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machine learning workflow for
analysis of nanowire morphologies from
transmission electron microscopy images†

Shizhao Lu, a Brian Montz,b Todd Emrick b and Arthi Jayaraman *ac

In the field of materials science, microscopy is the first and often only accessible method for structural

characterization. There is a growing interest in the development of machine learning methods that can

automate the analysis and interpretation of microscopy images. Typically training of machine learning

models requires large numbers of images with associated structural labels, however, manual labeling of

images requires domain knowledge and is prone to human error and subjectivity. To overcome these

limitations, we present a semi-supervised transfer learning approach that uses a small number of labeled

microscopy images for training and performs as effectively as methods trained on significantly larger

image datasets. Specifically, we train an image encoder with unlabeled images using self-supervised

learning methods and use that encoder for transfer learning of different downstream image tasks

(classification and segmentation) with a minimal number of labeled images for training. We test the

transfer learning ability of two self-supervised learning methods: SimCLR and Barlow-Twins on

transmission electron microscopy (TEM) images. We demonstrate in detail how this machine learning

workflow applied to TEM images of protein nanowires enables automated classification of nanowire

morphologies (e.g., single nanowires, nanowire bundles, phase separated) as well as segmentation tasks

that can serve as groundwork for quantification of nanowire domain sizes and shape analysis. We also

extend the application of the machine learning workflow to classification of nanoparticle morphologies

and identification of different type of viruses from TEM images.
Introduction

Researchers working with nanomaterials nd that the mate-
rials' structural characterization is a key step in the discovery of
novel functional materials.1,2 For most researchers, microscopy
imaging is the rst and, in many cases, only accessible means to
obtain structural information. Depending on the length scale of
interest, commonly used techniques include optical micros-
copy, transmission electron microscopy (TEM), scanning elec-
tron microscopy (SEM), and atomic force microscopy (AFM).
Regardless of the technique, each microscopy image is associ-
ated with the chemical composition of the material, region/
section of the material that is imaged, and the processing
conditions for the imaging. The resulting images may resemble
a heat map of intensity highlighting object(s) owing to the
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selective staining of some species/sections in the sample.3

Analyzing these microscopy images requires domain knowledge
to interpret (e.g., classify images with morphology labels) and/or
to detect nuances in different images (e.g., identication of
defects, changes in intensity, etc.) as the composition or the
focus of the image or the processing condition is changed.
Thus, manual interpretation is oen time-consuming, labor-
intensive, and prone to human subjectivity in interpretation.
Therefore, machine learning (ML) has become a valuable tool
that can replace time-consuming and subjective manual inter-
pretation of microscopy images with automated, objective, and
fast analysis.4–8

Recent advances in deep learning have led to a surge of
applications in electron microscopy image analysis for a diverse
set of tasks in two main categories: discriminative and genera-
tive. Discriminative tasks are tasks like morphology/phase
classication,9–12 particle/defect detection,13–16 image quality
assessment,17–19 and segmentation20–25 where the objective is
quantied by how well the model can distinguish (1) between
images or (2) between objects and their background. Generative
tasks include microstructure reconstruction,26–28 super resolu-
tion,29–31 autofocus32 and denoising33,34 where the objective is
generation of images with certain desired traits.
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Development of modern MLmodels benets in performance
from the procurement of big datasets related to a specic task.
To bypass the need to collect large training data and reduce the
time needed to train the ML model from scratch on that large
data, researchers use ‘transfer learning’ techniques.35 Transfer
learning involves leveraging the knowledge of a model previ-
ously trained using large training datasets to create a newmodel
for another related task. For example, a model that has been
trained on ImageNet,36 a large dataset of 1.2 million photo-
graphic images of macroscopic objects, can be transferred to
learn how to analyze images in another more specic domain
[e.g., medical image analysis37,38 and electron microscopy image
analysis in material science4–8]. The success of transfer learning
in the eld of image analysis has paved the way for accessibility
to pretrained image learning models for the general public
without requiring large computational resources or big data to
train from scratch.39

Transfer learning for microscopy image analysis tasks has
traditionally relied on convolutional neural network (CNN)
models40 which convert input images into feature maps that
hold information for image classication (e.g., assigning
a morphology label to a microscopy image) and detection of
objects in the image (e.g., identication of a nanoparticle
aggregate or domain). In transfer learning, the weights of some
layers of the pre-trained CNN are kept as constants and only the
weights for the outermost layer are retrained with images for the
specic task at hand. In most implementations of transfer
learning, the microscopy image dataset for the specic task has
to be labeled (i.e., supervised learning) before training the
outermost layer. However, CNN models trained on one type of
supervised tasks (classication, segmentation, or object detec-
tion) can typically only be transferred to the same supervised
task for another image dataset which limits the generalized
applicability of transfer learning. Further, the typical size of
image datasets needed for training ranges from thousands to
hundreds of thousands of images, even with transferred
models, and the labeling of these large set of images is chal-
lenging and prone to error, with a recent study noting (on
average) 3.3% labeling errors in large open source datasets.41

