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Activity cliffs (ACs) are formed by pairs of structurally similar or analogous active small molecules with large

differences in potency. In medicinal chemistry, ACs are of high interest because they often reveal structure—

activity relationship (SAR) determinants for compound optimization. In molecular machine learning, ACs

provide test cases for predictive modeling of discontinuous (non-linear) SARs at the level of compound

pairs. Recently, deep neural networks have been used to predict ACs from molecular images or graphs

via representation learning. Herein, we report the development and evaluation of chemical language

models for AC prediction. It is shown that chemical language models learn structural relationships and
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associated potency differences to reproduce ACs. A conditional transformer termed DeepAC is

introduced that accurately predicts ACs on the basis of small amounts of training data compared to
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1 Introduction

In medicinal chemistry, compound optimization relies on the
exploration of structure-activity relationships (SARs). There-
fore, series of structural analogues are generated to probe
substitution sites in specifically active compounds with
different functional groups and improve potency and other lead
optimization-relevant molecular properties. For lead optimiza-
tion, the activity cliff (AC) concept plays an important role. ACs
are defined as pairs or groups of structurally similar compounds
or structural analogues that are active against a given target and
have large differences in potency.’® As such, ACs represent
strongly discontinuous SARs because small chemical modifi-
cations lead to large biological effects. In medicinal chemistry,
SAR discontinuity captured by ACs helps to identify substitu-
ents that are involved in critically important ligand-target
interactions. In compound activity prediction, the presence of
SAR discontinuity prevents the derivation of quantitative SAR
(QSAR) models relying on continuous SAR progression and
requires non-linear machine learning models.*?

For a non-ambiguous and systematic assessment of ACs,
similarity and potency difference criteria must be clearly
defined.>® Originally, molecular fingerprints (that is, bit string
representations of chemical structure) have been used as
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other machine learning methods. DeepAC bridges between predictive modeling and compound design
and should thus be of interest for practical applications.

molecular representations to calculate the Tanimoto coeffi-
cient,Y a whole-molecule similarity metric, for identifying
similar compounds forming ACs.? Alternatively, substructure-
based similarity measures have been adapted for defining
ACs, which have become increasingly popular in medicinal
chemistry, because they are often chemically more intuitive
than calculated whole-molecule similarity.> For example,
a widely used substructure-based similarity criterion for AC
analysis is the formation of a matched molecular pair (MMP),
which is defined as a pair of compounds that are only distin-
guished by a chemical modification at a single site.®> Thus,
MMPs can be used to represent pairs of structural analogues,
which explains their popularity in medicinal chemistry. More-
over, MMPs can also be efficiently identified algorithmically.?
Although statistically significant potency differences for ACs
can be determined for individual compound activity classes,®
for the systematic assessment of ACs and computational
modeling, a potency difference threshold of at least two orders
of magnitude (100-fold) has mostly been applied.>?

While medicinal chemistry campaigns encounter ACs on
a case-by-case basis, systematic compound database analysis
has identified ACs across different compound activity classes,
providing a wealth of SAR information.>” Here, computational
and medicinal chemistry meet. With rapidly increasing
numbers of publicly available bioactive compounds, AC pop-
ulations have also grown over time.* However, the rate at which
ACs are formed across different activity classes has essentially
remained constant. Only ~5% of pairs of structural analogues
sharing the same activity form ACs across different activity
classes.*” Thus, as expected for compounds representing the
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pinnacle of SAR discontinuity, structural analogues rarely form
ACs.

Systematic identification of ACs across activity classes has
also provided the basis for computational predictions of ACs.
For machine learning, AC predictions generally present a chal-
lenge, for three reasons. First, as discussed, the underlying SARs
that need to be accounted for are highly discontinuous; second,
data sets of ACs and non-ACs are unbalanced; third, predictions
need to be made at the level of compound pairs, rather than
individual compounds, which is usually the case in compound
classification or molecular property prediction. Initial attempts
to predict ACs were reported a decade ago.*® ACs were first
accurately predicted using support vector machine (SVM)
modeling on the basis of special kernel functions enabling
compound pair predictions.® These findings have also catalyzed
further AC predictions using SVR variants'®** and other
methods,"® as discussed below. Recently, various deep neural
network architectures have been used to predict ACs from
images™ and molecular graphs using representation
learning'® or derive regression models for potency prediction of
AC compounds.'”*®

In this work, we further extend this methodological spec-
trum by introducing chemical language models for combined
AC prediction and generative compound design. Compared to
earlier studies predicting ACs using classification models, the
approach presented herein was designed to extend AC predic-
tions with the capacity to produce new AC compounds, thus
integrating predictive and generative modeling in the context of
AC analysis and AC-based compound design.

