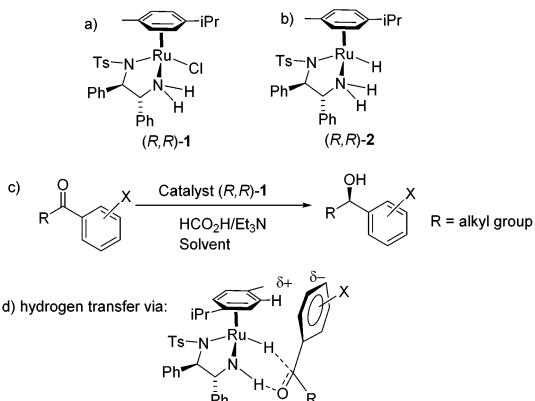


Cite this: *Dalton Trans.*, 2022, **51**, 13462

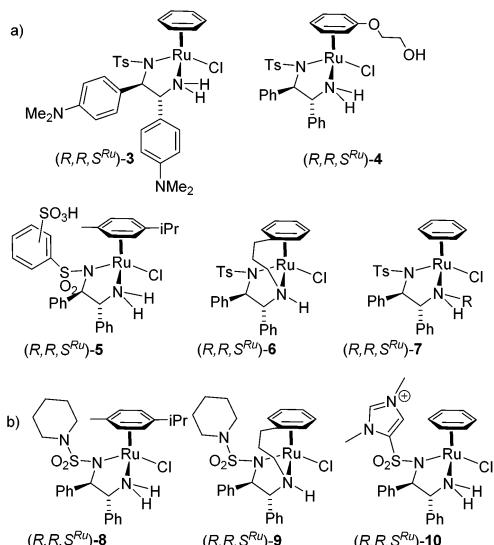

Received 25th July 2022,
Accepted 17th August 2022
DOI: 10.1039/d2dt02411j
rsc.li/dalton

Introduction

Asymmetric transfer hydrogenation (ATH) of ketones and imines can be achieved in high enantiomeric excess (ee) using $[(\text{arene})\text{Ru}(\text{L})\text{Cl}]$ complexes (Noyori–Ikariya catalysts).^{1–4} The bidentate ligand L is a homochiral, C2-symmetric 1,2-diamine in which one of the amines has been sulfonylated and in most cases the ligand employed is *N*-tosyl-1,2-diphenylethylene-1,2-diamine (TsDPEN), as illustrated in $(R,R,S^{\text{Ru}})\text{-1}$, the favoured diastereoisomer.² Under the reaction conditions, where typically either iPrOH or formic acid is used as the hydrogen source, the complex is converted *via* an unsaturated intermediate to hydride **2**, in the same favoured diastereoisomeric form.³ Transfer of hydrogen from **2** to the substrate in a well-defined diastereoselective manner results in asymmetric reduction of the substrate with a predictable stereochemical outcome (Fig. 1).⁴

The reactivity of catalysts of this type can be moderated through a number of modifications (Fig. 2, example complexes **3–10**), including; to the diamine ligand,⁵ η^6 -arene⁶ and through an intramolecular link from the η^6 -arene to the diamine.⁷ Substitution of the non-tosylated amine is also tolerated.⁸ The ligand can also be modified at the sulfonamide with functional groups that can, for example, improve the solubility of the catalysts in water.⁹ Although there are many other reported modifications to the sulfonamide component,¹⁰ we

were aware of very few examples of the replacement of the tosyl group with a heterocyclic sulfonamide, a modification which could potentially alter the reactivity and selectivity of the catalysts. There have been multiple reports of the application of piperidine and pyrrolidine-containing catalysts such as **8** to ATH,¹¹ including tethered derivatives such as **9**.⁷ An imidazolium derivative **10**, has been applied to ketone ATH in ionic liquids,¹² and the use of a DPEN derivative containing a quinoline ring (also described below) has been reported in the ATH of acetophenone and propiophenone, using $[(p\text{-cymene})\text{RuCl}_2]_2$ as the metal source.¹³ Apart from moderating the selectivity and activity of the catalysts, heterocyclic groups may also help to facilitate the recovery of the catalysts after use, and

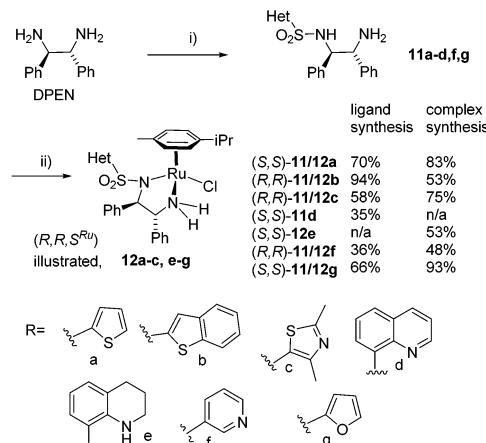


^aDepartment of Chemistry, The University of Warwick, Coventry, CV4 7AL, UK.
E-mail: m.wills@warwick.ac.uk

^bDepartment of Chemistry, Faculty of science, University of Alexandria, Alexandria, Egypt

†Electronic supplementary information (ESI) available: NMR spectra, chiral HPLC spectra and X-ray crystallographic data for structures. CCDC 2182537–2182541. For ESI and crystallographic data in CIF or other electronic format see DOI: <https://doi.org/10.1039/d2dt02411j>

Fig. 2 (a) Examples of modifications to Noyori–Ikariya catalysts; modification to the DPEN component; modification of the η^6 -arene; substitution of the sulfonamide component; introduction of a link from the diamine to the η^6 -arene; additions to the non-sulfonylated nitrogen; changes to the sulfonamide component. (b) Catalysts containing heterocyclic rings in the sulfonamide unit. In all cases, the relative configuration has either been determined by X-ray crystallography or assigned by analogy as (R,R,S^{Ru}) .


improve their solubility in specific solvents, including water, as has been the case with other modifications.^{5–10}

Given their potential value, we have designed and prepared a range of heterocycle-containing Noyori–Ikariya complexes and tested them in the ATH of ketones.