To overcome limitations of labeling, semi-supervised
training workow is another option which typically consists of
an unsupervised training of feature encoder requiring no
manual labeling and a supervised training of specic down-
stream task model requiring manual labels.42,43 Chowdhury
et al. developed a semi-supervised approach consisting of
a feature extractor, a feature selector, and a classier to classify
different dendritic microstructures.9 Peikari et al. developed
a cluster-then-label semi-supervised approach for classifying
pathology images.44 A school of generative architectures called
autoencoders have also been used in obtaining pretrained
feature maps of images.45,46 An autoencoder architecture
involves training of an encoder to condense the information
from the original image to a low-dimensional feature map, and
a decoder that tries to reconstruct the original image from the
feature map. More recently, self-supervised learning of images
has emerged as a new form of label-free, unsupervised
training.47 In a recent review, Liu et al. attribute the more
© 2022 The Author(s). Published by the Royal Society of Chemistry
competitive status of self-supervised learning compared to
autoencoders in classication scenarios to the more closely
aligned learning goal of self-supervised learning modules to
that of vision tasks targeting high-level abstraction such as
classication and object identication.48 Through self-
supervised training, the ML model learns a representation of
an image by maximizing the similarity between two different
transformed versions of the same image. While supervised
model training is assisted by the labels associated with each
image, self-supervised model training does not rely on labels
and learns from the underlying features of the images. The
performance of self-supervised transfer learning has been
shown to be comparable with supervised transfer learning in
big data medical image classication.49,50 For example, Azizi
et al. have achieved 70% classication accuracy on dermatology
images (using �450 000 images for training) with self-
supervised transfer learning49 and Ciga et al. have achieved
78% classication accuracy on a diverse set of histopathology
images (using�40 000 images for training) with self-supervised
transfer learning.50 In contrast to the medical imaging eld
which traditionally has large data sets, researchers in the so
materials domain handle much smaller datasets and have
a more diverse range of image analysis tasks. Thus, for self-
supervised transfer learning to be accessible to researchers in
somaterials, it has to be adapted to small dataset sizes and be
able to handle multiple tasks (e.g., classication and
segmentation).

Transfer learning from CNNs trained with supervised
methods has been utilized in nanomaterial classication task in
recent years. Moderres et al. have used transfer learning to
classify SEM images belonging to different nanomaterial
subcategories like particles, patterned surfaces, nanowires,
etc.10 Having an unbalanced dataset, they observed higher
accuracies for categories that have fewer images. They made the
comment that some categories that have fewer images per-
formed better because the features in those categories were
distinct and sufficiently clear to be learned by the network.
While some categories with higher number of images suffered
from having indistinct features. Their dataset size was �18 000
in total with smallest category containing �150 images, and
largest category containing �4000 images. Luo et al. used
transfer learning to classify carbon nanotube or ber
morphologies on an image dataset containing 600 images per
morphology class.11 They were able to achieve 91% average
accuracy on a four-class dataset, and 85% average accuracy on
an eight-class dataset. Matuszewski and Sintorn recently
compared the accuracy of different CNN architectures (with
transferred weights or trained from scratch) on identifying
various viruses from TEM images.51

In this article, we present an automated, label-efficient
transfer learning workow incorporating self-supervised pre-
training that aims to classify nanomaterial morphologies in
microscopy images with high accuracy aer training on only
a handful of carefully labeled microscopy images. We focus on
a semi-supervised transfer learning workow to perform auto-
mated classication and segmentation of TEM images taken
from one class of nano materials – protein and peptide
Digital Discovery, 2022, 1, 816–833 | 817
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nanowires – which are used in a wide variety of applications
including exible electronics,52 energy harvest,53 and chemical
sensing.54 In all these applications, the nanowire morphologies
(e.g., dispersed, aggregated, percolated, phase separated)
dictate their performance. In this work, we use TEM images
from assembled, synthetically engineered, peptide nanowires
and biologically derived (from Geobacter sulfurreducens) protein
nanowires55 to demonstrate a semi-supervised transfer learning
workow that shows high accuracy in classication and
segmentation of these images with <1000 generic unlabeled
training images and <10 task-specic labeled images per
morphology class. We also demonstrate the broader applica-
bility of our machine learning workow by applying it to two
additional TEM image analysis tasks – for classication of
nanoparticle morphologies and for identication of virus types
from their TEM images.

