP, north shore of Long Island and
south of Long Island Sound), Babylon and Suffolk County (BL
and SC, middle Long Island), with the locations in Fig. S11 and
data from https://www.nyaqinow.net/. Besides the local
meteorology captured by the Lufft weather sensor at HSP, the
Doppler lidar profiles for the wind direction/speed in
a vertical range of 100 m to 2 km with a time resolution of
10 min were utilized from three New York State Mesonet sites at
Wantagh (WT, south shore of Long Island), QC (east of NYC
urban and west of Long Island, also south-north mid of Long
Island), and Stony Brook (SB, north shore of Long Island)
(Fig. S1t) (https://www2.nysmesonet.org).>**” Additionally, this
study used the High-Resolution Rapid Refresh Model (HRRR)
simulation with a spatial resolution of 3 km for the meteorology
from the University of Utah  archive (https://
home.chpc.utah.edu/~u0553130/Brian_Blaylock/cgi-bin/

hrrr_download.cgi),”® and the 24 hours back trajectories from
the National Oceanic and Atmospheric Administration (NOAA)
Hybrid Single-Particle Lagrangian Integrated Trajectory (HYS-
PLIT) atmospheric transport and dispersion modeling system
using the HRRR 3 km resolution meteorological data (https://
www.arl.noaa.gov/hysplit/).*> The HYSPLIT was constructed
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Fig.1 Anexample of the multi-platform analyses for the “sea/shore breeze day" identification on 08/26/2021. (a) The EOSDIS Worldview visible
satellite imagery (source: https://www.earthdata.nasa.gov/worldview), (b) the Weather Prediction Center surface weather maps for US (14:00
EDT, source: https://www.wpc.ncep.noaa.gov), and (c, d and e) the lidar wind profiles from the Mesonet site in Stony Brook, Queens, and

Wantagh.

using HSP (40.70 °N 73.17 °W) as the receptor with three heights
of 10 m, 50 m, and 100 m (above ground level).

2.3 Sea/shore breeze days identification

One key aspect of this study was the identification of the
occurrence of the southerly sea breeze and northerly shore
breeze over Long Island. Here, a manual, multi-platform
approach was used as described by Sills et al. (2011),*® Went-
worth et al. (2015),** and Zhang et al. (2020),* including (1) the
visible satellite imagery from the National Aeronautics and

Space Administration Earth Observing System Data and Infor-
mation System (NASA's EOSDIS) Worldview (https://
worldview.earthdata.nasa.gov), and (2) the Doppler lidar
profiles from Wantagh, Queens College, and Stony Brook sites
as mentioned above. A day with the simultaneous presence of
a sharp gradient in cumulus cloudiness quasi-parallel to the
Long Island Sound north coastline in Connecticut state and
a line of cumulus clouds parallel to the LI shoreline (Fig. 1a) was
identified to be affected by Long Island Sound shore breeze
(these two cloud conditions should not be associated with
a synoptic front, Fig. 1b). Due to (1) the similar land-sea
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Fig. 2 Hourly averaged Oz concentration comparison for Flax Pond (FP, north coastal site) and Heckscher State Park (HSP, south coastal site).
The grey sections mark high Oz at HSP, while the yellow sections mark high Oz at FP. Fig. S17 for the locations of the DEC sites. 06/06 was marked
as yellow due to the high Oz around Long Island Sound (Fig. S21) even though the data for FP was missing.
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conditions over Long Island north and south shore and (2) the
distinctive line of cumulus clouds over central Long Island, the
day with the northerly Long Island Sound shore breeze over
Long Island was also believed to have the southerly sea breeze,
as classified as a “sea/shore breeze day”. This is further sup-
ported by the clear wind variation of the southerlies in the near-
surface layer (generally below 1 km) observed from the lidar
profiles indicating the sea breeze development with (1) the
maximum sea breeze speed occurring around 16:00-18:00
(Eastern Daylight Time, EDT) at Wantagh site and (2) the sea
breeze was moving from south (Wantagh site) to north (Stony
Brook site, Fig. 1c and d and S27). It should be noticed that
a synoptic front frequently occurred over the north regimes of

View Article Online
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Long Island (Fig. 1b and S2}), and in these cases produces
a westerly synoptic wind (Fig. 1c-e, and S27), which caused
a shift of the southerly sea breeze to southwesterly and promote
urban plumes transporting northeasterly from NYC urban
regions to the Long Island north shore.