2 Methods

2.1 Compounds and activity data

Bioactive compounds with high-confidence activity data were
assembled from ChEMBL (version 26).* The following selection
criteria were applied. Only compounds involved in direct
interactions with human targets at the highest assay confidence
level (assay confidence score 9) were selected and only numer-
ically specified equilibrium constants (K; values) were accepted
as potency measurements. Equilibrium constants were recor-
ded as (negative logarithmic) pkK; values. Multiple measure-
ments for the same compound were averaged, provided all
values fell within the same order of magnitude; if not, the
compound was disregarded. Hence, in a given class, all
compounds were active against a specific target. Compounds
were represented using molecular-input line-entry system
(SMILES) strings.>®

2.2 Matched molecular pairs

From activity classes, all possible MMPs were generated by
systematically fragmenting individual exocyclic single bonds in
compounds and sampling core structures and substituents in
index tables.® For substituents, size restrictions were applied to
limit MMP formation to structural analogues typical for
medicinal chemistry. Accordingly, a substituent was permitted
to contain at most 13 non-hydrogen atoms and the core

© 2022 The Author(s). Published by the Royal Society of Chemistry
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structure was required to be at least twice as large as a substit-
uent. In addition, for MMP compounds, the maximum differ-
ence in non-hydrogen atoms between the substituents was set
to eight, yielding transformation size-restricced MMPs.** The
systematic search identified 357343 transformation size-
restricted MMPs originating from a total of 600 activity classes.

2.3 Data set for model derivation

From the MMPs, a large general data set for model training was
assembled by combining 338748 MMPs from 596 activity
classes. The majority of MMPs captured only minor differences
in potency. Importantly, model pre-training, as specified below,
did not require the inclusion of explicit target information
because during this phase, the model must learn MMP-
associated potency differences caused by given chemical
transformations. Each MMP represented a true SAR, which was
of critical relevance in this context, while target information was
not required for pre-training. By contrast, subsequent fine-
tuning then focused the model on target-specific activity
classes for AC prediction and compound design.

MMPs comprising the general data set were represented as
triples:

(Compound,, Compoundg, Potencyg — Potencyap).

Compound, represented the source compound that was
concatenated with the potency difference (Potencyy — Potency,)
while Compoundy represented the target compound. Each
MMP yielded two triples, in which each MMP compound was
used once as the source and target compound, respectively. The
source and target compounds were then used as the input and
associated output for model training, respectively. Further-
more, for MMP-triples, data ambiguities could arise if an MMP
was associated with multiple potency values for different targets
or if a given source compound and potency difference was
associated with multiple target compounds from different
activity classes. Such MMPs were eliminated. Finally, for the
general data set, a total of 338 748 qualifying MMP-triples were
obtained.

For modeling, MMP-triples were randomly divided into
training (80%), validation (10%), and test (10%) sets. Source
and target compounds from MMP-triples displayed nearly
indistinguishable potency value distributions.

For the initial evaluation of chemical language models, three
different test (sub)set versions were designed:

(i) Test-general: complete test set of 33 875 MMP-triples
excluded from model training.

(ii) Test-core: subset of 2576 test set MMP-triples with core
structures not present in training compounds.

(iii) Test-sub: subset of 14 193 MMP-triples with substituents
(R-groups) not contained in training compounds.