Results and discussion
Semi-supervised machine learning workow

We illustrate the conceptual workow of semi-supervised
transfer learning for microscopy images in Fig. 1. First,
a generic image learning model, an encoder, undergoes self-
supervised training (i.e., no labels required during training)
on a dataset of generic microscopy images called CEM500k,56 an
open-access electron microscopy image dataset curated from
various imaging modalities characterizing cellular or biomate-
rial structures by Conrad and Narayan. We transfer the trained
encoder to transform images into feature maps (i.e., distilled
and encoded representations of images) for training of down-
stream tasks. We demonstrate the semi-supervised machine
learning workow with a detailed example of transfer learning
of nanowire morphologies from generic TEM images. We start
by training the encoder with self-supervisedmethods on generic
TEM images (Fig. 1A). We implement two self-supervised
training methods: SimCLR47 and Barlow-Twins.57 Both
methods start by taking a batch of images and generating two
randomly augmented images for each image by performing
random color/hue/contrast changes, and randomly crop
a portion of the image. The augmented images are then turned
into feature maps by an encoder with ResNet50 (ref. 58) archi-
tecture. The feature maps are input into a projector with three
layers of fully connected neurons to generate projections of
each image. The projections are then used to calculate and
minimize the loss function to train both the encoder and the
projector. Through maximizing the similarity between two
augmented images of the same image, the encoder is trained to
produce feature maps that can represent the images more
accurately. The difference between the two methods – SimCLR47

and Barlow-Twins57- is in the loss function. The loss function of
SimCLR method aims to maximize the calculated cosine simi-
larity of projections from the “true” pairs of augmented images
from the same image and minimize that of the “false” pairs of
augmented images from different images. The loss function of
SimCLRmethod has dependence on the batch size and contrast
between images; larger batch size and higher contrast theoret-
ically gives higher ability of discerning “true” from “false” pairs.
818 | Digital Discovery, 2022, 1, 816–833
The loss function of Barlow-Twins method aims to minimize
the redundancy in the representation of the projection by
tuning the cross-correlation matrix of projections from the
same image to be an identity matrix. The equations of the two
loss functions are presented in the methods section with amore
detailed explanation. The trained encoder is then transferred to
learn the protein/peptide nanowire morphologies (Fig. 1B). For
the classication task, we use the simplest linear classier
consisting of four neurons equivalent to the number of
morphology classes to classify the feature maps. For the image
segmentation task, we use U-Net,59 an established deep learning
architecture that has been shown to outperform traditional
segmentation methods.23,60,61 The original U-Net architecture
consists of an encoder and a decoder trained to create accurate
segmentation of input images. Instead of the original U-Net
architecture, we use our trained encoder with trained weights
to establish skip connections between our encoder and
a decoder with random initialized weights.
Peptide/protein nanowires – morphology classication

Protein/peptide nanowires exhibit one of four morphologies
when dispersed in solvent – singular (i.e., isolated nanowire),
dispersed (i.e., isolated collection of multiple nanowires),
network (i.e., percolated nanowires), and bundle morphologies.
Materials with dispersed nanowires are desired for mechanical
reinforcement,62 while materials with network morphologies are
desired for improving conductivity.52 The singular, dispersed,
and network morphologies in this work arise from assembly of
synthetic oligopeptides shown in Fig. 2A; the bundle morphol-
ogies represent aggregates of protein nanowires harvested from
Geobacter sulfurreducens. 100 images from each morphology are
employed (Fig. 2B). The magnication of the morphology images
varies from image to image, but the length scales are on the same
order of magnitude as indicated from the scale bars in Fig. 1B.
Because the interest of our study is the type of morphology rather
than the length scale of the morphology, we do not include the
scale bars in the images for training the machine learning
models. Due to differences in the peptide/protein nanowire
chemistry, solvent condition and magnication, the object-
background contrast in each morphology image is different. As
the dispersed and network morphologies are harder to visually
distinguish, we manually label the nanowires in the images
through Microscopy Image Browser (MIB).63 This manual
labeling serves two purposes: (1) to provide pixel-level quanti-
cation of percolation (in network) or lack thereof (in dispersed)
and (2) to provide ground truth labels of nanowires for the
segmentation task. A percolation analysis of the clusters of
manually labeled nanowires distinguishes the networks (perco-
lated) and dispersed (not percolated) nanowire morphologies.
Except for the state-of-the-art (SotA) encoder which we obtained
as a published open-access encoder trained with SimCLR
method on the full ImageNet dataset (1.26 million images), other
models are trained with optimized hyperparameters detailed in
the method section. To show whether transferring learned
weights from a domain-specic dataset gives better model
performance, we trained the two self-supervised encoders on 832
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Machine learning workflow for classification and segmentation of microscopy images. Two-step generalized semi-supervised machine
learning workflow for microscopy image learning. An image encoder is first trained on generic microscopy images56 (permission from eLife
Sciences Publications, Ltd, UK under CC-BY license) without supervision, i.e., self-supervised. Then, the self-supervised image encoder is
transferred to convert task-specific microscopy images into feature maps which are used to train multiple models for downstream tasks (e.g.,
classification, segmentation) (A) for each image in the generic TEM image dataset, two randomly augmented images are generated. To maximize
the similarity between the two augmented images, an encoder (ResNet50 (ref. 58)), followed by a projector made of three fully connected neural
layers, are trained. (B) The encoder is transferred as is for the task-specific image encoding (i.e., to convert TEM images of nanowire
morphologies to featuremaps) followed by supervised, label-efficient training of classifier and decoder for downstream tasks – classification and
segmentation of TEM images.
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View Article Online
generic TEM images or 832 generic everyday photographic
images from ImageNet, both at resolution 224 � 224. We report
the classication accuracies from the linear classier on the
feature maps of the test sets (Fig. 2C). The classication accuracy
is dened as a ratio of the number of correct morphology class
predictions e.g., an image of dispersed morphology predicted as
dispersed morphology, over the total number of the test cases.
When trained with generic TEM images, the Barlow-Twins
method outperforms SimCLR method. When trained with
Barlow-Twins method, transferring from domain-specic
images, i.e., TEM images, brings higher performance than
transferring from everyday images. However, when trained with
SimCLR method, transferring from domain-specic images
underperforms transferring from images of other domains. We
© 2022 The Author(s). Published by the Royal Society of Chemistry
believe that SimCLR performs worse when trained on generic
TEM images due to the reduced contrast in generic TEM images
compared to that in ImageNet images. Strikingly, feature maps
obtained from the Barlow-Twins-TEM encoder obtain >90%
classication accuracy when trained with just 8 labeled images
per class. With more numbers of labeled images, feature maps
obtained from the Barlow-Twins-TEM encoder achieve compa-
rable classication accuracy to that of feature maps obtained
from the SotA encoder.
Nanowire morphology classication – one-shot learning