3. Results and discussion
3.1 Case days with coastal high ozone concentrations

Totally fifteen days showed clear ozone spatial heterogeneity
between the north vs. south coastal sites of Long Island and
a maximum hourly O; concentration over 80 ppb at one or more
of the NYC/Long Island sites (Fig. 2), with ten days had a higher

Table 1 Selected days with clear high ozone and spatial heterogeneity over Long Island (heterog.: the comparison of north vs. south shore;
temp.: the daily maximum temperature from QC; BH: if affected by Bermuda high with Y for "yes” and N for “no”; Fig. num.: the figure number for

the Oz time series of each day)

06/06 06/09 06/19 06/29 06/30 07/07 07/15
Heterog. N>S S>N N>S N>S N>S N>S S>N
Temp. 32.9°C 31.9°C 31.6 °C 33.7°C 34.3°C 32.8°C 31.1°C
BH Y Y Y Y Y Y Y
Fig. num. Fig. S6 Fig. S7 Fig. S6 Fig. S6 Fig. S6 Fig. S6 Fig. 4
07/16 07/26 07/27 08/06 08/26 08/27
Heterog. N>S S>N S>N N>S N>S S>N
Temp. 31.2°C 31.6 °C 31.2°C 29.3 °C 33.1°C 33.8°C
BH Y N Y Y Y Y
Fig. num. Fig. S6 Fig. 4 Fig. S7 Fig. S6 Fig. 3 Fig. 4
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Fig. 3 Plots for 08/26/2021 with north coastal high ozone. (a) The time series of hourly Oz concentrations for selected DEC sites in NYC and
Long Island region; (b) the HRRR ground wind gusts map at 11:00 EDT, (c) the HRRR 10 m wind v-component (south—north direction) speed at
14:00 EDT, and (d) the HRRR 10 m wind v-component (south-north direction) speed at 16:00 EDT.

© 2022 The Author(s). Published by the Royal Society of Chemistry

Environ. Sci.. Atmos., 2022, 2, 1438-1449 | 1441


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2ea00061j

Open Access Article. Published on 08 September 2022. Downloaded on 1/19/2026 6:34:45 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Environmental Science: Atmospheres

maximum hourly O; concentration at the north site (FP) than
the south site (HSP) and the remaining five days had the reverse
gradient (Table 1 for the selected thirteen days as mentioned
below). They were all marked as hot summer days with the daily
maximum temperature near/over 30 °C (temperature data from
Queens College (QC) site), and most of them were affected by
the Bermuda high (Fig. S2 and S3f), all of which favor O;
formation and high ground-level concentrations.**** While
Bermuda high conditions are known to be associated with high
regional O;, the significant O; spatial heterogeneity observed in
2018 highlights the influence of other factors on the O; distri-
bution, i.e. local sea breeze circulation.”® Among these ten days
with higher O; concentration at the north shore, eight were
classified as “sea/shore breeze days” (Fig. S2t), matching the
LISTOS assumption of high ozone over the Long Island Sound
regions being affected by the land-sea circulation (Fig. S41), and
will be discussed in the following section. The five days with the
higher O; concentration at the south shore were also considered
to have sea/sound breeze formation (Fig. S31), except July 26
when the line of cumulus clouds over Long Island on July 26 was
associated with a synoptic stationary front, as discussed in
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Section 3.3. Considering the existence of the sharp gradient in
cumulus cloudiness in Connecticut state and the enhanced
southerly wind speed around 16:00 EDT, it is reasonable to infer
that the sea/shore breeze may have also occurred on July 26.
Meanwhile, the high O; mainly clustered in a narrow range over
the south coastal line for these five days (Fig. S51), rather than
expanding into a large range or moving to the north side.
However, the reasons for this are still not totally clear and could
be related to more complex coastal meteorology. Thus,
exploring and explaining the complications of coastal meteo-
rology for influencing the high ozone occurrences over Long
Island shore, especially for the south shore, is the focus of this
study.

