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backed evolutionary search for
SrTiO3(110) surface reconstructions†
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Jesús Carrete and Georg K. H. Madsen *

The determination of atomic structures in surface reconstructions has typically relied on structural models

derived from intuition and domain knowledge. Evolutionary algorithms have emerged as powerful tools for

such structure searches. However, when density functional theory is used to evaluate the energy the

computational cost of a thorough exploration of the potential energy landscape is prohibitive. Here, we

drive the exploration of the rich phase diagram of TiOx overlayer structures on SrTiO3(110) by combining

the covariance matrix adaptation evolution strategy (CMA-ES) and a neural-network force field (NNFF) as

a surrogate energy model. By training solely on SrTiO3(110) 4�1 overlayer structures and performing

CMA-ES runs on 3�1, 4�1 and 5�1 overlayers, we verify the transferability of the NNFF. The speedup

due to the surrogate model allows taking advantage of the stochastic nature of the CMA-ES to perform

exhaustive sets of explorations and identify both known and new low-energy reconstructions.
1 Introduction

The determination of surface structure is vital in gaining
a better understanding of the properties and possible applica-
tions of materials. Traditionally, being able to identify the true
atomic structure of materials from experimental ndings is an
acquired skill, based on experience and domain knowledge.1–4

Due to its semiconducting nature and possible applications in
electronic devices, strontium titanate (SrTiO3) has increasingly
been the focus of experimental and theoretical studies.5–10 Since
many possible applications of SrTiO3 are realized in the form of
nanoscale thin lms, its surfaces are of particular interest.

Here, we are interested in exploring the phase diagram of
TiOx overlayer structures on SrTiO3(110) under Ti-poor condi-
tions.11 The polar nature of the bulk terminated SrTiO3(110)
surfaces is balanced by a Tin+2O3n+4 overlayer with a n�1 unit
cell.2 The n increases systematically with Sr chemical potential11

and an early model, based on simple geometric considerations
and DFT calculations, proposed a systematic set of overlayer
structures consisting of a ring of six Ti–O tetrahedra and an
additional ring of increasing length so that a n ¼ 2 unit cell
would exhibit a 6–6 overlayer, a n ¼ 3 unit cell a 6–8 overlayer
and so on and so forth.2 Subsequently, DFT investigations
rened the picture3,12–14 and showed, e.g., how an 8–10 overlayer
structure is stable in the 5�1 cell.12 However, despite the
decade-long interest, the understanding of the phase diagram is
, 1060 Vienna, Austria. E-mail: georg.

mation (ESI) available. See

the Royal Society of Chemistry
still based on the investigation of specic structures derived
from experience and geometric considerations.

The wide availability of rst-principles computations based
on density functional theory (DFT), combined with the steadily
increasing computational power, have greatly improved the
feasibility of global geometry optimization. Evolutionary algo-
rithms15,16 combined with these rst-principles calculations
have proven to be powerful tools for structure searches,17–22

including the investigation of surface reconstructions.23

However, the stochastic nature of the corresponding algorithms
means that the computational cost and run-time associated
with a thorough exploration of the potential energy surface
(PES) quickly strain available computational resources. With
the growing availability of machine-learned (ML) approxima-
tions of the PES24 various incarnations have been successfully
adapted for use with evolutionary algorithms in structure
prediction25,26 and surface reconstructions.27,28 Due to the large
variety of structures that can potentially be visited during an
evolutionary search, the construction of a suitable ML PES
approximation is very challenging. Adaptive approaches have
been used where the ML approximation is updated every time
a point of high uncertainty is visited.28 However, the estimation
of uncertainty is still a relatively open question in ML.29 Alter-
natively, the ML PES should be trained on a highly diverse set of
structures.27 In most cases though, this is not practically
feasible and gathering training data from the entire PES a priori
would also somewhat defy the objective of making an ML PES
approximation.