Results and discussion

A series of heterocycle-containing complexes were prepared from 1,2-diphenylethene-1,2-diamine (DPEN). With aim of preparing a diverse series, the planned heterocycles included thiophene, benzothiophene, thiazole, quinoline, pyridine and furan. The first stage was formation of the ligands through direct substitution with the appropriate sulfonyl chloride to generate **11a–11d**, **11f** and **11g**, where **11d** is the previously reported quinoline derivative.¹³ This was then followed by complexation with $[(p\text{-cymene})\text{RuCl}_2]_2$ dimer following the reported procedure^{3a} for Noyori–Ikariya complex **1** (Fig. 3) to form the required complexes **12a–c**, **12e–g**. Some complexes were prepared from (R,R) -DPEN and others from its enantiomer, as indicated. Although the series included the reported quinoline **11d**, the other ligands and complexes are novel.

The novel complexes were formed in good yields and could be purified by column chromatography, reflecting their stability. The complexes were characterised by NMR spectroscopy, IR and MS and the X-ray crystal structures of five of the complexes were also obtained (Fig. 4, ESI†). In four cases (**12a–c**, **12g**), the complexes possessed a structure analogous to the

Fig. 3 Preparation of $[(p\text{-cymene})\text{Ru}(\text{HetSO}_2\text{DPEN})\text{Cl}]$ complexes. (i) DPEN, HetSO_2Cl , Et_3N , THF, $0\text{ }^\circ\text{C}$. (ii) $[(p\text{-cymene})\text{RuCl}_2]_2$, Et_3N , iPrOH, $80\text{ }^\circ\text{C}$, 1 h.

TsDPEN-derived examples, where the relative configuration at ruthenium to that of the diamine ligand is (R,R,S^{Ru}) or (S,S,S^{Ru}) . In the case of the quinoline complex, however, the reduction of the heterocyclic ring of the ligand **11d** was observed under our reaction conditions to give the tetrahydroquinoline complex **12e** as the isolated product, quinoline reductions under ATH conditions have been reported,¹⁴ therefore this appears to be an example of self-catalysis of reduction by the catalyst as it is formed in the reaction, the hydrogen presumably coming from the isopropanol solvent. Additionally, complex **12e** was found to have with the opposite relative stereochemistry at Ru relative to the ligand to what would be expected (*i.e.* (S,S,S^{Ru})). Complex **12e** also exhibits an unusual H-bond from the NH of the isoquinoline ring to the N atom adjacent to the sulfonyl group (the total N–H–N bond length, is $3.096(8)$ Å). This may be the reason for the change in relative configuration for this complex, *i.e.* through stabilisation of the observed configuration. It should be noted that, in each case, the heterocycles are stacked against a DPEN phenyl group to maximize dispersion stabilization.

A comparison of key bond lengths and angles around the metal centre (Table 1, ESI†) otherwise showed only small differences between each structure. For the complexes of ‘conventional’ relative stereochemistry, the bond angles and lengths were very similar. In contrast, for the ‘inverted’ diastereoisomer (S,S,S^{Ru}) –**12e**, the dimensions were slightly different, presumably due to the alternative relative positioning of groups in the complex.

Complex **12a** was first tested in the ATH of acetophenone under a variety of conditions (Table 2). In previous studies, we have typically used a 5 : 2 azeotrope of formic acid/triethylamine (FA/TEA) either neat or with a cosolvent, at rt. Under these conditions, the cosolvent-free reduction gave a product of *ca.* 97% ee, comparable to the result with catalyst **1**,² although the use of DCM cosolvent resulted in a slightly faster reaction and marginally higher product ee. The reduction