3.2 North shore cases: urban plume transported along a sea
breeze convergence front

There are a number of common features that occurred on the
days with the north coastal high ozone. Refer to Fig. 3a, 8/26/
2021 as an example, and find hourly ozone data for the other
ten days in Fig. S6.1 These common features include: (1) rela-
tively calm conditions over western Long Island (and extending
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Fig. 4 The time series of (a) the hourly Oz concentration at the selected DEC sites on 07/15/2021, (b) the minute average Oz and NO,
concentrations, RH, and wind speed colored by wind direction at HSP on 07/15/2021, (c) the hourly Oz concentration at the selected DEC sites
on 08/27/2021, (d) the minute average Oz and NO, concentrations at HSP on 08/27/2021, (e) the hourly Oz concentration at the DEC sites on 07/
26/2021 and (f) the minute average Oz and NO, concentrations at HSP on 07/26/2021.
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at times into NYC) in the morning (around 10:00-12:00 EDT,
Fig. 1c and e from lidar profiles, and Fig. 3b from HRRR
simulation); (2) weak, but persistent westerly winds from the
NYC/NJ region before the morning calm condition at the QC
site, followed by southwesterly sea breeze after the calm around
noon (Fig. 1d); (3) an afternoon sea/bay breeze convergence flow
along the Long Island north shore and Long Island Sound
encompassing the Stony Brook site lasting for about 2 hours
(15:00-17:00 EDT), with the wind direction shifting from
northerly to southwesterly, indicating a stagnant sea breeze
front (Fig. 1c).**?¢ The lidar profiles for all other days with
higher ozone on the north side of Long Island are shown in
Fig. S2.7 There was a 3 hours difference between the sea breeze
onset at Wantagh and Stony Brook (12:00 EDT vs. 15:00 EDT),
reflecting the transit time of the sea breeze front from the south
to the north over a distance of about 23 km (Wantagh vs. Stony
Brook) under a near-ground v-component wind speed of about 8
km h™" (Fig. 1e). More specifically, HRRR results clearly show
the movement of the sea breeze front and its related conver-
gence flow through the map of v-component wind speeds
(south-north direction, 10 m winds) at different times (14:00
EDT vs. 16:00 EDT, Fig. 3c vs. Fig. 3d). The line of reasoning is
further bolstered by maps showing the line of cumulus cloud
from south to north as a result of the breeze front moving
(Fig. S8a and S8bt).

Given the low/moderate NO, concentration (2.4-4.6 ppb) at
Flax Pond during daytime and the high NO, concentration
covering the west of Long Island under the morning calm
conditions (Fig. S8ct), it is reasonable to conclude that the high
O; at FP was photochemically aged and transported in rather

(a) 10:00 EDT 07/15/2021, WS
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than from local production, and the high O3 plumes are from
the NYC urban region where the freshly emitted NO, reacted to
form O; around noon and/or from the marine surface con-
taining photochemically aged urban plumes, which was trans-
ported to the marine surface by nighttime/early morning
offshore wind. More detailed plume-tracking measurements
could be useful to fill in the details of this mechanism. Similar
high O; was also shown in the 2018 LITSOS mobile lab on-road
measurements near Sands Point at the north shore® and by the
2018/2019 Flax Pond ozone sondes measurements® over
vertical ozone profiles.

3.3 South shore cases: late-afternoon marine winds
returning aged urban plumes

For the five days with higher ozone along the Long Island south
shore, the timing for peak O; was consistently around 16:00-
17:00 EDT (HSP in Fig. 4), which may indicate they shared
similar high O; formation pathways to some extent. However,
the difference in the O; spatial distributions among these five
days, with (1) only high O; at HSP on July 15 and 27, (2) high O;
extending into the middle of Long Island (Babylon and Suffolk
County) on June 09 and Aug. 27, and (3) high O; plateau lasting
for 5 hours at only HSP on July 26, indicates considerable
diversity for these cases and will be presented as three sub-
sections.

3.3.1 Interaction of the New York Bight Jet with marine
flow returning aged urban plume. The only Long Island site
with an hourly maximum ozone concentration over 80 ppb on
07/15/2021 was HSP (Fig. 4a), and the difference between HSP
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(a) The HYSPLIT back trajectories with HSP as receptor at 16:00 EDT on 07/15/2021; (b) the carbonyl species concentration (the cases

days are solid circles); and (c—e) The HYSPLIT back trajectories with HSP as receptor at 16:00 EDT on 07/27/2021, 08/27/2021, 06/09/2021 (the
HYSPLIT back trajectories receptor heights are 10 m (red), 50 m (blue), and 100 m (green). The dates for HYSPLIT back trajectories are sorted

following the appearance order in Section 3.3).

(south shore) and FP (north shore) was over 20 ppb. The minute
averaged wind data measured from HSP showed low speeds
below 1 m s~ around 06:00 EDT (Fig. 4b), matching the start of
calm conditions covering the whole NYC metro area as shown in
Fig. 5a from the HRRR model simulation and Fig. S3af from the
lidar wind profiles. The calm conditions lasted about 6 hours
from around 06:00 EDT to 12:00 EDT, followed by a moderately
strong sea breeze front moving from south to north (Fig. S3a
and S9t) in the next 5 hours until 17:00 EDT when the front
passed over Long Island (Fig. 5b).

