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Solventless synthesis and processing of Metal Organic Frameworks (MOFs) is critical to implement these

materials in applied technologies. Vapour phase synthesis of MOF thin films is particularly suitable for

such applications, but challenging compared to the conventional solution based methods. It is therefore

compelling to advance and widen the vapour phase synthesis of MOF thin films. Crystalline copper tere-

phthalate MOF thin films are grown in the vapour phase by means of atomic and molecular layer depo-

sition (ALD/MLD) on different kinds of substrates. Expanding from the pioneering work, the formation of

the 3D phase is clearly evidenced for the first time and the adaptability of the process to several kinds of

substrates is revealed. A directional film growth is observed at the early stage of the ALD/MLD process

leading to oriented MOF crystallites on a surface, when isotropical growth proceeds with the increasing

number of ALD/MLD cycles. Notably, this study primarily demonstrates a heteroepitaxial growth achiev-

able in the vapour phase by using DMOF-1 single crystals as the starting surface with a lattice matching

topology. Such an approach offers an appealing pathway to develop MOF on MOF superlattice materials

in the vapour phase.

1. Introduction

Atomic layer deposition (ALD) is a classical thin film growth
technique mainly applied to the microelectronics industry.1–4

It is based on successive self-limited reactions between gas phase
precursors and a solid surface, allowing the growth of a film
layer by layer with an atomic scale control of the thickness.5,6

Though ALD is mostly used for the synthesis of inorganic
materials, noticeable progress was made when the molecular
layer deposition (MLD) of organic polymers was first reported in
the 1990s,7 followed by the growth of hybrid materials in 2008.8

The adaptability of this technique to the growth of materials
using precursors that could lead to MOFs was first demonstrated
in 2010 by Klepper et al. who reported an ALD/MLD process of
several aluminium carboxylates, although the resulting films
were amorphous.9 Hence, a major breakthrough for the vapour
phase synthesis of crystalline MOF thin films via ALD/MLD was
performed in 2016 by Ahvenniemi et al. who reported the direct
growth of crystalline copper terephthalate (CuTPA).10

Since this seminal study, the great majority of ALD/MLD of
crystalline MOFs is reported by the group of Karppinen in Alto
University.11–16 In other cases, MOF thin films were obtained
in two steps as after the ALD/MLD process, a vapour post-treat-
ment was necessary to achieve a crystalline film.17–21 This
latter approach is less desirable, as it somehow cancels the
great advantage of all-gas phase processing. Indeed, vapour
phase synthesis of MOFs thin films is a highly attractive strat-
egy when contemplating MOF integration into devices.22–24 In
conjunction with reducing environmental impact, solvents
should be avoided for device fabrication owing to contami-
nation and corrosion risks25 as well as the generated surface
tension during evaporation.26 Moreover, when considering
MOF chemistry, developing vapour film growth opens great
opportunity in terms of achieving superlattice structures that
are especially challenging with equilibrated solution-based
reactions.

Therefore, ALD/MLD growth of MOF thin films represents a
unique opportunity both at the fundamental level and for
industrial applications. It is for now however restricted in
terms of scientific groups worldwide, methods, and materials.
To develop and investigate the ALD/MLD of MOFs we focused
on the first reported crystalline material: CuTPA.10 In this
reference work, the authors demonstrated that the film thick-
ness was linear to the number of cycles, with a growth per
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cycle (GPC) of 3 Å at 180 °C. Grazing Incidence X-Ray
Diffraction (GIXRD) data were recorded and a 2D paddle-wheel
MOF-2 structure was deduced, although the experimental data
were not compared against the corresponding calculated XRD
diagram. No morphological characterization by means of elec-
tron microscopy was provided, precluding the appreciation of
the surface coverage, homogeneity, and crystal topology. Here,
we present thorough characterization of the film structure,
clarify the phase identification, and inspect the morphology of
the crystalline MOF films. More importantly, we extend the
process by investigating the film growth on different kinds of
substrates. Beyond the MOF deposition on oxide substrates,
we demonstrate for the first time a heteroepitaxial MOF on
MOF growth in the vapour phase using a DMOF-1 single
crystal as the substrate and leading to an unprecedented
heterostructure.