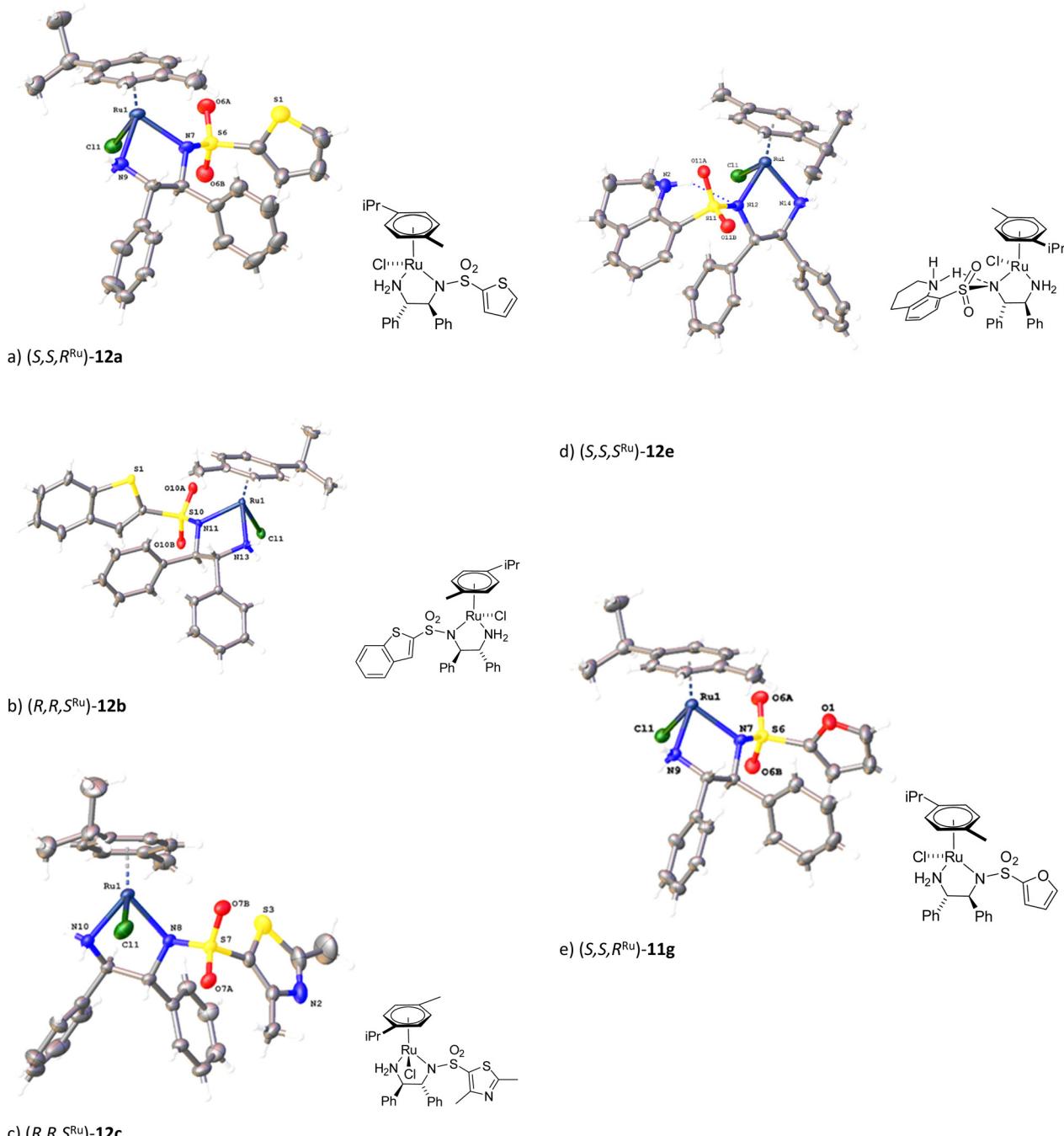


Fig. 4 X-ray crystal structures of five of the novel complexes prepared in this work.

Table 1 Key bond lengths and angles around the metal centre in complexes **12a–c**, **12e**, **12g**. Standard deviations are in brackets. Further data is in the ESI†

	(S,S,R^{Ru}) -12a	(R,R,S^{Ru}) -12b	(R,R,S^{Ru}) -12c	(S,S,S^{Ru}) -12e	(S,S,R^{Ru}) -12g
Ru–Cl/Å	2.4292 (10)	2.4493 (13)	2.4171 (15)	2.4464 (16)	2.4312 (7)
Ru–NH ₂ /Å	2.117 (3)	2.127 (4)	2.113 (4)	2.134 (5)	2.117 (2)
Ru–NTs/Å	2.152 (3)	2.130 (4)	2.151 (4)	2.163 (5)	2.157 (2)
Cl–Ru–NTs/°	87.68 (10)	86.98 (13)	88.01 (11)	85.36 (14)	88.01 (7)
Cl–Ru–NH ₂ /°	82.20 (11)	82.37 (13)	83.40 (13)	87.09 (15)	82.30 (8)
NH ₂ –Ru–NTs/°	79.01 (13)	77.73 (16)	78.36 (16)	77.68 (19)	78.89 (9)
NTs–S–CHet/°	108.1 (2)	107.5 (2)	107.4 (2)	106.7 (3)	108.37 (14)

Table 2 Optimisation of ATH of acetophenone using (S,S)-12a^a

Cat.	Co-solvent	t/h	FA : TEA	Conv./%	Ee/%	R/S
(S,S,R ^{Ru})-12a	DCM	22	5 : 2	99	97.8	S
(S,S,R ^{Ru})-12a	None	56	5 : 2	97	96.6	S
(S,S,R ^{Ru})-12a	MeCN	61	5 : 2	98	96.2	S
(S,S,R ^{Ru})-12a	MeOH	35	5 : 2	99	96.6	S
(S,S,R ^{Ru})-12a	DCM ^b	16	5 : 2	99	96.0	S
(S,S,R ^{Ru})-12a	— ^c	6	5 : 2	97	91.2	S
(S,S,R ^{Ru})-12a	H ₂ O	56	5 : 2	66	95.4	S
(S,S,R ^{Ru})-12a	DCM	26	1.2 : 1	99	96.6	S
(S,S,R ^{Ru})-12a	DCM	26	0.2 : 1	97	96.4	S
(S,S,R ^{Ru})-1	DCM	40	5 : 2	97	96.8	S

^a Conditions; Fig. 1c summarises the transformation, 1 mmol ketone, 1% catalyst, 0.5 mL FA : TEA, 0.5 mL cosolvent where indicated, rt (ca. 20 °C) unless otherwise indicated, S = [1.0], followed by chiral GC.

^b Run at 40 °C. ^c Run at 60 °C, without DCM.

product was also formed in high ee using MeCN and MeOH as cosolvents. With DCM cosolvent, the reaction was completed more rapidly at 40 °C and after a much shorter time at 60 °C although with decreased ees of 96.0% and 91.2% respectively. The complex was also capable of catalysing ATH in water, although the activity was slightly reduced. Variation of the FA/TEA ratio (known to influence catalyst activity in some cases)^{14d,15} did not significantly alter the reaction in this case, however.

The ATH of acetophenone using each of the catalysts was followed both by ¹H NMR and by sampling from an ongoing reaction followed by analysis by chiral GC (ESI,† Table 3). The NMR experiment allowed a comparison of the relative activities of each catalyst to be obtained, whilst the chiral GC reaction provided information about ee variation over time. In the NMR experiments, a short induction period was observed, which may reflect the formation of a ruthenium hydride at the start of the reaction. The most active catalysts were the furan 12g and thiophene 12a, whilst the tetrahydroisoquinoline complex 12e was the least active. The reaction rate of the furan complex 12a was faster than the Noyori–Ikariya catalyst 1 by a factor of 1.77, while the tetrahydroisoquinoline complex 12e is slower by a factor of 0.5 than 1 under the conditions that we tested. Whilst it is difficult to make accurate comparisons, the furan and thiophene heterocycles may be slightly more active due to the smaller size of these groups. Alternatively, subtle changes to the electronic structure or conformations of the catalysts may be responsible. The tetrahydroisoquinoline complex 12e may be less active because a proportion of the catalyst is unavailable due to stabilisation of the (presumably inactive) intramolecularly H-bond form observed in the crystal structure. However, further studies are required in order to identify the reasons for observed the rate variations.