As we observe large uctuations in the accuracy of linear clas-
siers trained with only one labeled image per class (i.e., one-
Digital Discovery, 2022, 1, 816–833 | 819
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Fig. 2 Nanowire chemical composition, TEM images of nanowiremorphologies, and performance of the trainedmodel for classification task. (A)
N-[2-(1-Naphthalenyl)acetyl]-L-phenylalanyl-L-phenylalanyl-L-lysyl-L-lysine (NapFFKK) oligopeptide structure that self-assembles into singular,
dispersed, and network nanowire morphologies from water and organic solvents. (B) Representative TEM images of the four types of nanowire
morphologies labeled in the figure; apart from the three oligopeptide nanowire morphologies, the bundle morphology is obtained from pilA
protein nanowires (amino acid sequence of pilA: FTLIELLIVVAIIGILAAIAIPQFSAYRVKAYNSAASSDLRNLKTALESAFADDQTYPPES) harvested bio-
logically from Geobacter sulfurreducens and assembled in organic solvents. (C) Classification accuracy of the trained downstream linear
classifiers as a function of number of labeled images used during training of the downstream task. Legend denotes the self-supervision method
and the generic image dataset used to train the encoder. Sample size is 100 for each boxplot. Notch of the boxplots indicates 95% confidence
interval around the median.

820 | Digital Discovery, 2022, 1, 816–833 © 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Knowledge of the underlying distribution of the images can help determine “good anchor” images for high accuracy one-shot learning. (A
and B) “good anchor” images i.e., a set of labeled images from each morphology, which when used for training give high classification accuracy.
“Bad anchor” images which when used for training give low classification accuracy. t-SNE64 representations of the test set colored by their true
labels and by their predicted labels with “good anchor” images as training set (C and G) and “bad anchor” images as training sets (F and J). Images
of the t-SNE plots of (part C, G, F, and J in original size and resolution) are provided in the ESI as Fig. S1–S4.† The image count distribution with
nanowire pixel density obtained from the manual nanowire labels for the dispersed and network morphology images in the test set with “good
anchors” (D) and “bad anchors” (E) images as training sets, respectively. Solid lines are positions of the two “anchors”, and dashed lines are
positions of the twomedians. Test set size is 20 for both dispersed and networkmorphology. (H) The prediction accuracies with different relative
positions of the two “anchors” to the median of the dispersed and network images in the test set. For the 100 samples obtained in Fig. 2C for
Barlow-Twins-TEM, 25 resulted on the opposite side, 75 resulted on the same side. (I) The sum of the absolute distance between the anchor
and median of the two morphologies with different relative positions of two “anchors” to the median of the dispersed and network images in the
test set.
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shot learning), we want to understand how the selected labeled
images or the “anchor” images affect accuracy. Using feature
maps obtained from the Barlow-Twins-TEM encoder, we show
one example of “good anchors” and “bad anchors” each chosen
posteriorly based on the highest and lowest accuracies (Fig. 3A–
B). We use t-distributed Stochastic Neighbor Embedding (t-
SNE)64 to visualize the feature maps of the test images projected
in 2-dimensional space. From the t-SNE plots, we see that while
there are few misclassications between the dispersed and
network morphologies when the linear classier is trained on
“good anchors” (Fig. 3C and G), most images in dispersed
morphology are misclassied as network morphology when the
linear classier is trained on “bad anchors” (Fig. 3F and J). To
explain the visible difference in the performance of linear
classiers trained on different “anchors”, we look at the distri-
bution of the nanowire pixel density, i.e., percentage of “nano-
wire pixels” over all pixels, of the ground truth (i.e., manually
labeled images with nanowire pixels and background pixels) for
test images in dispersed and network morphologies. The
© 2022 The Author(s). Published by the Royal Society of Chemistry
nanowire pixel density of the two anchor images is on the
opposite sides of that of the respective median of the two
morphologies for “good anchors” (Fig. 3D), but on the same
sides for “bad anchors” (Fig. 3E). We also show the statistics of
all 100 sets of anchors and nd that the accuracy of linear
classiers trained on “opposite side anchors” is statistically
higher than that trained on “same side anchors” (Fig. 3H). We
conclude that the “opposite side anchors” in our study are
better approximates of the medians of the test set than “same
side anchors” for having smaller absolute (anchor-to-median)
distance as shown in (Fig. 3I), thereby leading to better
accuracies.
Nanowire segmentation