For the generation of the training subsets, compounds were
decomposed into core structures and substituents via MMP
fragmentation.®

Digital Discovery, 2022, 1, 898-909 | 899
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2.4 Activity cliffs

For ACs, the MMP-CIiff definition was applied.** Accordingly,
a transformation size-restricted MMP from a given activity class
represented an AC if the two MMP-forming compounds had
a potency difference of at least two orders of magnitude (100-
fold; ie., ApK; = 2.0). MMP-Cliffs were distinguished from
“MMP-nonCliffs”, that is, pairs of structural analogues not
representing an AC. To avoid potency boundary effects in AC
prediction, compounds forming an MMP-nonCliff were
restricted to a maximal potency difference of one order of
magnitude (10-fold; ApK; = 1). Hence, MMPs capturing potency
differences between 10- and 100-fold were not considered for AC
prediction.

MMP-Cliffs and MMP-nonCliffs were extracted from four
large activity classes including inhibitors of thrombin (ChEMBL
ID 204) and tyrosine kinase Abl (1862) as well as antagonists of
the Mu opioid receptor (233) and corticotropin releasing factor
receptor 1 (1800). For MMP-Cliffs and MMP-nonCliffs, triples
were ordered such that Compound, had lower potency than (or
equal potency to) Compoundg. These activity classes were
excluded from the general data set and their MMP-Cliffs and
MMP-nonCliffs thus formed an external/independent test set
for AC prediction (Table 1).

2.5 Deep chemical language models

Chemical language models for AC prediction were designed to
learn the following mapping from MMP-triples:

(Source compound, Potency difference) — (Target compound).

Then, given a new (Source compound, Potency difference)
test instance, trained models were supposed to generate a set of
target candidate compounds meeting the potency difference
condition.

Sequence-to-sequence (Seq2Seq) models represent an
encoder-decoder architecture to convert an input sequence
(such as a character string) into an output sequence.?* These
models can be adapted for a variety of applications, especially
for neural machine translation.”” The encoder reads an input
sequence and compresses it into a context vector as its last
hidden state. The context vector serves as the input for the
decoder network component that interprets the vector to
predict an output sequence. Because long input sequences
often present challenges for generating context vectors,” an
attention mechanism* was introduced that utilizes hidden

Table 1 Compound activity classes for activity cliff prediction
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states from each time step of the encoder. As a further advance,
a transformer neural network architecture was introduced that
only relies on the attention mechanism.”® The transformer
architecture comprises multiple encoder-decoder modules
(Fig. 1). An encoder module consists of a stack of encoding
layers composed of two sub-layers including a multi-head self-
attention sub-layer and a fully connected feed-forward
network (FFN) sub-layer. Multi-head attention has multiple,
single attention functions acting in parallel such that different
positions in the input sequence can be processed simulta-
neously. The attention mechanism is based upon the following

function:
. QKT)
Attention(Q, K, V) = softmax( vV (1)
( ) Ve

The input for the attention layer is received in the form of
three parameters including query (Q), keys (K), and values (V). In
addition, a scaling factor di (equal to the size of weight
matrices) prevents calculations of excessive dot products.*
More details concerning the attention function are provided in
the original literature of the transformer model.”® The FFN sub-
layer employs rectified linear unit (ReLU) activation.*® The
multi-head self-attention and FFN sub-layers are then linked via
layer normalization®” and a residual skip-connection.?® Each
decoder layer contains three sub-layers including an FFN sub-
layer and two multi-head attention sub-layers. The first atten-
tion sub-layer was controlled by a mask function.

In this work, all source and target molecules were repre-
sented as canonical SMILES strings generated using RDKit*
and further tokenized to construct a chemical vocabulary con-
taining all the possible chemical tokens. The start and end of
a sequence were represented by two special “start” and “end”
tokens, respectively. For AC prediction, models must be guided
towards the generation of compounds meeting potency differ-
ence constraints. Therefore, potency differences captured by
MMPs were tokenized by binning.*® The potency difference,
ranging from —8.02 to 9.53, was partitioned into 1755 bins of
width 0.01 that were also added to the chemical vocabulary.
Each bin was encoded by a single token and each potency
difference was assigned to the token of the corresponding bin
(Fig. 1), e.g., a potency difference of 2.134 was encoded as
‘pKi_change (2.13, 2.14). Accordingly, the tokenization
preserved the quantitative relationship between bins. The
SMILES representation of a source compound combined with
its potency difference token then represented the input
sequence for the transformer encoder and was converted into

Target name ChEMBL ID Total MMPs MMP- Cliffs MMP-nonCliffs
Thrombin 204 4249 438 2976
Mu opioid receptor 233 5875 329 4319
Tyrosine kinase Abl 1862 5403 564 3093
Corticotropin releasing factor receptor 1 1800 3068 317 1889
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Fig. 1 Architecture of a transformer encoder—decoder with attention mechanism.

a latent representation. Based on this representation, the
transformer decoder iteratively generated output SMILES
sequences until the end token was obtained. During training,
the transformer model minimized the cross-entropy loss
between the ground-truth target and output sequence.