Peak O3 at HSP occurred when the sea breeze front passed
the north shore and HSP was dominated by the on-shore
southerly wind (around 17:00 EDT). Given the much lower
ozone on the north side of Long Island, this case cannot be an
example of high O; transported along the stagnant sea breeze
front as shown for 08/26/2021. In addition, the low NO,
concentration (Fig. 4b) indicates the O; peak was influenced by
factors other than local photochemistry. The 17:00 EDT HRRR
simulations showed a band with enhanced near-ground
southwesterly wind speed (near 8 m s~ ', Fig. 5c¢) with an

1444 | Environ. Sci.: Atmos., 2022, 2, 1438-1449

increased near-ground u-component (west-east direction, 10 m,
Fig. S10at) and slightly reduced near ground v-component
(south-north direction, 10 m, Fig. 5b and S10bt). Compared
to the near-ground (10 m) layer, u- and v-components both had
a distinct enhancement at a higher layer (80 m) (Fig. S10c and
dt), implying the presence of the New York Bight Jet (NYB]).***”
The HYSPLIT back trajectory with HSP as the receptor at 17:00
EDT (Fig. 6a) shows that the NJ and NYC urban plume was
initially transported to the ocean shallow boundary layer during
the nighttime, and was then carried back to Long Island south
shore by a southwesterly wet (RH: 88% measured at HSP) and
cool (Temp.: 26 °C measured at HSP) marine flow. The
enhanced temperature gradient between Long Island and the
marine surface during the mid-afternoon (31.1 at °C QC and
22.3 °C at Long Island south Buoy Station 44 025 at 14:00 EDT)
contributes to this marine flow formation. This urban-
influenced plume that had been over the ocean was also char-
acterized by enhanced anthropogenic related carbonyl species,
i.e. BTEX (benzene, toluene, ethylbenzene, and xylene), chloro-
form, etc., as compared to the cleaner “background” days

© 2022 The Author(s). Published by the Royal Society of Chemistry
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(Fig. 6b). Thus, the high ozone formed over the south shore on
07/15/2021 is due to the blockage of that urban-influenced
plume by the New York Bight Jet to form a highly polluted
band over the south shore.

On 07/27/2021 a similar situation developed, with the
formation of a sea breeze (Fig. S3bt) and NYB] circulations
(Fig. 5d), and a return flow of photochemically aged air was
observed (Fig. 6¢). However, it is notable that although these
two cases (07/15 and 07/27) showed similar morning calm
conditions over the NYC urban area and an early-afternoon sea
breeze front movement from south to north as on 08/26, there
was no high ozone at the north shore for these two days. The
main reason was attributed to the north-shifted ozone precur-
sors' spatial distribution caused by the weak southerly wind
(most likely being an early weak sea breeze) on these two days,
rather than the weak westerly wind on 08/26 (Fig. S117).

3.3.2 Marine return flow urban plumes blocked by the
weak sea breeze front. 08/27/2021 was marked by relatively calm
conditions over the NYC metro regions (including all of Long
Island) and a weak sea breeze developing over Long Island in
the afternoon (Fig. 7a and S3ct). The southerly marine breeze
was only strong enough to push the front/convergence to the
middle of Long Island over Babylon and Suffolk County
(Fig. 7b), but not all the way to the north shore (i.e., 08/26 and
07/15, Fig. 3d and 5b). Similar situations were for 06/09/2021
(Fig. 7c and S3dt). Meanwhile, the relatively calm conditions
and weak westerly winds promoted NO, accumulation over QC

© 2022 The Author(s). Published by the Royal Society of Chemistry

(NO, as high as 50 ppb, Fig. 7d) and HSP (NO, as high as 18.3
ppb, Fig. 7d), which resulted in NO,-O; titration reactions. The
AO;/ANO, of HSP around noon of 08/27 was —4.9, which was far
below the values at QC of —1.7 (Fig. 7d). This provides evidence
that high O; at HSP is affected more by transport than by local
formation. The back trajectories on 08/27 and 06/09 were
similar to 07/15 and 07/27 (Fig. 6), in which the NYC urban
plume advected over the ocean, aged in sunlit conditions, and
was returned to the southern parts of Long Island by a south-
westerly marine flow. Thus, the slowly moving (or “weak”)
breeze front acted to trap the aged urban plumes returned from
time spent over the ocean to form high ozone along the south
coast.