Next, we tackle the task of segmentation of nanowires for the
dispersed and percolated morphologies. We calculate both the
Dice score (eqn (1)) and the Intersection-over-Union (IoU) score
(eqn (2)) for each prediction. For assessing the performance of
segmentation models, pixel-level classication is the basis for
Digital Discovery, 2022, 1, 816–833 | 821
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Fig. 4 Nanowire segmentation task performance. (A) Original image, manually labeled nanowires, predicted nanowires, and segmentation
performance Dice scores and Intersection-over-Union (IoU) scores at five input image resolutions. (B) Dice scores for the nanowire segmen-
tation task. Legend indicates the resolution of the input images. Sample size is 200 for each boxplot. Notch of the boxplots indicates 95%
confidence interval around the median.
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the two segmentation scores. On a pixel level, nanowire pixels
predicted as nanowire pixels are regarded as true positives (TP),
nanowire pixels predicted as background pixels are regarded
as false positives (FP), background pixels predicted as back-
ground pixels are regarded as true negatives (TN), background
822 | Digital Discovery, 2022, 1, 816–833
pixels predicted as nanowire pixels are regarded as false nega-
tives (FN).

The Dice score is the ratio of two times the intersection of the
predicted and the true nanowire pixels over the sum of the
number of the predicted and the true nanowire pixels. Dice
score is calculated as:
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Dice ¼ 2TP

2TPþ FPþ FN
(1)

The Intersection-over-Union (IoU) score is the ratio of the
intersection of predicted and true nanowire pixels over the
union of the predicted and the true nanowire pixels. The IoU
score is calculated as:

IoU ¼ TP

TPþ FPþ FN
(2)

For any image, the two metrics are always positively corre-
lated, i.e., if model A is better than B under one metric, it is also
better than model B under the other metric.

Our U-Net model with transferred encoder (trained on
resolution of 512 � 512 unlabeled generic TEM images with the
Barlow-Twins method) works well with images of resolutions up
to 1024 � 1024 (Fig. 4A). For segmentation, images containing
nanowires present a more difficult problem compared to
images with isolated small nanoparticles due to larger inter-
section area between the nanowires and the background. Of the
ve input resolutions, our U-net model trained with images of
Fig. 5 Morphology classification performance on mNP dataset. Represe
dispersed nanoparticles, (B) separate clusters, (C) percolating cluster from
and DOI: https://doi.org/10.6078/D1S12H. (D) Classification accuracy o
labeled images used during training of the downstream task. Legend
used to train the encoder. Sample size is 100 for each boxplot. Notch o

© 2022 The Author(s). Published by the Royal Society of Chemistry
resolution 224 underperforms the higher resolution images
likely due to poor contrast when the images are resized to such
low resolution. We observe a plateau in the Dice score from 8 to
80 labeled images per class and a drop-off from having 8 down
to 4 labeled images per class (Fig. 4B). With transferred
encoder, our Unet model can achieve good performance
(median Dice score > 0.70) with just 8 labeled images per class
for training, less than half of the number of test images (20 per
class). IoU scores follow the same qualitative trend as Dice
scores; the values of IoU scores are always smaller than Dice
scores (Fig. S5†). Encoder trained with unlabeled images of
different resolutions give statistically similar Dice and IoU
scores (Figs. S6 and S7†). With the segmentation of nanowires
as an example, we show that trained encoder can capture not
only global information that was important for image-level
tasks such as morphology classication but also local infor-
mation relevant to pixel-level tasks such as segmentation.
Broader applicability of the machine learning workow

Next, we test the generalizability of our machine learning
workow on classication of nanoparticle morphologies. We
use TEM images in the AutoDetect-mNP dataset65 which was
ntative TEM images of the three metal nanoparticle morphologies (A)
the AutoDetect-mNP dataset, DOI: https://doi.org/10.6078/D1WT44
f the trained downstream linear classifiers as a function of number of
denotes the self-supervision method and the generic image dataset
f the boxplots indicates 95% confidence interval around the median.
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originally used for shape analysis of gold metal nanoparticles.
Here we use those images for a new task – to classify the
morphologies that the assembled nanoparticles adopt
Fig. 6 Virus identification performance on TEM virus dataset. Representa
(C) Coxpox, (D) Influenza, (E) Nipah, (F) Norovirus, (G) Orf, (H) Papilloma, (I
x4dwwfwtw3.3. (J) Classification accuracy of the trained downstream li
training of the downstream task. Legend denotes the self-supervision
Sample size is 100 for each boxplot. Notch of the boxplots indicates 95

824 | Digital Discovery, 2022, 1, 816–833
regardless of nanoparticle shape (short or long nanorods or
triangular prisms). This repurposed mNP dataset for this
assembled nanoparticle morphology classication task
tive TEM images of the different virus types (A) Astrovirus, (B) Nairovirus,
) Rift Valley from the TEM virus dataset66 DOI: https://doi.org/10.17632/
near classifiers as a function of number of labeled images used during
method and the generic image dataset used to train the encoder.