2. Materials and methods

A home-made manual ALD/MLD reactor was developed (see
the ESI for details, section C and Fig. S9†), with pressure and
temperature control over the precursor cylinders and the depo-
sition chamber. Terephthalic acid (TPA) and copper 2,2,6,6-tet-
ramethyl-3,5-heptanedione Cu(thd)2 were used as reactants
according to a reported procedure,10 and were kept at 180 and
110 °C, respectively. Ahvenniemi et al. reported the growth of
crystalline CuTPA films between 180 °C and 195 °C, and of
amorphous layers above 195 °C.10 As no noticeable change was
observed within this range, the reaction chamber temperature
was set to 190 °C. Depositions were performed at a pressure of
2 mbar, using argon as a carrier gas. First tests were performed
on Si (100) substrates with the native oxide layer, then MOF
films were grown on FTO, sapphire and DMOF-1 single crys-
tals. The synthesis procedures and characterization of the bulk
MOF sample (Fig. S3, S4 and S5†), DMOF-1 single crystals
(Fig. S6, S7 and S8†) as well as the Cu(thd)2 precursors (Fig. S1
and S2) are detailed in the ESI† (sections A and B).

3. Results and discussion

Materials deposited with an increasing number of cycles (160
and 250 cycles) were characterized by means of Scanning
Electron Microscopy (SEM). As shown in Fig. 1a and b, fairly
homogeneous films with a good surface coverage were
obtained (Fig. S15a and b†). The substrates were covered by
well-defined rod-shaped crystallites of about 150 nm. For 160
cycles, an orientation of the crystallites perpendicular to the
substrate is noticeable (Fig. 1a); when increasing the number
of cycles, crystallites start to grow on each other in a more iso-
tropic way (Fig. 1b). It can be noted here that the oriented
growth at a low number of cycles proceeds on the amorphous
surface of the native oxide. Energy Dispersive Spectroscopy
(EDS) analysis confirms the presence of Cu and C at the
surface (Fig. S17†).

Structural analysis was performed by means of XRD. The
obtained films show good crystallinity as depicted in Fig. 1c.
Phase identification clearly demonstrates the formation of a
triclinic 3-dimensional CuTPA framework,27 where the copper
ions are solely connected by the carboxylate functions and
form Cu–O chains that run in the same direction as the one-
dimensional pores of ca. 5.2 Å (Fig. 1d). This clarifies the MOF
phase obtained from the ALD/MLD process, which differs
from the previously assigned paddle-wheel 2-dimensional

Fig. 1 SEM images of the thin film obtained after 160 ALD/MLD cycles
on Si (100), lower (top) and higher (bottom) magnifications (a), the film
crack in the bottom image shows the oriented growth of the film. SEM
images of the thin film obtained after 250 ALD/MLD cycles on Si (100),
lower (top) and higher (bottom) magnifications (b). PXRD patterns of the
films obtained after 160 cycles (blue) and after 250 cycles (teal), the cal-
culated PXRD diagram for CuTPA (black), * corresponds to the free TPA
(c), and the reaction scheme of the ALD/MLD of CuTPA (d).
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structure. The observed 3D phase is in accordance with a sol-
ventless process, as no other linker than TPA is present in the
Cu coordination sphere. The diffractograms in Fig. 1c show
some extra Bragg peaks that were attributed to free TPA, prob-
ably due to its low volatility that prevents the total removal
during the purge step. Attempts to avoid free TPA deposition
using a shorter pulse and/or a lower temperature for this pre-
cursor (140 °C instead of 180 °C) led to a considerable loss of
the film crystallinity that is evidenced by a considerable
decrease of the diffraction peak intensity (Fig. S12†). To avoid
the presence of unreacted TPA, a 5 μm filter gasket was
implemented upstream from the reaction chamber and further
studies were conducted with the standard parameters. More
importantly, XRD patterns (Fig. 1c) indicate that the film
growth starts in an oriented manner, given the large relative
intensities of the peaks corresponding to the (010) and (110)
inter-reticular planes in the pattern corresponding to 160 cycle
grown film. When further ALD/MLD cycles are implemented,
the growth orientation becomes more random, as the relative
intensities of Bragg peaks are closer to the calculated pattern
for CuTPA. This points out that CuTPA growth first preferen-
tially occurs perpendicular to the substrate along the [001]
direction of the unit cell, meaning that the pores and the in-
organic chains of the MOF run parallel to the substrate
(Fig. S10†). After a certain film thickness, the ALD/MLD pro-
ceeds more isotropically. This analysis of XRD data corrobo-
rated the SEM results (Fig. 1a and b) discussed above. The
reproducibility of the 3D phase film growth was checked by
performing three times the deposition under the same con-
ditions (Fig. S11†). MOF formation was further confirmed
spectroscopically by FTIR analysis.