2.6 Model derivation and selection

Seq2Seq and transformer models were implemented using
Pytorch.?® The Adam optimizer with learning rate 0.0001 and
a batch size of 64 was applied. For transformer models, default
hyperparameter settings were used,” except for the input and
output encoding dimension, which was reduced from 512 to
256, and label smoothing, which was set to 0. On the basis of the

Table 2 Hyperparameter settings for optimization of different models

general training set, models were derived over 200 epochs. A
checkpoint was saved at each epoch and for the validation set,
minimal loss was determined for selecting the final model. For
the test set, generated candidate compounds were canon-
icalized using RDkit and compared to the target compounds.

2.7 Reference methods for activity prediction

For AC prediction, the chemical language models were
compared to models of different machine learning methods
including support vector machine (SVM),* random forest
(RF),*> and extreme gradient boosting (XGboost)** that were
generated using scikit-learn.** As a molecular representation,
the extended connectivity fingerprint with bond diameter of 4

Model Hyperparameters Value space for optimization
SVM Kernel function ‘Linear’, ‘sigmoid’, ‘poly’, ‘rbf’, ‘tanimoto’
c 1, 10, 100, 1000, 10 000
Gamma 107%,107°,10 7%, 1073, 1072, 10"
RF Max_depth 3,4,5,6,7,8,9, 10
Max_features 32, 64, 128, 256, 512, 1024
n_estimators 1, 2, 4, 8, 16, 32, 64, 100, 200
XGboost Max_depth 3,4,5,6,7,8,9,10

n_estimators
Learning_rate
Subsample
Min_child_weight

© 2022 The Author(s). Published by the Royal Society of Chemistry

1,2, 4, 8, 16, 32, 64, 100, 200
0.0001, 0.001, 0.01, 0.1, 0.2, 0.3
0.5, 0.6, 0.7, 0.8, 0.9, 1
0,1,2,3,4,5
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(ECFP4) was used.* For the common core of an MMP and the
two substituents defining the chemical transformation, finger-
print vectors were generated. For use of the MMP kernel,’ these
vectors were concatenated to yield a single vector® as input for
deriving SVM, RF, and XGboost models. Hyperparameters of all
models were optimized using the Hyperopt®® package with five-
fold cross-validation, as reported in Table 2.

2.8 Evaluation metrics

A reproducibility criterion was introduced to measure the ability
of a chemical language model to reproduce a target compound
for a given source compound and potency difference. An MMP-
triple met this criterion if it was reproduced when generating
a pre-defined number of target candidate compounds. In our
calculations, up to 50 distinct molecules were generated for
each source compound to determine the reproducibility of
a target compound, defined as:

MMP:epro

Reproducibility = MMP
test

(2)

MMPycs and MMP,.,, denote the number of MMP-triples
that were tested and reproduced by a model, respectively.
Notably, this definition of reproducibility directly corresponds
to the recall of labeled instances for classification models.

AC predictions were also evaluated by determining the true
positive rate (TPR), true negative rate (TNR), and balanced
accuracy (BA),*” defined as:

TP

- 3

TPR TP + FN )
TN

- 4

TNR TP +FN )

BA — TPRZTNR 5)

TP, TN, FP, and FN denote true positives, true negatives, false
positives, and false negatives respectively.

3 Results and discussion
3.1 Study concept

The basic idea underlying the use of chemical language models
for AC prediction was learning the following mapping based on
textual/string representations:

(Source compound, Potency difference) — (Target compound).