The enantiomeric excesses remained relative constant throughout the reductions for each catalyst. In the reported application of ligand 11d,^{13a} through *in situ* formation of the catalyst, a combination of iPrOH and KOH was used as the reaction medium and reducing agent, and a product of 92.1% ee was obtained, which is similar to our result for complex

Table 3 Ketones tested for ATH using catalysts 12a–12c, 12e–12g^a

Substrate	Catalyst	t/h	Conv./%	Yield/%	ee/%	R/S
	(S,S,R ^{Ru})-12a	22	100	66	97.8	S
	(R,R,S ^{Ru})-12b	22	98	91	>99	R
	(R,R,S ^{Ru})-12c	27	99	73	98.6	R
	(S,S,S ^{Ru})-12e	49	100	77	96.8	S
	(R,R,S ^{Ru})-12f	46	98	88	>99	R
	(S,S,R ^{Ru})-12g	46	99	91	96.6	S
	(S,S,R ^{Ru})-12a	40	100	72	94.0	S
	(R,R,S ^{Ru})-12b	26	88	70	>99	R
	(R,R,S ^{Ru})-12c	26	89	79	>99	R
	(S,S,S ^{Ru})-12e	91	99	79	97.4	S
	(R,R,S ^{Ru})-12f	47	99	92	>99	R
	(S,S,R ^{Ru})-12g	48	99	93	91.2	S
	(S,S,R ^{Ru})-12a	48	100	76	95.8	S
	(R,R,S ^{Ru})-12b	21	100	72	96.2	R
	(R,R,S ^{Ru})-12c	27	100	72	96.8	R
	(S,S,S ^{Ru})-12e	161	100	80	87.4	S
	(R,R,S ^{Ru})-12f	165	100	93	97.2	R
	(S,S,R ^{Ru})-12g	23	100	88	96.2	S
	(S,S,R ^{Ru})-12a	97	99	64	91.6	S
	(R,R,S ^{Ru})-12b	111	99	71	92.0	R
	(R,R,S ^{Ru})-12c	96	100	73	96.4	R
	(S,S,S ^{Ru})-12e	183	30	-	89.4	S
	(R,R,S ^{Ru})-12f	165	99	81	95.0	R
	(S,S,R ^{Ru})-12g	96	98	71	91.2	S
	(S,S,R ^{Ru})-12a	167	97	89	94.2	S
	(R,R,S ^{Ru})-12b	142	98	91	98.3	R
	(R,R,S ^{Ru})-12c	142	99	81	96.7	R
	(S,S,S ^{Ru})-12e	167	51	44	98.9	S
	(R,R,S ^{Ru})-12f	165	98	95	97.2	R
	(S,S,R ^{Ru})-12g	187	96	82	93.6	S
	(S,S,R ^{Ru})-12a	120	99	46	97.6	S
	(R,R,S ^{Ru})-12b	120	99	41	>99	R
	(R,R,S ^{Ru})-12c	120	99	59	>99	R
	(S,S,S ^{Ru})-12e	145	97	65	97.6	S
	(R,R,S ^{Ru})-12f	165	100	97	>99	R
	(S,S,R ^{Ru})-12g	96	98	42	98.4	S
	(S,S,R ^{Ru})-12a	26	93	70	99.4	S
	(R,R,S ^{Ru})-12b	26	99	72	>99	R
	(R,R,S ^{Ru})-12c	26	99	72	>99	R
	(S,S,S ^{Ru})-12e	26	99	85	99.0	S
	(R,R,S ^{Ru})-12f	22	93	70	>99	R
	(S,S,R ^{Ru})-12g	23	98	81	96.4	S
	(S,S,R ^{Ru})-12a	27	98	97	99.1	S
	(R,R,S ^{Ru})-12b	27	99	91	>99	R
	(R,R,S ^{Ru})-12c	27	99	93	>99	R

Table 3 (Contd.)

Substrate	Catalyst	t/h	Conv./%	Yield/%	ee/%	R/S
	$(S,S,S^{Ru})\text{-12e}$	27	100	90	99.3	<i>S</i>
	$(R,R,S^{Ru})\text{-12f}$	22	99	82	>99	<i>R</i>
	$(S,S,R^{Ru})\text{-12g}$	23	99	98	>99	<i>S</i>
	$(S,S,R^{Ru})\text{-12a}$	111	99	71	>99	<i>S</i>
		$(R,R,S^{Ru})\text{-12b}$	111	99	82	92.8
	$(R,R,S^{Ru})\text{-12c}$	160	99	82	>99	<i>R</i>
	$(S,S,S^{Ru})\text{-12e}$	160	99	82	99.0	<i>S</i>
	$(R,R,S^{Ru})\text{-12f}$	22	99	88	>99	<i>R</i>
	$(S,S,R^{Ru})\text{-12g}$	48	99	87	99.6	<i>S</i>
	$(S,S,R^{Ru})\text{-12a}$	15	100	82	99.2	<i>R</i>
	$(R,R,S^{Ru})\text{-12b}$	15	100	74.6	98.9	<i>S</i>
	$(R,R,S^{Ru})\text{-12c}$	15	100	73	>99	<i>S</i>
	$(S,S,S^{Ru})\text{-12e}$	15	100	86	>99	<i>R</i>
	$(R,R,S^{Ru})\text{-12f}$	22	100	93	98.4	<i>S</i>
	$(S,S,R^{Ru})\text{-12g}$	15	100	88	95.8	<i>R</i>
	$(S,S,R^{Ru})\text{-12a}$	23	99	91	96.8	<i>R</i>
	$(R,R,S^{Ru})\text{-12b}$	23	99	84	94.6	<i>S</i>
	$(R,R,S^{Ru})\text{-12c}$	23	99	84	98.1	<i>S</i>
	$(S,S,S^{Ru})\text{-12e}$	23	98	87	97.2	<i>R</i>
	$(R,R,S^{Ru})\text{-12f}$	22	99	93	96.2	<i>S</i>
	$(S,S,R^{Ru})\text{-12g}$	23	99	87	94.6	<i>R</i>
	$(S,S,R^{Ru})\text{-12a}$	15	100	68	8.0	<i>R</i>
	$(R,R,S^{Ru})\text{-12b}$	15	100	69	20.2	<i>S</i>
	$(R,R,S^{Ru})\text{-12c}$	15	100	74	33.8	<i>S</i>
	$(S,S,S^{Ru})\text{-12e}$	15	100	78	9.8	<i>R</i>
	$(R,R,S^{Ru})\text{-12f}$	22	100	82	35.2	<i>S</i>
	$(S,S,R^{Ru})\text{-12g}$	15	100	76	1.2	<i>R</i>

^a Conditions; 1 mmol ketone, 1% catalyst, 0.5 mL FA:TEA, 0.5 mL DCM, *S* = [1], rt. Product configurations assigned by comparison to the literature data. Conv. = conversion by GC, yield = isolated product yield. ee determined by chiral GC. Where >99% ee is shown, a minor HPLC peak was not observed.

12e. Under the iPrOH/KOH conditions, the quinoline ring may have remained unreduced, or **12e** may have been formed *in situ*.