% confidence interval around the median.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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contains three morphology categories: dispersed nanoparticles
(Fig. 5A), separated clusters (Fig. 5B), and percolating cluster
(Fig. 5C), each category contains 100 images. With the same
training protocol applied in previous sections for peptide/
protein nanowire TEM images, i.e., training and predicting
with linear classiers on feature maps obtained from encoders
trained with self-supervised methods, we report the classica-
tion accuracies from the linear classier on the feature maps of
the repurposed mNP dataset's test sets (Fig. 5D). We observe
that the accuracies obtained from feature maps trained on both
self-supervised methods are comparable to that obtained with
the state-of-the-art encoder (SimCLR47 method trained on full
ImageNet36 dataset). We note that gold nanoparticles have
higher contrast with the background compared to peptide/
protein nanowires with the background in TEM, therefore
images in themNP dataset are subject to less background noise.
Here, we have shown that with the focus onmorphology and not
on the shape of the nanoparticles, self-supervised encoders
trained with signicantly fewer number of images can achieve
comparable accuracies with the state-of-the-art encoders
trained with the ImageNet dataset.

Next, we test our machine learning workow for the auto-
mated task of identifying virus from TEM images. We use an
open-access TEM virus dataset66 that contains a diverse set of
TEM images of more than 10 types of viruses. We choose 9 types
from the dataset for the purpose of our test: Astrovirus (Fig. 6A),
Nairovirus (Fig. 6B), Coxpox (Fig. 6C), Inuenza (Fig. 6D), Nipah
(Fig. 6E), Norovirus (Fig. 6F), Orf (Fig. 6G), Papilloma (Fig. 6H),
Ri Valley (Fig. 6I). These TEM images were parts of whole-slide
images of a virus or viruses taken by domain experts that were
cut into smaller images. Matuszewski and Sintorn51 state that
misinterpretation can happen for two types of viruses that look
similar or for images that selected unrepresentative part of the
virus or selected the background. We apply our machine
learning workow to the TEM virus dataset and report the
classication accuracies of the linear classiers trained on the
feature maps (Fig. 6J). We notice that the feature maps obtained
from encoders trained on generic TEM images (Barlow-
Twins_TEM, SimCLR_TEM) both underperform those trained
on ImageNet images. A possible explanation is that encoders
trained on generic TEM images are less tolerable to noisy
dataset. Another explanation is that the ImageNet dataset was
originally and specically prepared for object identication
with each image labeled with an object's name while the
CEM500k dataset of TEM images were prepared with no labels
on the images for general purpose of self-supervised learning.
The virus identication task is similar to the original ImageNet
object identication task therefore self-supervised models
trained on ImageNet images give higher accuracies.

Conclusions

In summary, we have developed a semi-supervised transfer
learning workow and demonstrated its efficacy when applied
to the task of learning nanoscale morphologies from small
microscopy image datasets and minimum number of manual
labels. We show that our encoder trained with <1000 unlabeled
© 2022 The Author(s). Published by the Royal Society of Chemistry
images achieve comparable performance with state-of-the-art
encoder trained with more than one million images. Our
downstream task models (e.g., classication of nanowire
morphology and segmentation of nanowires) trained on the
encoded feature maps can achieve >90% accuracy on classi-
cation of nanowire morphologies and >0.70 Dice score on
segmentation of nanowires training with <10 labeled images
per class. With knowledge of the underlying image distribution
of the two morphologies that are harder to visually distinguish,
we show that it is possible to achieve >90% accuracy training
with just one labeled image per morphology.

We also show that broader applicability of our machine
learning workow for classication and identication tasks in
other microscopy images (e.g., assembled nanoparticles of
various shapes, viruses) with limited labeled images for
training. While there may exist actionable qualication criteria
for manual labeling an image for an object identication task,
subtle morphological differences are intrinsically harder for
human experts to discern and classify into categories. Our
machine learning workow is precisely targeting such
morphology classication problems to mitigate human biases.
In addition, we also want to emphasize that thoughtful cate-
gorization and proper labeling of image data is crucial regard-
less of dataset size10 and is especially important for data-limited
image learning problems.