Then, given a new (Source compound, Potency difference)
test instance, the pre-trained models should generate target
compounds with appropriate potency. For deriving pairs of
source and target compounds, the MMP formalism was applied.
For AC prediction, pre-trained models were subjected to fine-
tuning on MMP-Cliffs and MMP-nonCliffs from given activity

902 | Digital Discovery, 2022, 1, 898-909
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classes, corresponding to the derivation of other supervised
machine learning models.

3.2 Pre-trained chemical language models

Initially, the ability of Seq2Seq and transformer models to
reproduce target compounds for test (sub)sets was evaluated by
calculating the reproducibility measure. The results are
summarized in Table 3. Therefore, for each test set triple, the
source compound/potency difference concatenation was used
as input and 50 target candidate compounds were sampled.
Notably, the sampling procedure is an integral part of chemical
language models in order to generate new candidate
compounds, hence setting these models apart from standard
class label prediction/classification approaches.

For the entire test set, the Seq2Seq and transformer model
achieved reproducibility of 0.719 and 0.818, respectively. Hence,
the models were able to regenerate more than 70% and 80% of
the target compounds from MMP-triples not used for training,
respectively. However, reproducibility was consistently higher
for the transformer and all training set versions than for the
Seq2Seq model (Table 3). Hence, preference for AC prediction
was given to the transformer. The test-general reproducibility of
more than 80% was considered high. Attempting to further
increase this reproducibility might compromise the ability of
the model to generate novel compounds by strongly focusing on
chemical space encountered during training. As expected, the
test-core reproducibility was generally lowest because in this
case, the core structures of MMPs were not available during
training (limiting reproducibility much more than in the case of
test-sub, i.e., evaluating novel substituents).

3.3 Fine-tuning for activity cliff prediction

The transformer was first applied to reproduce MMP-Cliffs and
MMP-nonCliffs from the four activity classes excluded from pre-
training. Therefore, for each MMP-triple, the source compound/
potency difference concatenation was used as input for gener-
ating target compounds. As expected for activity classes not
encountered during model derivation, reproducibility of MMP-
Cliffs and MMP-nonCliffs was low, reaching maximally 5% for
MMP-Cliffs and ~19% for MMP-nonCliffs (Table 4).

Therefore, a transfer learning approach was applied by fine-
tuning the pre-trained transformer on these activity classes. For
fine-tuning, 5%, 25%, and 50% of MMP-Cliffs and MMP-
nonCliffs of each class were randomly selected. The resulting
models were then tested on the remaining 50% of the MMP-
Cliffs and MMP-noncliffs.

Only 5% of the training data were required for fine-tuning to
achieve reproducibility rates of 70% to greater than 80% for

Table 3 Reproducibility of target compounds by chemical language
models

Test-general Test-core Test-sub
Seq2Seq 0.719 0.370 0.759
Transformer 0.818 0.528 0.850

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Table 4 Reproducibility of MMP-Cliffs and MMP-nonCliffs by pre-
trained DeepAC

Activity classes

Reproducibility ChEMBL204 1862 233 1800
MMP-Cliffs 0.050 0.007 0.049 0.006
MMP-nonCliffs 0.185 0.081 0.188 0.035

MMP-Cliffs from the different activity classes (Fig. 24, solid
lines). For MMP-nonCliffs, 25% of the training data were
required to achieve reproducibility between 60% and 80% for
the different classes (Fig. 2B, solid lines). For practical appli-
cations, these findings were encouraging because for any given
target, there were many more MMP-nonCliffs available than
MMP-Cliffs.

Furthermore, to directly test whether high reproducibility
achieved through fine-tuning only depended on learning
structural relationships encoded by MMPs or if potency differ-
ences were also learned, a prerequisite for meaningful AC
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Fig. 2 Reproducibility of MMP-Cliffs and MMP-nonCliffs after fine-
tuning. For (A) MMP-Cliffs and (B) MMP-nonCliffs from different
activity classes (identified by ChEMBL target IDs according to Table 1),
reproducibility is reported as a function of transfer ratio accounting for
the percentage of training data used for fine tuning. Solid lines
represent results for true MMP-Cliffs and MMP-nonCliffs and dashed
lines for control data obtained by inverting potency differences for
MMP-Cliffs and MMP-nonCliffs.
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prediction, control calculations with inverted potency differ-
ences were carried out. Therefore, for all MMP-Cliffs, potency
differences were set to ApK; = 0.1 and for all MMP-nonCliffs,
potency differences were set to ApK; = 2.0. Using these hypo-
thetical (SAR-nonsensical) data as test instances, reproducibility
rates were determined again. In this case, reproducibility rates
remained well below 50% for both MMP-Cliffs (Fig. 2A, dashed
lines) and MMP-nonCliffs (Fig. 2B, dashes lines) and further
decreased with increasing amounts of training data used for
fine-tuning. These findings conclusively showed that the
conditional transformer associated structural relationships
with corresponding potency differences, thereby learning to
reproduce and differentiate between MMP-Cliffs and MMP-
nonCliffs.