In the present work we perform an exploration of the TiOx

overlayer structures by combining the covariance matrix adap-
tation evolution strategy (CMA-ES)30 and a fully automatically
Digital Discovery, 2022, 1, 703–710 | 703
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Fig. 1 Side view of an SrTiO3(110) 4�1 founder slab. The schematic
diagram includes the surface normal n, defect focus f, depth d and the
surface atoms ri with their mirrors images rmi . The white circle and
radius rcut represent a 2D slice of the local environment of the atom
highlighted in purple. The fixed bulk-like anchor (red), the surface
layers that can be accessed by the CMA-ES algorithm (blue) and their
mirror layers (green) highlighted. The highlighting corresponds to
a choice of d ¼ 6 Å.
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differentiable neural-network force eld (NNFF).31 First, we
discuss how an implementation of the CMA-ES is adapted to
deal with surface structures. We use the initial DFT based CMA-
ES run to set up a diverse set of training data and construct an
NNFF. We train the initial NNFF solely on SrTiO3(110) 4�1
overlayer structures and perform CMA-ES runs on 3�1, 4�1 and
5�1 overlayers. We verify the transferability of the NNFF in
a diagnostic approach by constructing NNFFs including data
from the overlayers not part of the original training dataset and
utilizing similarity in the local environments. With this we are
able to investigate larger systems, while performing themajority
of expensive DFT calculations on more accessible structures.
Furthermore, the NNFFs make it possible to perform sets of
CMA-ES runs, taking advantage of the stochastic nature of the
algorithm to more fully explore the PES. We show how the
procedure reproduces known structures and also nds new
stable structures for all three overlayers considered.

2 Methods
2.1 Slab setup

We use a slab setup starting from a bulk-terminated structure
composed of ve SrTiO and six O2 alternating layers with vacuum
separating the surface atoms from the periodic recurrence of the
slab along the surface normal. To both sides of the slab roughly
evenly spaced Ti2O5 and TiO2 units were added according to the
stoichiometry Tin+2On+4 for unit cells with n�1 periodicity. With
this the SrTiO3(110) 3�1, 4�1 and 5�1 unit cells contain 105,
136 and 167 atoms each in total. For the subsequent CMA-ES
runs we refer to these structures as the founder structures,
Fig. 1 (see also deposited data32). The outermost O2 layer and
added Ti–O units comply with the target composition Tin+2O3n+4

2

and are referred to as the TiOx overlayers. The atoms in the
innermost region (red background in Fig. 1) are xed to act as an
anchor and the opposite sides of the slab are symmetrical. The
mirror atoms' positions rmi are obtained from the original posi-
tions rmi by a point inversion about the center of the slab. The
width of the xed bulk layer (three SrTiO and two O2 layers in
Fig. 1) is controlled by a computational parameter (the depth d)
discussed below.

2.2 CMA-ES

The CMA-ES30,33 draws a sample of l individuals x(g)k , k ¼ 1, ..., l
at each generation g from a multivariate normal distribution:

x
ðgÞ
k � N

�
mðg�1Þ;

�
sðg�1Þ�2C ðg�1Þ

�
; (1)

wherem represents the distribution mean, s the step size and C
the covariance matrix. The distribution is iteratively adapted by
the algorithm aer each generation through the use of so-called
evolution paths,33 which are able to take into account the
evolutionary history in the parameters update.

We employ the standard hyperparameter settings,33

including the initialization of the covariance matrix to identity
and choosing the population size via l ¼ 4 + P3 log DR, where D
are the degrees of freedom. The initial step size, which controls
the width of the initial distribution, is set to s(0) ¼ 0.12 �A.
704 | Digital Discovery, 2022, 1, 703–710
We recently implemented the CMA-ES for point defect
structural exploration.26 Here, we extend the implementation to
efficiently work on surface structures. The CMA-ES directly
determines the positions of only the surface atoms (overlayer
and outermost bulk, highlighted in blue in Fig. 1) ri; the mirror
atoms rmi on the opposite side (highlighted in green) are
adjusted accordingly. To specify which atoms the algorithm has
access to, the surface normal n, a defect focus f (on a plane
perpendicular to n) and a depth d[Å] need to be dened. In this
work we set the defect focus such that it marks the lower edge of
the surface slab along the c-axis and the surface normal as n ¼
(0, 0, 1). With these settings constant, solely the depth
d controls which atoms the algorithm has access to.