The spectra (Fig. 3 and Fig. S14†) show vibration bands at
1590 cm−1 and 1390 cm−1 that are assigned to the asymmetric
and symmetric vibrations of the carboxylate group, respect-
ively. The Δ between these two frequencies (Δ = 200 cm−1) is
characteristic of bidentate bridged carboxylate28 and free TPA
displays ν(CvO) and ν(C–O) bands at 1685 cm−1 and
1272 cm−1, respectively (Fig. 3). The obtained values match the
ones observed for the bulk CuTPA that was synthesized in
solution as a reference for this study (see ESI, Fig. S14a†). It

should be noted that the band at 1100 cm−1, visible in the
spectrum of CuTPA on Si wafer with native oxide, originates
from the substrate (Fig. S14b†) and corresponds to the stretch-
ing band of Si–O–Si. The bulk MOF morphology can be
described as a near-square shape assembly of platelets
(Fig. S5†) while the ALD/MLD grown crystallites display a more
elongated parallelepiped shape, indicative of their preferential
c-axis orientation.

To check the adaptability of the process and investigate the
impact of the starting surface, the film growth was then per-
formed on crystalline substrates. Sapphire with a a-plane
surface orientation and FTO on glass were chosen; both kinds
of substrates present oxide/hydroxide functionalities at their
surface that are well suited for reacting with the metallic pre-
cursor. The ALD/MLD was implemented with the same para-
meters as for Si (100). The SEM data evidence that a crystalline
film is obtained on both substrates, but the crystallite mor-
phology differs (Fig. 2a and b). Indeed, on the sapphire, a
rather compact film formed of rod-like crystallites is observed
when in the case of FTO, thinner and more dispersed crystal-
lites are deposited. For both films, a good coverage is obtained
(Fig. S15c and d†) and Cu and C are detected by EDS (Fig. S18
and S19†). XRD analysis (Fig. 2c) reveals that the same CuTPA
phase is clearly formed on the sapphire substrate when in the
case of FTO the obtained pattern is ill-defined and does not
allow accurate phase identification. This might be due to
sparser film coverage. In all cases, FTIR analysis reveals the
coordination of copper by the TPA linker (Fig. 3).

Given the good adaptability of the process, we aimed to
explore the heteroepitaxial MOF on MOF growth, using a
single crystalline MOF as the substrate. Assembling MOF on
MOF heterostructures is of great interest to reach super-
structures with tuned mechanical, adsorptive, and photo-
physical properties.29 To date, core–shell,30–32 layered,33

complex ternary34 and anisotropic35 MOF on MOF super-
structures have been reported through solution-based syn-
thesis. To the best of our knowledge, such superstructures
have not been reported through the use of the MOF growth in
the vapour phase. DMOF-1 (Zn-TPA-DABCO) was chosen as the
support because, in its structure, the intermetallic distances