In the following, the conditional transformer for AC predic-
tion is referred to as DeepAC.

We also evaluated the capability of the model to reconstruct
both MMP-Cliffs and MMP-noncCliffs originating from the same
source compound. For each activity class, we compiled a set of
source compounds from the original test data. Then, models
were fine-tuned with varying amounts of data and applied to
reproduce MMP-Cliff and MMP-nonCliff target compounds
from the same source compound. As shown in Fig. 3, DeepAC
reproduced more than 80% of the target compounds using 5%,
25%, or 50% of fine-tuning data, depending on the activity
class.

3.4 Performance comparison of unconditional and
conditional DeepAC

We also compared model performance of conditional DeepAC
and unconditional DeepAC generated by randomly shuffling
potency differences of MMPs during fine-tuning. Accordingly,
for each activity class, potency differences were randomly
shuffled for the three training set sizes (5, 25, and 50%) for the
fine-tuning MMPs; then the pre-trained transformer was fine-
tuned using these artificial MMPs. As shown in Fig. 4A, for
MMP-Cliffs, the reproducibility of conditional DeepAC was
significantly higher than of unconditional DeepAC. However,
for the reproducibility of MMP-nonCliffs, conditional DeepAC
only yielded slight improvement than unconditional DeepAC

10 3 5%
1 25%
08 | B 50%
——
>
3506
5
3
=
o
504
[0}
4
0.2
0.0

204 233 1800
Activity Classes

1862

Fig. 3 Reproducibility of MMP-Cliffs and MMP-nonCliffs originating
from the same source compound.
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0.05 (*), 0.001 < p = 0.01 (**), 0.0001 < p = 0.001 (***), p = 0.0001 (****).

(Fig. 4B). This was principally expected because potency differ-
ences of most MMP-nonCliffs remained similar (less than one
order of magnitude). These findings further demonstrated that
potency difference of ACs played a critical role for model
derivation.

3.5 Alternative fine-tuning

As an additional control, fine-tuning was carried out using
MMP-nonCliffs (ApkK; < 1.0) and MMPs with 1.0 =< ApK; < 2.0
that were initially excluded from the analysis to prevent
potential bias due to boundary effects. Then, the reproducibility
of MMP-Cliffs of the fine-tuned models was determined and
compared to regular fine-tuning. Fig. 5A shows that fine-tuning
only with MMP-noncCliffs yielded reproducibility of 0.306-0.576
for the activity classes, reflecting a baseline learning effect of
MMPs and associated potency differences, even if these were
only small. However, fine-tuning with MMPs (1.0 < ApK; < 2.0),
significantly increased the reproducibility of MMP-Cliffs to

904 | Digital Discovery, 2022, 1, 898-909

0.620 for thrombin inhibitors, 0.607 for Mu opioid receptor
ligands, 0.726 for corticotropin releasing factor receptor 1
ligands and 0.716 for tyrosine kinase Abl inhibitors. Fine-tuning
using increasing proportions of MMP-Cliffs further increased
reproducibility. Taken together, these findings clearly demon-
strated the influence of MMP-associated potency differences for
AC predictions. Furthermore, consistent with these observa-
tions, Fig. 5B shows that fine-tuning with MMP-noncCliffs, led to
very high reproducibility of MMP-nonCliffs, which was
substantially reduced when fine-tuning was carried out with
MMPs capturing larger potency differences.