2.3 DFT

We utilize GPAW34 in linear-combination-of-atomic-orbitals
(LCAO)35 mode as the energy backend for the rst CMA-ES
runs and for the local gradient based optimizations and,
furthermore, for the generation of training data and evaluation
of structures gathered from NNFF-backed CMA-ES runs. All
GPAW calculations are performed employing the Perdew–
Burke–Ernzerhof (PBE)36 functional. Simulation boxes with
periodic boundary conditions perpendicular to the surface
normal are used for the GPAW calculations and the k-point grid
is set to (2, 2, 1). For reference some structures were also
© 2022 The Author(s). Published by the Royal Society of Chemistry
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optimized locally using VASP37 with periodic boundary condi-
tions applied along all axes. Several individuals are optimized
locally via the FIRE38 algorithm, built into the atomic simulation
environment (ASE).39

To investigate the diversity of the training data, we calculated
the net atomic charges (NAC) using the Chargemol40 program,
which implements the DDEC6 approach.41,42
Fig. 2 Trajectory (black solid line) of the average energy of the pop-
ulation over 500 generations of a GPAW-backed CMA-ES run on
a SrTiO3(110) 4�1 structure with d ¼ 6�A. The three times the standard
deviation of energies within each generation is highlighted in orange.
The area highlighted in orange has a height equal to three times the
standard deviation of the energies within each generation. The dotted
blue line shows the CMA-ES parameter step-size s. In the inset, the
local optimization of the resulting overlayer consisting of rings of
corner-sharing TiO4 tetrahedra is shown; the unit cell is indicated by
a white rectangle.
2.4 NNFF

We train NNFFs following the NeuralIL methodology.31 The
implementation is based on JAX,43 which offers just-in-time
compilation and end-to-end automatic differentiation allow-
ing us to train on all 3 natoms forces within each structure. The
Cartesian coordinates are encoded using the power spectrum of
element-specic atom-centered spherical Bessel descrip-
tors31,44,45 and atom types are factored in via an embedding
layer.31,46 The importance of encoding element specic envi-
ronments for multicomponent systems was previously pointed
out.31 In the present work, these were encoded with a resolution
set by nmax ¼ 5 within a cutoff radius of rcut ¼ 5.5 Å, resulting in
126 descriptors per atom. For all models we use a fully con-
nected pyramidal architecture with hidden layers consisting of
256:128:64:32:16:16:16 nodes.

The training is performed over 350 epochs with a one-cycle
learning rate schedule47 varying the learning rate linearly from
3�10�4 to 3�10�3 and back, and switching to 3�10�5 for the last
10% of each epoch, with the data being split into minibatches of
eight structures each. To reduce the inuence of outliers, the log-
cosh loss function48 is employed, with a characteristic scale
parameter of 0.1 eV Å�1, effectively clipping very large forces.
Fig. 3 Predicted vs. true forces for the NeuralIL model NNFF1 on
training (blue dots) and validation data (red squares). MAEs are given for
forces and energies.
3 Results and discussion

We rst performed three CMA-ES runs with GPAW as the tness
backend. All runs started from the same founder structure with
the depth d being switched from 3 to 6 and to 9 Å, see Fig. 1.
This allowed the CMA-ES to manipulate the positions of atoms
in only the TiOx overlayer for d ¼ 3 Å, additionally one SrTiO
layer and one O2 layer for d ¼ 6 Å (as depicted in Fig. 1) and all
but the central SrTiO layer for d ¼ 9 Å. This corresponded to
totals of 22, 42 and 62 atoms, respectively. Each run produced
500 generations of 22 individuals, totaling 33 000 structures
among the three runs.

Fig. 2 shows the trajectory of the average energy of the pop-
ulations and the CMA-ES step size. The step size, s, was auto-
matically adjusted by the algorithm, narrowing or widening the
underlying distribution [eqn. (1)] as necessary. The inset in
Fig. 2 displays the overlayer reconstruction of a SrTiO3(110) 4�1
surface that was identied by local optimization of the lowest
energy structure generated by the CMA-ES for depth d¼ 6 Å. The
structure reproduces the expected overlayer with rings of
corner-sharing TiO4 consisting of six and ten members,
respectively.2,3 However, it does not represent the ground-state
overlayer structure, as will be discussed later.