Fig. 2 SEM image of the thin film deposited on sapphire, a-oriented substrate (a), SEM image of the thin film deposited on FTO (b), XRD patterns of
the films deposited on sapphire (teal) and on FTO (blue); both films were deposited through 250 cycles and the calculated pattern for CuTPA is
shown in black (c).
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are very close to the ones in CuTPA (10.93 and 10.77 Å, respect-
ively, meaning a mismatch of ∼1.5% only, Fig. 4a).
Additionally, DMOF-1 is easily obtained as single crystals,
offering a molecular material substrate with well-defined
planar facets (Fig. 4b and S8†). From single crystal X-Ray diffr-
action analysis, the crystal orientation was determined, indi-
cating that DMOF-1 grows along its 3 cell axes, with the a axis

as the preferential direction (inset Fig. 4b). The pore width of
DMOF-1 is insufficient for the diffusion of the Cu(thd)2 precur-
sor; therefore an on-surface only ALD/MLD reaction can be
expected. DMOF-1 single crystals were dispersed onto the
surface of the Si (100) substrate and the ALD/MLD of CuTPA
was performed. From the SEM analysis of the recovered
sample, the DMOF-1 surface is clearly altered as it appears
covered by nanometric crystallites and a film deposition on
the Si wafer is observed (Fig. 4b). This way, a heterostructure
resembling a core–shell topology is obtained through ALD/
MLD implementation on the MOF surface.

More importantly, these crystallites are well-oriented per-
pendicular to the DMOF-1 surface all over the different facets
(Fig. 4b and S16†), indicating that the ALD/MLD process
allows directional growth on a structured three-dimensional
substrate, with comparable intermetallic distances. EDS ana-
lysis indicates the presence of both Cu and Zn (Fig. S20†) on
the crystal particles. To perform a spatially resolved analysis of
the heterostructure, the CuTPA-coated crystals were transferred
to an Au grid for Transmission Electron Microscopy (TEM)
analysis. The TEM image in Fig. 5a shows thin crystallites
sticking out of the DMOF-1 crystal. Elemental mapping was
performed in STEM-EDS mode (Fig. 5b and c), and the results
clearly show that a Cu containing material is deposited on top
of the Zn-based solid, demonstrating for the first time that a
heterostructure is accessible using ALD/MLD on a MOF
surface. In this set up, the deposition occurs both on the Si
(100) and on DMOF-1 surfaces, which prevents thorough struc-
tural analysis of the heterostructure by X-Ray diffraction; none-
theless the obtained pattern displays Bragg peaks corres-
ponding to the CuTPA phase (Fig. S13†).

Fig. 3 FTIR spectra of TPA (light grey), the bulk CuTPA (black), and
CuTPA films grown on Si (100) with native oxide (blue), sapphire (teal)
and FTO (orange).

Fig. 4 Representation of the DMOF-1 (up) and CuTPA (bottom) structures and the intermetallic distances (a) and SEM images of DMOF-1 before
(top left) and after 250 cycles of ALD/MLD of CuTPA (b).
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4. Conclusions

In summary, this study clarifies and expands the scope of the
ALD/MLD growth of crystalline MOF thin films. In particular,
we demonstrate that the 3D CuTPA MOF films can be easily
obtained through the vapour phase layer by layer growth and
that this process is adaptable to different kinds of amorphous
(Si with native oxide) or crystalline (sapphire, FTO) inorganic
substrates. Importantly, for the first time an oriented MOF
growth in the vapour phase is detected and the orientation of
the crystallites is determined. Notably, the directional MOF
growth is also observed on the facets of DMOF-1 single crystals
leading to an unprecedented core–shell material by vapour
phase synthesis. This proves the ability of the ALD/MLD tech-
nique to accomplish heteroepitaxial growth on structured
hybrid materials with lattice matching topologies. Our results
indicate that the ALD/MLD deserves further and wider
advancement for the processing of hybrid materials and the
development of functional heterojunctions.
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