The new complexes proved to be effective in the ATH of a range of ketone substrates (Table 3). In many cases, the results were excellent, with products of high ee formed. For relatively unhindered ketones such as acetophenone, *para*-substituted acetophenones, and heterocyclic analogues containing furan and thiophene rings, several of the catalysts gave alcohols in high yields and very high ee. Across this class, catalysts **12b** and **12c** gave the most consistently high product ee, although other catalysts also performed well. In one case, catalyst **12e** gave significantly lower than 100% conversion for electron-rich *para*-methoxyacetophenone. Notably, complex $(S,S,S^{Ru})\text{-12a}$ gave the same configuration of alcohol as other complexes derived from *(R,R)*-DPEN, despite the alternative relative configuration

at Ru, indicating a similar mode of hydride transfer (Fig. 1c). Examples of fused-ring ketones, *i.e.* 4-chromanone and tetralone, were also reduced in very high ee; these compounds are known to be very compatible with ATH using Noyori–Ikariya catalysts.^{2,5–10,16} In addition, substrates containing substituents at the α -position to the ketone, including chloro and phenoxy, were also compatible substrates. The ATH of the pentafluorophenyl analogue of acetophenone is known to be difficult to achieve in high ee due to the electron-poor nature of the aromatic ring,^{4d} but could be reduced in up to *ca.* 34% ee by catalyst **12c**, which was the best of those tested. It is was also demonstrated that the ATH of ketones can also be achieved through *in situ* formation of the catalysts; using *(R,R)*-**12f** with $[(p\text{-cymene})\text{RuCl}_2]_2$ in FA/TEA/DCM as before resulted in reduction of acetophenone in equivalent ee to that achieved using the preformed catalyst.

In the case of challenging *ortho*-substituted acetophenones, specifically *ortho*-chloro (up to 97.2% ee) and *ortho*-methoxy acetophenone (up to 96.4% ee), the product ees and rates were high, and better than for several established Noyori–Ikariya ATH catalysts which have commonly been employed, including tethered derivatives.⁷ Under the conditions in Table 3, *ortho*-methoxyacetophenone was reduced in 91.4% ee but at only 80.4% conversion after 170 h using catalyst *(R,R)*-**1**. Tethered catalyst *(R,R)*-**6** is reported to give a product of 70% ee for the same substrate,¹⁷ although a derivative containing a OMe group on the η^6 -arene ring gave a product of 96% ee.¹⁸ Since *ortho*-phenyl substituted ketones were found to be particularly good substrates, other ketones with *ortho*-substituents were investigated with two of the most effective catalysts and these also gave products of high ee, in high conversions and good yields (Fig. 5), underlining the versatility of the catalysts, and opening possibilities for the asymmetric synthesis of otherwise challenging products of this type. The ATH reaction of (*ortho*-O*i*Pr)acetophenone was successful but the enantiomers could not be resolved by chiral GC or HPLC.

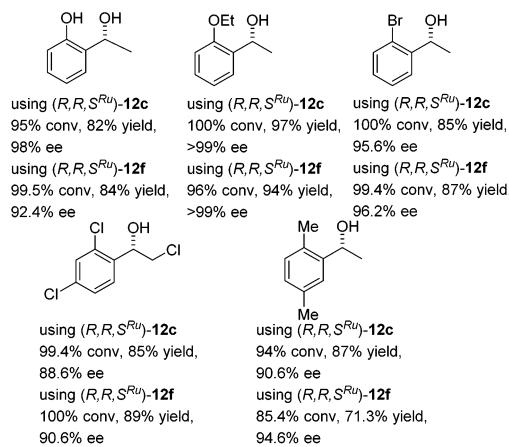


Fig. 5 Further *ortho*-substituted products of ATH using the thioazole (**12c**) and 3-pyridyl (**12f**) catalysts. Configurations assigned by analogy with 2-methoxyacetophenone reduction.

Conclusions

In conclusion, we report the results of the first comprehensive study of the preparation and applications to ATH of ketones of a series of DPEN-derived catalysts containing heterocyclic sulfonamide groups. The catalysts proved to be robust, readily characterised and highly active in the ATH of a series of ketones, giving alcohols in high conversion and enantiopurity. In some cases, the observed product ees exceeded those for established catalysts of this class. Although each catalyst generated an ATH product of similar ee in most cases, several variations were noted, suggesting the involvement of secondary directing effects. Although the precise nature of these effects cannot be fully identified at this point, these and further applications remain the subject of ongoing studies.

Data availability

The research data (and/or materials) supporting this publication can be accessed at <https://wrap.warwick.ac.uk/>.

Author contributions

The manuscript was written through contributions of all authors. MW planned the investigation, provided supervision, analyzed the data and wrote the manuscript. NK planned the investigation, carried out the practical work, analyzed the data and wrote the manuscript. GJC carried out the X-ray crystal structure analyses and provided the data for the paper.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

We thank the Ministry of Higher Education of the Arab Republic of Egypt for support of NK through a full funded Newton-Mosharafa scholarship [NMM4/20]. The X-ray diffraction instrument was obtained through the Science City Project with support from the AWM and part funded by the ERDF.

References

- 1 Reviews: (a) D. Wang and D. Astruc, The Golden Age of Transfer Hydrogenation, *Chem. Rev.*, 2015, **115**, 6621–6686; (b) A. E. Cotman, Escaping from Flatland: Stereoconvergent Synthesis of Three-Dimensional Scaffolds via Ruthenium (II)-Catalyzed Noyori-Ikariya Transfer Hydrogenation, *Chem. – Eur. J.*, 2021, **27**, 39–53.
- 2 Early publications: (a) A. Fujii, S. Hashiguchi, N. Uematsu, T. Ikariya and R. Noyori, Ruthenium(II)-catalyzed asym-

metric transfer hydrogenation of ketones using a formic acid-triethylamine mixture, *J. Am. Chem. Soc.*, 1996, **118**, 2521–2522; (b) S. Hashiguchi, A. Fujii, J. Takehara, T. Ikariya and R. Noyori, Asymmetric Transfer Hydrogenation of Aromatic Ketones Catalyzed by Chiral Ruthenium(II) Complexes, *J. Am. Chem. Soc.*, 1995, **117**, 7562–7563; (c) K. Matsumura, S. Hashiguchi, T. Ikariya and R. Noyori, Asymmetric transfer hydrogenation of alpha, beta-acetylenic ketones, *J. Am. Chem. Soc.*, 1997, **119**, 8738–8739.