To perform sets of multiple evolutionary runs within
reasonable time frames and, thereby, utilize the stochastic
© 2022 The Author(s). Published by the Royal Society of Chemistry
nature of the CMA-ES algorithm to explore more distinct local
minima of the PES, a NNFF model was trained on selected
SrTiO3(110) 4�1 structures. The training data was obtained
from the three DFT-based CMA-ES trajectories described above.
From these we used the individual structure with the lowest
energy and a randomly chosen structure of each generation of
each run. For the validation data, an individual from each
generation was chosen at random. With this we arrived at 3000
congurations in the training data and 500 in the validation
data. Finally, 5000 structures were chosen completely at
random from the available DFT calculations as test data, only
Digital Discovery, 2022, 1, 703–710 | 705
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Table 1 Performance of three trained NeuralIL models on distinct test
data sets (5000 4�1 structures, 1100 5�1 structures, 149 GPAW-
optimized 5�1 structures), comparing the MAEs of the force
components and of the energies per surface area

Test set MAE NNFF1 NNFF2 NNFF3

4�1 f/meV Å�1 77.19 84.22 79.76
E/meV Å�2 1.35 2.07 1.61

5�1 f/meV Å�1 278.55 123.46 126.37
E/meV Å�2 9.89 1.92 2.21

Opt f/meV Å�1 175.40 105.35 107.66
E/meV Å�2 8.95 7.72 6.59
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excluding previously selected data. The resulting model, labeled
NNFF1, achieved a mean absolute error (MAE) of 1.79 meV per
atom or in terms of surface energy 1.40 meV Å�2 for training
energies and 68.40 meV Å�1 for training forces. The NNFF
performance on training and validation data is shown in Fig. 3,
which does not show any indication of overtting. Similar MAEs
were also found for the test set, labeled 4�1 in Table 1.

By gathering the data from CMA-ES runs, a large variety of
structures were included in the data sets, with a standard
deviation of 201.11 meV per atom or 150.08 meV Å�2 in the
training energies and 2.35 eV Å�1 in the training force compo-
nents, with maximal training forces of up to 290.53 eV Å�1. The
diversity of the training data is illustrated with the net atomic
charges41,42 on titanium. Fig. 4 compares the resulting charges
to known titanium oxidation states. It is seen that the charges
within the surface slabs cover an even larger range than the
illustrated reference systems. The trained NNFF1 did not show
any issues handling the different oxidation states.

With the goal of a broader exploration of the respective PES,
a set of 50 CMA-ES evolution runs was performed on
SrTiO3(110) 3�1, 4�1 and 5�1 surfaces utilizing NNFF1. We
selected d ¼ 6 Å thus allowing the CMA-ES to manipulate two
Fig. 4 Net atomic charges of titanium atoms within the SrTiO3(110)
4�1 training structures gathered from all three DFT-backed searches.
The Ti charges are highlighted according to the depth parameter, with
results for d ¼ 3 Å in yellow, d ¼ 6 Å in green and d ¼ 9 Å in purple. z ¼
0 Å marks the SrTiO layer in the center of the surface slabs. The vertical
lines indicate charges calculated for bulk systems with titanium in
different oxidation states: TiO, Ti2O3, TiO2 (rutile) and SrTiO3.

706 | Digital Discovery, 2022, 1, 703–710
SrTiO3 layers. Within a set the same founder structure was used
for all runs, whereas the initial random seed of the CMA-ES was
varied. For all runs the maximum number of generations was
set to at least 500, with the additional stopping criterion of the
standard deviation of the individuals' energies within a gener-
ation going below 50 meV per unit cell. Every generation of 4�1
and 5�1 structures consisted of 22 individuals, while this
number was automatically set to 21 by the algorithm for 3�1
due to the lower number of atoms in the structure. Otherwise,
all CMA-ES parameters were identical for all investigated
systems. This led the algorithm to arrive at a diverse collection
of individuals belonging to a number of different local minima
on the PES for each system. The best individual of each CMA-ES
run within a set was optimized locally using rst NNFF1 and
subsequently GPAW as the backend.