3.3.3 Marine return flow urban plumes blocked by
a synoptic stationary front. The high ozone observed at HSP on
07/26/2021 was the result of a stationary synoptic front, with an
hourly O; plateau over 90 ppb lasting for 5 hours (Fig. 3e). This
O; plateau was not observed at most of the other DEC sites over
the NYC metro area, except Babylon, which observed high ozone
for 3 hours before collapsing. The stationary front covered most
of the east coast air-sea boundary from Maine to Maryland and
crossed Long Island from west to east (Fig. 8a and b), and was
captured by the HRRR model, with weak surface wind and
enhanced cloud cover over the front which matched the satellite
image (Fig. 8c and d). As shown by the HYSPLIT back trajecto-
ries (Fig. S12%), these plumes passed over Baltimore and

Environ. Sci.. Atmos., 2022, 2,1438-1449 | 1445
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Philadelphia within the Ozone Transport Region to the New
York Bight before returning to the Long Island south shore.
Generally similar to the previous studies about the influence
of sea breeze affecting the coastal urban regions,'*** the
processes for producing these types of high O; events at the
Long Island south shore include: (1) the transport of urban
plumes over the ocean south of Long Island, (2) chemical
reactions in these polluted plumes to form high ozone in the
shallow marine boundary layer, (3) a late-afternoon marine flow
carrying this high ozone plume to Long Island. However, the
discrepancy comes from the marine flow being blocked by
various meteorological conditions (i.e., New York Bight Jet,
weak sea breeze front, synoptic stationary front, etc.) to form
a highly polluted narrow band over the Long Island coastal line,
rather than tens of kilometers inland as in previous studies.***"
This narrow band just over the coastal line can have serious
adverse health effects for people on the coastal beaches, and
highlights the necessity for more monitor sites set up along the
Long Island south shore. This work also provides important
implications for other coastal regions concerning the possible
narrow high ozone band quiter near to the coast, and for the
need to consider the interplay between the anthropogenic
pollutants and the marine environment.”* Some of these
concerns and phenomena are addressed in the upcoming
AEROMMA project, in which additional measurements are

1446 | Environ. Sci.: Atmos., 2022, 2, 1438-1449

planned with more instruments to capture the marine chemical
signals, including the High-Resolution Time-of-Flight Aerosol
Mass Spectrometer (HR-ToF-AMS) for MSA* and iodide-ion
chemical ionization time-of-flight mass spectrometer (iodide
CIMS) for hydroperoxymethyl thioformate (HPMTF).*

4. Conclusion

The establishment of the HSP monitoring site on the south shore
of Long Island, combined with lidar profiles and HRRR simula-
tions, allows for exploration and for greater understanding of the
different mechanisms between the north vs. south coastal high
ozone. All of the high ozone cases are related to two distinct
kinds of urban plumes and their interplay with various marine-
related meteorological flows. The cases with higher ozone over
the north shore made up the majority of the high ozone days at
Long Island, originating from (1) urban plumes from NYC urban
regions and their accumulation under the calm conditions
caused by the Bermuda high weather pattern to form ozone
through photochemical reactions involving NO, and VOCs, (2)
the transport of these high ozone plumes by the early afternoon
sea breeze and (3) the accumulation by the stagnant sea breeze
front related convergence at the north shore. The contrasting
cases involve higher ozone at the south shore and in these cases,
the urban plumes were initially transported to the ocean shallow

© 2022 The Author(s). Published by the Royal Society of Chemistry
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boundary layer during the nighttime/early morning, where effi-
cient ozone formation occurred through photochemical reac-
tions around noon, followed by return transport to the southern
Long Island by the late afternoon marine flow. In the cases
examined, polluted plumes carried by marine flow were blocked
at the south shore by various meteorological conditions (i.e., the
New York Bight Jet, the weak sea breeze front, or the synoptic
stationary front) to produce high ozone over the south shore for
several hours, highlighting the interaction of the anthropogenic
pollutants and the marine environment. The good agreement
between the HRRR model simulations and the sea breeze front
movements is encouraging and offers hope for better simulating
the precise location of either north or south shore high O;,
understanding the more detailed O; formation and its trans-
portation, and for planning and future emission controls to
reduce the occurrence of high O; either at the north or south
shores of Long Island. These observed coastal (north vs. south)
0O; highs and explored formation mechanisms provide practical
and valuable guidance to the coming aircraft measurements,
including Atmospheric Emissions and Reactions Observed from
Megacities to Marine Areas (AEROMMA), the Greater New York
(NY) Oxidant, Trace gas, Halogen, and Aerosol Airborne Mission
(GOTHAAM), the Coastal Urban Plume Dynamics Study
(CUPIDS, https://csl.noaa.gov/projects/aeromma/cupids/), and
other related collaborative field campaigns and modeling work,
and improve the understanding of the NYC urban plume
chemistry and its interaction with coastal meteorology.
Meanwhile, this study will also attract additional attention to
the high ozone over the south shore by filling the data gap,
and inspire similar field campaigns in other world coastal
regions affected by the interplay of urban plumes and marine
flows.
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