3 Structural studies: (a) K.-J. Haack, S. Hashiguchi, A. Fujii, T. Ikariya and R. Noyori, The Catalyst Precursor, Catalyst, and Intermediate in the RuII-Promoted Asymmetric Hydrogen Transfer between Alcohols and Ketones, *Angew. Chem., Int. Ed. Engl.*, 1997, **36**, 285–288; (b) A. M. R. Hall, P. Dong, A. Codina, J. P. Lowe and U. Hintermair, Kinetics of Asymmetric Transfer Hydrogenation, Catalyst Deactivation, and Inhibition with Noyori Complexes as Revealed by Real-Time High-Resolution FlowNMR Spectroscopy, *ACS Catal.*, 2019, **9**, 2079–2090.

4 Mechanistic studies: (a) M. Yamakawa, I. Yamada and R. Noyori, CH/π Attraction: The Origin of Enantioselectivity in Transfer Hydrogenation of Aromatic Carbonyl Compounds Catalyzed by Chiral η^6 -Arene-Ruthenium(II) Complexes, *Angew. Chem., Int. Ed.*, 2001, **40**, 2818–2821; (b) P. A. Dub and J. C. Gordon, The mechanism of enantioselective ketone reduction with Noyori and Noyori-Ikariya bifunctional catalysts, *Dalton Trans.*, 2016, **45**, 6756–6781; (c) P. A. Dub and J. C. Gordon, Metal-Ligand Bifunctional Catalysis: The “Accepted” Mechanism, the Issue of Concertedness, and the Function of the Ligand in Catalytic Cycles Involving Hydrogen Atoms, *ACS Catal.*, 2017, **7**, 6635–6655; (d) P. A. Dub, N. V. Tkachenko, V. K. Vyas, M. Wills, J. S. Smith and S. Tretiak, Enantioselectivity in the Noyori-Ikariya Asymmetric Transfer Hydrogenation of Ketones, *Organometallics*, 2021, **40**, 1402–1410; (e) A. M. R. Hall, D. B. G. Berry, J. N. Crossley, A. Codina, I. Clegg, J. P. Lowe, A. Buchard and U. Hintermair, Does the Configuration at the Metal Matter in Noyori-Ikariya Type Asymmetric Transfer Hydrogenation Catalysts?, *ACS Catal.*, 2021, **11**, 13649–13659.

5 Modifications of diamine phenyl rings: (a) B. Zhang, M.-H. Xu and G.-Q. Lin, Catalytic Enantioselective Synthesis of Chiral Phthalides by Efficient Reductive Cyclization of 2-Acylarylcarboxylates under Aqueous Transfer Hydrogenation Conditions, *Org. Lett.*, 2009, **11**, 4712–4715; (b) A. Amano, D. Igarashi and N. Sayo, Preparation of optically active transition metal/diamine complex and process for producing optically active alcohol with the complex, *World Intellectual Property Organization*, WO2005092830A1, 2005; (c) D. Cartigny, K. Püntener, T. Ayad, M. Scalone and V. Ratovelomanana-Vidal, Highly Diastereo- and Enantioselective Synthesis of Monodifferentiated syn-1,2-Diol Derivatives through Asymmetric Transfer Hydrogenation via Dynamic Kinetic Resolution, *Org. Lett.*, 2010, **12**(17), 3788–3791.

6 Arene modifications: (a) J. Soleimannejad, A. Sisson and C. White, Functionalized-arene ruthenium half-sandwich compounds as enantioselective hydrogen transfer catalysts. Crystal structures of $[\text{RuCl}\{\text{TsNCH}(\text{R})\text{CH}(\text{R})\text{NH}_2\}\{\eta^6\text{C}_6\text{H}_5\text{OCH}_2\text{CH}_2\text{OH}\}]$ (R=H or Ph), *Inorg. Chim. Acta*, 2003, **352**, 121–128; (b) T. J. Geldbach and P. J. Dyson, A Versatile Ruthenium Precursor for Biphasic Catalysis and Its Application in Ionic Liquid Biphasic Transfer Hydrogenation: Conventional vs Task-Specific Catalysts, *J. Am. Chem. Soc.*, 2004, **126**, 8114–8115; (c) S. Doherty, J. G. Knight, H. Alshaikh, J. Wilson, P. G. Waddell, C. Wills and C. M. Dixon, Arene-Immobilized Ru(II)/TsDPEN Complexes: Synthesis and Applications to the Asymmetric Transfer Hydrogenation of Ketones, *Eur. J. Inorg. Chem.*, 2021, 226–235; (d) M. Ito, Y. Endo and T. Ikariya, Well-Defined Triflylamide-Tethered Arene–Ru(TsDPEN) Complexes for Catalytic Asymmetric Hydrogenation of Ketones, *Organometallics*, 2008, **27**, 6053–6055.

7 Tethered catalysts: (a) H. G. Nedden, A. Zanotti-Gerosa and M. Wills, The Development of Phosphine-Free “Tethered” Ruthenium(II) Catalysts for the Asymmetric Reduction of Ketones and Imines, *Chem. Rec.*, 2016, **16**, 2623–2643; (b) V. K. Vyas, G. J. Clarkson and M. Wills, Enantioselective Synthesis of Bicyclopentane-Containing Alcohols via Asymmetric Transfer Hydrogenation, *Org. Lett.*, 2021, **23**, 3179–3183; (c) T. Touge, T. Hakamata, H. Nara, T. Kobayashi, N. Sayo, T. Saito, Y. Kayaki and T. Ikariya, Oxo-Tethered Ruthenium(II) Complex as a Bifunctional Catalyst for Asymmetric Transfer Hydrogenation and H₂ Hydrogenation, *J. Am. Chem. Soc.*, 2011, **133**, 14960–14963; (d) V. Parekh, J. A. Ramsden and M. Wills, Ether-tethered Ru(II)/TsDPEN complexes; synthesis and applications to asymmetric transfer hydrogenation, *Catal. Sci. Technol.*, 2012, **2**, 406–414; (e) A. Kišić, M. Stephan and B. Mohar, *ansa*-Ruthenium(II) Complexes of DPEN–SO₂N(Me)(CH₂)_n (η⁶-aryl) Conjugate Ligands for Asymmetric Transfer Hydrogenation of Aryl Ketones, *Adv. Synth. Catal.*, 2014, **356**, 3193–3198; (f) R. Soni, K. E. Jolley, S. Gosiewska, G. J. Clarkson, Z. Fang, T. H. Hall, B. N. Treloar, R. C. Knighton and M. Wills, Synthesis of Enantiomerically Pure and Racemic Benzyl-Tethered Ru(II)/TsDPEN Complexes by Direct Arene Substitution: Further Complexes and Applications, *Organometallics*, 2018, **37**, 48–64; (g) A. Kisic, M. Stephan and B. Mohar, *ansa*-Ruthenium (II) Complexes of R₂NSO₂DPEN–(CH₂)_n(η²-Aryl) Conjugate Ligands for Asymmetric Transfer Hydrogenation of Aryl Ketones, *Adv. Synth. Catal.*, 2015, **357**, 2540–2546.