For the SrTiO3(110) 3�1 surface slab, 49 of the 50 candidate
structures fell on three distinct energy levels corresponding to
the overlayer reconstructions shown in Fig. 5(a)–(c). The corre-
sponding CMA-ES energy trajectories are shown in Fig. 6, with
four runs arriving at structure (b) and the rest evenly distributed
between (a) and (c). All three 3�1 overlayers include six- and
eight-membered rings of corner-sharing TiO4 tetrahedra, with
the smaller ring taking triangular or rhombic shape. The TiOx

overlayers in (a) and (c) are related by a shi of half a lattice unit
along the [1�10] direction, which results in a different connec-
tivity to the substrate. As expected from the literature,2 recon-
struction (a) arrived at the lowest energy. Additionally, one
structure for each of the three reconstructions pictured in
Fig. 5(a)–(c) was further optimized using VASP. The overlayers
did not change through the VASP optimization and the relative
order of the energies was the same: with the minimum VASP
energy of (a) set to zero, (b) arrived at 4.8 meV Å�2 and (c) at 5.9
meV Å�2.

The same strategy was applied to SrTiO3(110) 4�1 surfaces.
Here, the GPAW-backed optimization of the 50 best individuals
identied two distinct low-energy overlayers presented in
Fig. 5(d) and (e), with the rest of the structures spanning an
energy range of 100 meV Å�2. The conguration with the third-
lowest energy, shown in Fig. 5(f) interestingly reproduces the
result of the DFT-backed CMA-ES, Fig. 2, which underlines the
need for running multiple sets of PES explorations. All three
overlayers, Fig. 5(d–f), showed corner-sharing TiO4 tetrahedra
arranged in rings of six and ten members, with the smaller ring
taking the shape of a rhombus (d) or a triangle (e) and (f),
respectively. Structure (e) is the expected stable structure.2,3

However, overlayer (d) represents the computational energy
minimum and suggests an alternative organization of the
overlayer, exhibiting a p2 symmetry in contrast to the mirror
symmetry in (e) and (f). The rhombohedral structural motif of
the six-membered ring is similar to that of the 3�1 candidate in
Fig. 5(b). Notably, regions exibiting p2 symmetry can be iden-
tied in STM images published byWang et al. as Fig. 1(a),14 near
Type-II vacancies. To illustrate this observation a simulated
STM image of the structure in Fig. 5(d) was generated utilizing
the Tersoff–Hamann approximation.49 The result can be seen in
Fig. 1 of the ESI together with the experimental STM image and
indeed a very good agreement is observed. Congurations
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 SrTiO3(110) 3�1, 4�1 and 5�1 reconstruction overlayers identified by performing sets of NNFF-backed CMA-ES runs and further refined
by two subsequent optimizations, driven by the NNFFs and GPAW. All structures show corner-sharing TiO4 tetrahedra in different arrangements
of six-, eight-, ten- or twelve-membered rings. For each of the system sizes the calculated energy minimum is set to zero. Structures (a), (e) and
(g) reproduce overlayers in agreement with literature.2 The energies shown were evaluated using GPAW and offset to the computational
minimum per reconstruction.

Fig. 6 The energy trajectories of the 50 CMA-ES runs on the
SrTiO3(110) 3�1 surface, with the calculated energy minimum set to
zero. The labels (a) to (c) correspond to the overlayers shown in
Fig. 5(a)–(c). Run number zero (white) is an outlier.
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representing each minimum were optimized with VASP. The
overlayer structures remained unchanged. The energy differ-
ences became smaller, with (d) and (e) differing by only 0.08
meV Å�2 and (f) lying 9.7 meV Å�2 higher, but the order
remained the same.

Finally, we performed a set of 50 CMA-ES runs for the
SrTiO3(110) 5�1 surfaces. The GPAW-optimized CMA-ES results
identied a number of overlayers consisting of corner-sharing
TiO4 tetrahedra arranged in rings with structures representing
© 2022 The Author(s). Published by the Royal Society of Chemistry
variations of six- and twelve-membered rings or eight- and ten-
membered rings. The lowest-energy structures are shown in
Fig. 5(g), a six-twelve structure proposed in literature,2 and in (i),
an eight–ten structure with p2 symmetry with a 4.8 meV Å�2

higher energy than (g). To the best of our knowledge the p2
structure in (i) has not been proposed before and we have
deposited the calculated STM image in Fig. 2 of the ESI†.