3.6 Global performance comparison

The performance of DeepAC in activity prediction was
compared to other machine learning methods including SVM,
RF, and XGboost. First, the reproducibility/recall of MMP-Cliffs
and MMP-nonCliffs from the four activity classes was compared
for unbalanced training and test sets according to Table 1. For

© 2022 The Author(s). Published by the Royal Society of Chemistry
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AC prediction, unbalanced sets were deliberately used to
account for the fact that ACs are rare compared to other pairs of
structural analogues with minor potency differences, thus
providing a realistic prediction scenario.

The predictions using different methods were generally
stable, yielding only low standard deviations over independent
trials (Fig. 6). Using 5% of training data for fine-tuning or model
derivation, the recall (TPR) of MMP-Cliffs was consistently
higher for DeepAC than the reference methods, which failed on
two activity classes (Fig. 6). For increasing amounts of training
data, recall performance of the reference methods further
increased and SVM reached the 80% or 90% recall level of
DeepAC in two cases when 50% of available data were used for
training (Fig. 6).

© 2022 The Author(s). Published by the Royal Society of Chemistry

For MMP-nonCliffs, representing the majority class for the
predictions, a different picture was obtained. Here, the recall of
reference methods for increasing amounts of training data was
mostly greater than 90% and significantly higher than of
DeepAC (Fig. 7). For DeepAC, recall/reproducibility increased
with increasing amounts of training data and reached highest
performance very similar to the reference methods for two
activity classes when 50% training data were used.

Calculation of BA for the prediction of MMP-Cliffs and MMP-
nonCliffs gave similar results for all methods (Fig. 8). The level
of 80% BA was generally reached for 25% or 50% training data.
For largest training sets, all methods were comparably accurate
for two activity classes, SVM reached highest accuracy for one
class, and DeepAC for another (Fig. 8). Compared to the other
methods, DeepAC produced higher TPR and lower TNR values,
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resulting in overall comparable BA. Clearly, a major strength of
DeepAC was the ability to accurately predict MMP-Cliffs on the
basis of small training data sets.

3.7 Activity cliff predictions in context

As discussed above, AC predictions have been reported previ-
ously in independent studies, which are summarized (and
ordered chronologically) in Table 5. In 2012, AC predictions
with SVM and newly designed MMP kernels yielded high
accuracy,” which was also achieved in several subsequent
studies using modified SVM approaches (Table 5). In addition,
in our current study, we have investigated decision tree
methods for AC predictions using molecular representations
adapted from SVM, which yielded comparably high accuracy.
Hence, although AC predictions are principally challenging, for
reasons discussed above, different machine learning methods
have produced high-quality models for different compound
data sets. Accordingly, there would be little incentive to inves-
tigate increasingly complex models for AC predictions. None-
theless, recent studies have investigated deep learning
approaches for AC predictions, with different specific aims.
These investigations included the use of convolutional neural
networks for predicting ACs from image data'*"* and the use of

© 2022 The Author(s). Published by the Royal Society of Chemistry

graph neural networks for AC representation learning.'®* While
these studies provided proof-of-concept for the utility of novel
methodologies for AC predictions, improvements in prediction
accuracy compared to SVM in earlier studies have been
marginal at best. The first eight studies in Table 5 report clas-
sification models of varying complexity for AC prediction. While
most of these studies applied the MMP-CIliff formalism, their
system set-ups, calculation conditions, and test cases differed
such that prediction accuracies can only be globally compared
and put into perspective including our current study. Further-
more, the last two studies'”*® in Table 5 report regression
models for potency prediction of individual AC compounds that
are distinct from the others, precluding comparison of the
results (these studies also used different AC definitions).
However, they are included for completeness.