8 Alkylation of non-tosylated amine: (a) J. Barrios-Rivera, Y. Xu and M. Wills, Probing the effects of heterocyclic functionality in $[(\text{benzene})\text{Ru}(\text{TsDPENR})\text{Cl}]$ catalysts for Asymmetric Transfer Hydrogenation, *Org. Lett.*, 2019, **21**, 7223–7227; (b) J. E. D. Martins, G. J. Clarkson and M. Wills, Ru(II) Complexes of N-Alkylated TsDPEN Ligands in Asymmetric Transfer Hydrogenation of Ketones and Imines, *Org. Lett.*, 2009, **11**, 847–850; (c) W. Shan, F. Meng, Y. Wu, F. Mao and X. Li, The synthesis of a new nitrogen joined N-PEG-TsDPEN ligand and its application in asymmetric transfer hydrogenation of ketones in neat water, *J. Organomet. Chem.*, 2011, **696**, 1687–1690; (d) J. M. Zimbron, M. Dauphinais and A. B. Charette, Arylphosphonium Noyori–Ikariya catalyst supported on tetra-arylphosphonium salt for asymmetric transfer hydrogenation in water, *Green Chem.*, 2015, **17**, 3255–3259; (e) N. A. Cortez, C. Z. Flores-Lopez, R. Rodriguez-Apodaca, L. Z. Flores-Lopez, M. Parra-Hake and R. Somanathan, Transfer hydrogenation reduction of acetophenone catalyzed by Ru(II) and Rh(I) complexes with ligands derived from (1R,2R)-cyclohexane-1,2-diamine, *ARKIVOC (Gainesville, FL, U. S.)*, 2005, **6**, 162–171.

9 Modifications of sulfonamide to improve water solubility: (a) T. Thorpe, J. Blacker, S. M. Brown, C. Bubert, J. Crosby, S. Fitzjohn, J. P. Muxworthy and J. M. J. Williams, Efficient rhodium and iridium-catalyzed asymmetric transfer hydrogenation using water-soluble amino sulfonamide ligands, *Tetrahedron Lett.*, 2001, **42**, 4041–4043; (b) C. Bubert, J. Blacker, S. M. Brown, J. Crosby, S. Fitzjohn, J. P. Muxworthy, T. Thorpe and J. M. J. Williams, Synthesis of water-soluble aminosulfonamide ligands and their application in enantioselective transfer hydrogenation, *Tetrahedron Lett.*, 2001, **42**, 4037–4039; (c) Z. Zhou, Q. Ma, Y. Sun, A. Zhang and L. Li, Ruthenium(II)-catalyzed asymmetric transfer hydrogenation of aromatic ketones in water using novel water-soluble chiral monosulfonamide ligands, *Heteroat. Chem.*, 2010, **21**, 505–514; (d) Z. Zhou and Y. Sun, Water-soluble chiral amino-sulfonamides as ligands for ruthenium(II)-catalyzed asymmetric transfer hydrogenation, *Catal. Commun.*, 2009, **10**, 1685–1688.

10 Further sulfonamide modifications: (a) D. Sterk, M. S. Stephan and B. Mohar, Transfer hydrogenation of activated ketones using novel chiral Ru(II)-N-arennesulfonyl-1,2-diphenylethylenediamine complexes, *Tetrahedron Lett.*, 2004, **45**, 535–537; (b) X. Xu, R. Wang, J. Wan, X. Ma and J. Peng, Phosphonate-containing polystyrene copolymer-supported Ru catalyst for asymmetric transfer hydrogenation in water, *RSC Adv.*, 2013, **3**, 6747–6751; (c) K. M. Steward, M. T. Corbett, C. G. Goodman and J. S. Johnson, Asymmetric Synthesis of Diverse Glycolic Acid Scaffolds via Dynamic Kinetic Resolution of α-Keto Esters, *J. Am. Chem. Soc.*, 2012, **134**, 20197–20206; (d) Z. Zhou and Y. Sun, Synthesis of polyethylene glycol supported chiral monosulfonamide and its application in asymmetric transfer hydrogenation of prochiral ketones, *React. Kinet., Mech. Catal.*, 2010, **99**, 391–396; (e) Y.-C. Chen, T.-F. Wu, L. Jiang, J.-G. Deng, H. Liu, J. Zhu and Y.-Z. Jiang, Synthesis of Dendritic Catalysts and Application in Asymmetric Transfer Hydrogenation, *Org. Chem.*, 2005, **70**, 1006–1010; (f) Y.-C. Chen, T.-F. Wu, J.-G. Deng, H. Liu, X. Cui, J. Zhu, Y.-Z. Jiang, M. C. K. Choi and A. S. C. Chan, Multiple dendritic catalysts for asymmetric transfer hydrogenation, *J. Org. Chem.*, 2002, **67**, 5301–5306; (g) G. Sun, W. Jian, Z. Luo, T. Sun, C. Li, J. Zhang and Z. Wang, Development of an Efficient and

Scalable Asymmetric Synthesis of Eliglustat via Ruthenium (II)-Catalyzed Asymmetric Transfer Hydrogenation, *Org. Process Res. Dev.*, 2019, **23**, 1204–1212; (h) Z. Luo, G. Sun, Z. Zhou, G. Liu, B. Luan, Y. Lin, L. Zhang and Z. Wang, Stereogenic cis-2-substituted-N-acetyl-3-hydroxy-indolines via ruthenium(II)-catalyzed dynamic kinetic resolution-asymmetric transfer hydrogenation, *Chem. Commun.*, 2018, **54**, 13503–13506; (i) O. Soltani, M. A. Ariger, H. Vazquez-Villa and E. M. Carreira, Transfer hydrogenation in water: enantioselective, catalytic reduction of α -cyano and α -nitro substituted acetophenones, *Org. Lett.*, 2010, **12**, 2893–2895; (j) B. Mohar, A. Valleix, J.-R. Desmurs, M. Felemez, A. Wagner and C. Mioskowski, Highly enantioselective synthesis via dynamic kinetic resolution under transfer hydrogenation using Ru(η^6 -arene)-N-perfluorosulfonyl-1,2-diamine catalysts: a first insight into the relationship of the ligand's pKa and the catalyst activity, *Chem. Commun.*, 2001, **24**, 2572–2573.