The predictions of ML models can be expected to have the
largest uncertainty for data with a low similarity to the training
data.29 Intuitively, the structures with the lowest similarity to the
4�1 training data would be found among the structures visited
in the 5�1 searches. To investigate the reliability of the NNFF
we trained a new NNFF by adding 5�1 structures to the training
data. To that end, 3500 out of the 550 000 available 5�1 struc-
tures generated by the 50 NNFF1 CMA-ES runs were selected
randomly for evaluation with GPAW. We then gathered 4000
structures as training data and 800 for validation, evenly
distributed in 4�1 and 5�1 data points. The remaining 1100
new 5�1 DFT data were collected in a second test set, labeled
5�1 in Table. 1. The resulting model was labeled “NNFF200 and
achieved an MAE on training forces of 83.53 meV Å�1 and 93.96
meV Å�1 for validation. The force and energy MAEs for NNFF1
and NNFF2 for the two test sets are given in Table. 1. As ex-
pected, the performance on a test set exclusively containing 5�1
structures improved signicantly, with NNFF2 achieving an
MAE of 123.5 meV Å�1 on the forces, in comparison to 278.6
meV Å�1 for NNFF1. The performance on the 4�1 test set
deteriorates somewhat, from 77.2 meV Å�1 to 84.2 meV Å�1.
Digital Discovery, 2022, 1, 703–710 | 707
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This, however, is expected because of the reduced number of
4�1 structures in the training data.

Utilizing NNFF2, we performed a second set of 50 CMA-ES
runs on the 5�1 surface slab, which again resulted in the low-
energy structures (g) and (i) in Fig. 5. This can be seen as
a conrmation of the transferability of the NNFF1 model.
However, it is also clear that the energy differences between the
structures (g) and (i) are on the same scale as the MAE of both
NNFF1 and NNFF2. When evaluating the energies of the two
structures we also see that NNFF1 swaps their order, while with
NNFF2 they become almost energetically degenerate, as seen in
Fig. 7. So while both NNFFs are able to distinguish the two
basins, it is an open question how much the energy uncertainty
inuences the CMA-ES exploration of the PES.

To investigate this question, a third data set was created by
pooling all previously used 4�1 and 5�1 training and validation
structures and augmenting the data with 350 5�1 structures
representing the minima found. These 350 additional struc-
tures were randomly selected from the GPAW optimization
trajectories of seven CMA-ES results, two from set one (NNFF1)
and ve from set two (NNFF2), representing various energy
basins. The resulting data was then randomly split into 5000
training data and 1250 validation data and the model, labeled
“NNFF3”, trained over 500 epochs with all other parameters
unchanged, achieving an MAE on training forces of 76.90 meV
Å�1 and 87.69 meV Å�1 for validation. By pooling the whole
collection of 4�1 and 5�1 data, the model performed well on
both the 4�1 and 5�1 test sets, Table. 1. We also constructed
a new test set, denoted as “Opt” in Table. 1, consisting of the
GPAW converged minima of all three CMA-ES sets that were
performed on 5�1 structures. Not surprisingly, NNFF3 per-
formed well for this test set. Importantly, NNFF3 was able to
correctly reproduce the order of the lowest energy structures
found for the 5�1 reconstruction, Fig. 7. Subsequently, a third
set of 50 CMA-ES runs was performed using NNFF3. These runs
again found variations of the known overlayer congurations
but also added Fig. 5(h) as the overall second lowest energy
minimum to the results. The structure is similar to the pm
eight–ten overlayer structure found by Li et al.12 It does,
however, not fully reproduce the earlier structure where the
bridging Ti tetrahedra of the eight ring shares an edge with the
substrate whereas the same tetrahedra in (h) shares a corner.

That neither the (h) structure nor the structure proposed by
Li were found in the NNFF1 CMA-ES run raises the question
Fig. 7 Surface energies of the (g) and (i) structures, Fig. 5, identified by
the first two sets of evolution runs performed on the SrTiO3(110) 5�1
surface. The energies of the optimized structures GPAW structures
(first column) were evaluated with the three trained models. The
energies shown are offset to that of structure (g).
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whether this is due to these structures not being identied as
energy minima using the NNFF1 or simply a result of the
increasing dimensionality of search space with cell size and the
stochastic nature of the CMA-ES. To answer this question, we
performed a local relaxation with NNFF1 starting from the non-
optimized (h) structure originally acquired using NNFF2 and
a reconstructed version of the lowest energy structure proposed
by Li et al.12 We veried that NNFF1 correctly identies the
corresponding energy basins on the surrogate PES. From this
follows that out of a sufficiently large set of randomly initialized
NNFF1-backed CMA-ES runs, some would arrive at the struc-
tures, without the need for data augmentation. These structures
being missed in the original 50 CMA-ES runs we interpret as
a result of the dimensionality of the PES being very large for the
5�1 reconstruction. This is also evident in the results obtained
for the 3�1 CMA-ES run, where 49 out of 50 runs result in the
(a)–(c) structures, as compared to the 4�1 CMA-ES run, where
only 12 out of 50 runs result in the (d)-(f) structures. This
procedure also veries that the structure proposed by Li et al.12