With DeepAC, we have introduced the use of conditional
chemical language models for AC prediction. Given that most
studies in Table 5 reported F1 (ref. 38) and Matthews' correla-
tion coefficient (MCC)* scores for evaluating prediction accu-
racies, we also calculated these scores for the DeepAC
predictions reported herein. With F1 of 0.50-0.78 and MCC of
0.43-0.75, DeepAC also yielded state-of-the-art prediction
accuracy (and higher accuracy than recent AC predictions using

Digital Discovery, 2022, 1, 898-909 | 907


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2dd00077f

Open Access Article. Published on 28 October 2022. Downloaded on 2/7/2026 10:22:11 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Digital Discovery

Table 5 Activity cliff predictions®

View Article Online

Paper

AC criteria, similarity/

Study potency difference Prediction task

Methods Prediction accuracy

Heikamp et al.®
Husby et al.’®

Horvath et al.*°

Tamura et al.*>

Igbal et al.**

Igbal et al.®

Tamura et al.**

MMP/100-fold

Binding mode

similarity (80%)/100-

fold
MMP/100-fold

MMP/100-fold

MMP/100-fold

MMP/100-fold

MMP/100-fold

ACs for 9 activity classes

3D-ACs for 9 activity classes

ACs for 7 activity classes

ACs for 9 activity classes

ACs from MMP images and
R-groups (5 activity classes)
ACs from MMP images (3
activity classes)

ACs for 2 activity classes

Fingerprint-based SVM with
MMP kernels
Docking/VLS

CGR and descriptor
recombination-based SVM/
SVR

Fingerprint-based SVM with
Tanimoto kernel
Image-based CNN with
transfer learning
Image-based CNN

Fingerprint-based SVM with
MMP kernel

F1: 0.70-0.99

AUC: 0.75-0.97

F1: 0.61-0.92

MCC: ~0.20-0.80

F1: 0.28-0.76

MCC: 0.24-0.73
F1: 0.36-0.85

AUC: 0.92-0.97
MCC: 0.39-0.83
AUC: 0.46-0.69
MCC: 0.69-0.89

Park et al.*® MMP/100-fold ACs for 3 activity classes GCN F1: 0.34-0.49

AUC: 0.91-0.94

MCC: 0.40-0.49
Jiménez-Luna MCS/10-fold — RF/DNN/GRAPHNET/GCN/ RMSE: 0.698-1.029
etal’ MPNN/GAT
Tilborg et al.'® Scaffold SMILES ACs for 30 activity classes KNN/RF/GBM/SVM/MPNN/ RMSE: 0.62-1.60

similarity (90%)/10-fold GAT/GCN/AFP/LSTM/CNN/
Transformer

“ Abbreviations: SVM/R (support vector machine/regression); F1 (mean F1 score); AUC (area under the ROC curve); MCC (Matthews' correlation
coefficient); 3D-ACs (three-dimensional activity cliffs); VLS (virtual ligand screening); CGR (condensed graphs of reaction); CNN (convolutional
neural network); MCS (maximum common substructure); RF (random forest); DNN (deep neural network); GCN (graph convolutional network);
MPNN (message passing neural network); GAT (graph attention network); RMSE (root mean square error); KNN (K-nearest neighbor); GBM
(gradient boosting machine); AFP (attentive fingerprint); LSTM (long short-term memory network).

graph neural networks'®). However, DeepAC is principally
distinguished from other AC predictions approaches by its
ability to generate new compounds meeting AC criteria, which
partly motivated its development.

4 Conclusion

In this work, we have investigated chemical language models
for predictive modeling of ACs, a topical issue in both chemical
informatics and medicinal chemistry, with high potential for
practical applications. ACs are rich in SAR information and
represent focal points of compound optimization efforts. For
chemical language models, an encoding strategy was devised to
predict target compounds from source compounds and asso-
ciated potency differences. Seq2Seq and transformer models
were pre-trained on pairs of structural analogues with varying
potency differences representing true SARs and compared,
revealing superior performance of the transformer architecture
in reproducing test compound pairs. The pre-trained trans-
former was then fine-tuned on ACs and non-ACs from different
activity classes. It was conclusively shown that the transformer
learned structural relationships in combination with associated
potency differences and thus accounted for SARs. Compared to
reference methods, the conditional transformer (DeepAC)

908 | Digital Discovery, 2022, 1, 898-909

reached state-of-the-art prediction accuracy but displayed
different prediction characteristics. DeepAC was less effective in
predicting non-ACs, but predicted ACs with higher accuracy
than reference methods, especially on the basis of small
training data sets. A unique feature of DeepAC is its ability to
generate novel candidate compounds. This ability and the
observed prediction characteristics render DeepAC attractive for
practical applications aiming to generate new highly-potent AC
compounds, which will be investigated in future studies.
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