The machine learning microscopy image analysis workow
we have presented in this article should enable many funda-
mental studies in so-, nano-, and bio- materials through
democratizing (by using only a few labeled images in training)
and automating the structural analysis for feature extraction,
morphology classication, and segmentation tasks. For
example, one potential application of our machine learning
workow could be real-time analysis of in situ microscopy
images obtained at regular time intervals during thermal/
solvent annealing of polymer nanocomposites when the nano-
particle morphology in the matrix polymers evolves. Another
example could be automated analysis of microscopy images
obtained during (shear, temperature, solvent) processing of
block-copolymer lms leading to phase transitions from one
structure to another. With advances in high-throughput exper-
imentation and characterization instrumentation, machine
learning workows such as the one in this article will be valu-
able in accelerating materials innovation and establishing
molecular design–structure relationship.

Methods
Chemicals and materials

Fmoc-Lys(boc)-OH, Fmoc-Phe-OH, diisopropylethylamine
(DIPEA), hexauorophosphate benzotriazole tetramethyl uro-
nium (HBTU), 1-hydroxybenzotriazole monohydrate (HOBt)
piperidine, and 2-chlorotrityl chloride resin was purchased
from Creosalus and used as received. Dichloromethane (DCM),
N,N-dimethylformamide (DMF), methanol (MeOH), hexanes,
and diethyl ether were purchased from Fischer Scientic; the
DCM was distilled over calcium hydride prior to use. Isopropyl
alcohol (IPA), anhydrous N,N-dimethylformamide,
Digital Discovery, 2022, 1, 816–833 | 825
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triuoroacetic acid (TFA), and 1-naphthaleneacetic acid
(NapAcOH) were purchased from Sigma Aldrich and used as
received. 2,2,2-Triuoroethanol was purchased from Oakridge
Chemical and used as received. Deuterated dimethyl sulfoxide
(DMSO-d6) was purchased from Cambridge Isotopes.

Instrumentation

Transmission electron microscopy (TEM) was performed on an
FEI Technai T12 electron microscope using samples prepared
on 400 square mesh carbon-coated copper grids (Electron
Microscopy Sciences) at 120 kV accelerating voltage.

Synthesis of N-[2-(1-Naphthalenyl)acetyl]-L-phenylalanyl-L-
phenylalanyl-L-lysyl-L-lysine (NapFFKK)

NapFFKK was synthesized in an analogous manner to that used
by Laverty, et al.67 with the detailed procedure below using
conventional solid-phase peptide synthesis protocols. 2-Chloro-
trityl chloride supported PS resin was loaded into a peptide
vessel, weighed, and swollen in DCM (distilled over CaH2 prior to
use). The solution was ltered, and a solution of Fmoc-Lys(boc)-
OH and DIPEA in DCM while agitating with N2(g) for 2 h. The
solution was drained, and the resin was washed three times with
DCM before capping unreacted chlorotrityl chloride groups with
an 80 : 15 : 5 solution of DCM : MeOH : DIPEA for 1 h. The
solution was ltered, rinsed three times with DCM, three times
with DMF, three times with hexanes, three times with IPA, three
times with MeOH, and three times with again with DCM, before
drying under vacuum overnight. The peptide vessel was weighed
to check capping (complete tomanufacturer's specied 1.6mmol
g−1), swollen in DCM, rinsed three times with DMF, and depro-
tected using a 3 : 1 DMF : piperidine solution (5 min and 20
min). The remaining amino acids and naphthalene acetic acid
were successively coupled to the functionalized resin, usingHOBt
and HBTU as coupling agents, in the following order: Fmoc-
Lys(boc)-OH, Fmoc-Phe-OH, Fmoc-Phe-OH, NapAcOH. For each
coupling reaction, the amino acid or capping group (3 eq.), HBTU
(3 eq.) andHOBt (3 eq.) were dissolved in anhydrous DMF, before
DIPEA (7 eq.) was added to the solution, mixed, and immediately
added to the peptide vessel. The Erlenmeyer ask used was
rinsed with�10mLDMF, which was added to the peptide vessel,
and the peptide solution was agitated under N2(g) for 2 h. The
resin was then ltered, washed three times with DMF, and Fmoc
groups removed as previously described. Following the nal
addition of NapAcOH, a solution of TFA : TIPS:H2O (96 : 2 : 2)
solution was added in three parts over 3 h, ltering between each
addition. The ltrate was concentrated under N2(g) or via rota-
tional evaporation, precipitated in ether, and centrifuged.
Extensive rinsing with ether was employed to reduce the TFA
content; the product was then dried overnight under vacuum and
isolated as a white powder.