is indeed the lowest energy structure, with a GPAW surface
energy 3.2 meV Å�2 lower than that of the (g) structure.

Finally, we also re-optimized the three low-energy 5�1
structures with VASP which also identied (g) as the energy
minimum, with (h) and (i) having surface energies only around
1 meV Å�2 higher.

Constructing transferable NNFFs, such that the model can
be trained on smaller structures and applied to larger structures
or different systems and system sizes is a prominent topic50,51

and also part of the original vision behind introducing atomic-
descriptor-based NNFFs.52 Although a conventional narrative
has developed that the performance of MLmodels is good when
they are interpolating between points of the training set and
poor when they are used to extrapolate, that informal line of
reasoning has not survived rigorous examination. It has been
Fig. 8 The first two principal components of descriptors of local
atomic environments within SrTiO3(110) 4�1 training data. The
projections of the training data and “Opt” test set are depicted as the
hexagonally binned background and red dots, respectively. The prin-
cipal component analysis (PCA) was performed utilizing the scikit-
learn library.54 To correct for symmetry and recurring environments,
the PCA was limited to local environments on one side of each slab,
excluding the environments of atoms within fixed bulk-like layers.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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shown that in the high-dimensional spaces commonly explored
by ML the probability of a new point falling in the convex hull of
the training set is negligible and extrapolation happens
constantly.53 Whether those new points will be correctly
described is therefore more closely related to the functional
form and exibility of the model and the diversity of the data
used for training. The prediction of the NNFF can still be ex-
pected to perform best for structures with a degree of similarity
to the training structures. In our specic case, the good
performance of the original 4�1 NNFF, NNFF1, can thus be
attributed to the good coverage of the space of atomic descrip-
tors afforded by the training structures. To illustrate this, Fig. 8
shows the rst two principal components of the descriptors for
the 4�1 training data and the same projections of the
descriptors for the “Opt” 5�1 test set. The “Opt” data points do
fall within or close to the area covered by the local atomic
environments represented in the 4�1 training data.

4 Summary and conclusions

We successfully combine the covariance matrix adaptation
evolution strategy (CMA-ES) and a fully automatically differen-
tiable, high-dimensional neural-network force eld (NNFF) to
explore the phase diagram of TiOx overlayer structures on
SrTiO3(110) 3�1, 4�1 and 5�1 surfaces. This allows exploiting
the stochastic nature of the CMA-ES to perform sets of evolution
runs. Thereby the potential energy surfaces (PES) of the systems
of interest can be explored more efficiently and to a greater
degree than would be possible with DFT. We have thereby
arrived at a diverse collection of local energy minima, both
reproducing known structures and proposing new stable
candidates.

The transferability of the neural-network force eld trained
solely on the 4�1 surface unit cell structures is demonstrated by
comparing to results obtained with neural networks trained on
structures from the 5�1 surface unit cell. We attribute the
transferability to the diversity of structures generated by the
CMA-ES search procedure.

The presented method proves to be capable of thoroughly
and efficiently exploring conguration space while greatly
reducing the needed computation time. Our formulation of the
CMA-ES in a machine-learning context naturally suggests
possible extensions to even more complex energy landscapes.
Machine-learning models can be used to relax the assumption
of Gaussian distribution of candidates and to include intrinsic
metrics of the quality of the surrogate model.

Code availability

A compatible version of NeuralIL, including example scripts for
training and evaluation are available.55

Data availability

A dataset containing the CMA-ES founder structures, the over-
layers shown in Fig. 5, the trained models and all associated
training, validation and test data, is available on Zenodo.32
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