11 Dialkylaminosulfonyl, untethered: (a) D. Sterk, M. Stephan and B. Mohar, Highly Enantioselective Transfer Hydrogenation of Fluoroalkyl Ketones, *Org. Lett.*, 2006, **8**, 5935–5938; (b) D. Sterk, M. S. Stephan and B. Mohar, New chiral N-(N,N-dialkylamino)sulfamoyl-1,2-diamine ligands for highly enantioselective transfer hydrogenation of ketones, *Tetrahedron: Asymmetry*, 2002, **13**, 2605–2608; (c) S. Zhang, F. Chen, Y.-M. He and Q.-H. Fan, Asymmetric Hydrogenation of Dibenzo[c,e]azepine Derivatives with Chiral Cationic Ruthenium Diamine Catalysts, *Org. Lett.*, 2019, **21**(14), 5538–5541.

12 H. Uchimoto, M. Ikeda, A. Matsushita, T. Shigeta, K. Arimitsu, H. Yasui, T. Tsuji, M. Ozeki, M. Yamashita, K. Nishide and I. Kawasaki, Development of new ligands for the recyclable catalytic asymmetric transfer hydrogenation in ionic liquid, *Heterocycles*, 2017, **94**, 465–483.

13 (a) C. E. Dong, J. L. Zhang, W. Z. Zheng, Z. L. Yu and L. F. Zhang, Asymmetric transfer-hydrogenation of ketone catalyzed by novel Ru(II)-chiral sulfonamide complex, *Chin. Chem. Lett.*, 2000, **11**, 383–384; (b) J. Zhu, L. Zhu, Y. Wu, L. Cheng, H. Wang, X. Sun, J. Shen, Y. Zhou and Y. Ke, A novel C2 symmetric chiral stationary phase with N-[(4-Methylphenyl)sulfonyl]-L-leucine as chiral side chains, *J. Sep. Sci.*, 2020, **43**, 2338–2348.

14 (a) Y.-E. Luo, Y.-M. He and Q.-H. Fan, Asymmetric Hydrogenation of Quinoline Derivatives Catalyzed by Cationic Transition Metal Complexes of Chiral Diamine Ligands: Scope, Mechanism and Catalyst Recycling, *Chem. Rec.*, 2016, **16**, 2697–2711; (b) T. Wang, L.-G. Zhuo, Z. Li, F. Chen, Z. Ding, Y. He, Q.-H. Fan, J. Xiang, Z.-X. Yu and A. S. C. Chan, Highly Enantioselective Hydrogenation of Quinolines Using Phosphine-Free Chiral Cationic Ruthenium Catalysts: Scope, Mechanism, and Origin of Enantioselectivity, *J. Am. Chem. Soc.*, 2011, **133**, 9878–9891.

15 (a) X. Wu, X. Li, F. King and J. Xiao, Insight into and Practical Application of pH-Controlled Asymmetric Transfer Hydrogenation of Aromatic Ketones in Water, *Angew. Chem., Int. Ed.*, 2005, **44**, 3407–3411; (b) X. Zhou, X. Wu, B. Yang and J. Xiao, Varying the ratio of formic acid to triethylamine impacts on asymmetric transfer hydrogenation of ketones, *J. Mol. Catal. A: Chem.*, 2012, **357**, 133–140.

16 (a) A. E. Cotman, M. Lozinšek, B. Wang, M. Stephan and B. Mohar, *trans*-Diastereoselective Ru(II)-Catalyzed Asymmetric Transfer Hydrogenation of α -Acetamido Benzocyclic Ketones via Dynamic Kinetic Resolution, *Org. Lett.*, 2019, **21**(10), 3644–3648; (b) V. K. Vyas and B. M. Bhanage, Kinetic Resolution Driven Diastereo- and Enantioselective Synthesis of cis- β -Heteroaryl Amino Cycloalkanols by Ruthenium-Catalyzed Asymmetric Transfer Hydrogenation, *Org. Lett.*, 2016, **18**, 6436–6439; (c) G. S. Caleffi, J. de O. C. Brum, A. T. Costa, J. L. O. Domingos and P. R. R. Costa, Asymmetric Transfer Hydrogenation of Arylidene-Substituted Chromanones and Tetralones Catalyzed by Noyori-Ikariya Ru(II) Complexes: One-Pot Reduction of C=C and C=O bonds, *J. Org. Chem.*, 2021, **86**, 4849–4858; (d) A. Kefberg, T. Lübken and P. Metz, Enantioselective Total Synthesis of Natural Isoflavans: Asymmetric Transfer Hydrogenation/Deoxygenation of Isoflavanones with Dynamic Kinetic Resolution, *Org. Lett.*, 2018, **20**, 3006–3009; (e) S. Kwon, S. Lee, M. Heo, B. Lee, X. Fei, T. W. Corson and S.-Y. Seo, Total Synthesis of Naturally Occurring 5,7,8-Trioxigenated Homoisoflavonoids, *ACS Omega*, 2020, **5**, 11043–11057.

17 D. J. Morris, A. M. Hayes and M. Wills, The 'reverse-tethered' ruthenium(II) catalyst for asymmetric transfer hydrogenation: further applications, *J. Org. Chem.*, 2006, **71**, 7035–7044.

18 R. Soni, K. E. Jolley, G. J. Clarkson and M. Wills, Direct Formation of Tethered Ru(II) Catalysts Using Arene Exchange, *Org. Lett.*, 2013, **15**, 5110–5113.