Bundled nanowire images generation

PilA-based protein nanowires were isolated from E. coli, puri-
ed, and bundled in accordance with the procedure described
by Sun, et al.68 and are described in detail below. Protein
nanowires were harvested from Geobacter sulfurreducens
826 | Digital Discovery, 2022, 1, 816–833
expressed from E. coli using physical shearing followed ltra-
tion and collection in MilliQ water. An aliquot of the aqueous
nanowire mixture (30 mL aliquot containing 0.535 mg protein per
mL) was to a glass vial and dried under a stream of N2(g). Organic
solvent (cyclohexane, THF, DMF, or acetone) was added to
a nal concentration of 0.10 mg nanowires per mL of solvent; the
mixture was vortexed 5 times for �1 second at high power then
allowed to settle for �20 minutes. Samples were vortexed once
before transferring 5 mL via micropipette to an oxygen plasma-
treated substrate (400 mesh, 3–4 nm carbon coated copper
TEM grids) and drying in air, either to full solvent evaporation
or for 5 min, and residual solvent wicked dry using lter paper
(in the case of DMF). The TEM samples were stained for 20 s
with 4 mL of a 2 wt% aqueous uranyl acetate stain, wicked dry
using lter paper, rinsed three times using water droplet on
paralm method and wicked dry aer each rinse, and imaged.

Single nanowire images generation

NapFFKK was dissolved in water to a concentration of either
0.1 mg mL−1 or 0.05 mg mL−1, vortexed until fully dissolved,
and allowed to stand for 1 h. The sample was then vortexed for
0.5 – 1 s twice and 4 mL was transferred to an oxygen plasma
treated substrate (400 mesh, 3–4 nm carbon coated copper TEM
grids) and drying in air for 5 min before wicking dry using lter
paper. The TEM samples were stained for 40 s with 4 mL of
a 2 wt% aqueous uranyl acetate stain, wicked dry using lter
paper, rinsed three times using water droplet on paralm
method and wicked dry aer each rinse, and imaged.

Dispersed and network nanowire images generation

NapFFKK was dissolved in solvent (water, IPA, Acetone, ACN)
with an initial concentration of 0.2 mg mL−1, vortexed until
fully dissolved (except in the case of IPA and ACN, which
incompletely dissolved the peptides), and allowed to stand for
1 h. Water and acetone samples were then vortexed for 0.5 – 1 s
twice prior to transferring to TEM grids; ACN and IPA aliquots
were removed without vortexing to avoid resuspending non-
dissolved peptides. In all cases, 4 mL was transferred to an
oxygen plasma treated substrate (400 mesh, 3–4 nm carbon
coated copper TEM grids) and drying in air for 5 min (the water
sample was wicked dry using lter paper; organic solvents fully
evaporated over this time). The TEM samples were stained for
40 s with 4 mL of a 2 wt% aqueous uranyl acetate stain, wicked
dry using lter paper, rinsed three times using water droplet on
paralm method and wicked dry aer each rinse, and imaged.

Image data preprocessing

For the generic TEM images, we took a subset of 10 000 images
from the CEM500K microscopy image dataset56 and randomly
selected 832 images from the subset each time we train on
generic TEM images. The generic TEM images are of resolution
224 � 224.

For the generic everyday images, we took one image from
each class of the ImageNet1k dataset36 resulting in 1000 images
of different classes as we do not want the images to be similar.
We randomly selected 832 images from the subset each time we
© 2022 The Author(s). Published by the Royal Society of Chemistry
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train on generic everyday images. The generic everyday images
are in color and of resolution 224 � 224. We do not use the
original labels of the images from the ImageNet dataset.

For the task-specic images of peptide/protein nanowire
morphologies, 100 images were chosen for the dispersed,
network, and bundle morphologies. Single nanowires require
more dilution and are trickier to obtain. Due to difficulty in
capturing single nanowires in the morphologies, we chose 25
images containing a single nanowire. We augment the singular
morphology with a similar method used recently for under-
represented carbon nanotube morphologies.11 75 images were
generated by rotating the original 25 single nanowire image by
90, 180, and 270� resulting in a total of 100 images for the
singular morphology. The morphology images are taken at
different magnication, ranging from 21k� to 400k�. All the
images of nanowire morphologies are at resolution 2048� 2048.

Due to difficulty in distinguishing the network morphology
from dispersed morphology in some cases, we manually labeled
the nanowires in images with dispersed and networkmorphology
to provide quantitative basis for the qualitative morphology class
labels of the two easy-to-confuse morphology classes. We labeled
the nanowires with masks colored in blue (to distinguish from
the contents in the original grayscale image) throughMicroscopy
Image Browser (MIB),63 a MATLAB-based annotation soware,
and saved a binary image with the manual labels. Nanowires that
we manually masked out with “colored” masks were labeled as
“nanowire pixels”, other pixels are labeled as “background
pixels”. We then performed DBSCAN,69 a clustering algorithm
implemented in scikit-learn package,70 on the manually labeled
“nanowire pixels”. For each image with clusters of nanowires
found by DBSCAN, we quantify percolation by checking whether
there exists a cluster that spans both the horizontal and vertical
dimension, i.e., two-dimensional percolation. To check criteria of
spanning both dimensions, for each cluster, we check if the
coordinate of the rightmost pixel minus that of the lemost pixel
is no less than the horizontal dimension minus two, same for the
vertical dimension. We have conrmed that all the network
images are percolated and all the dispersed images are not
percolated. We acknowledge that the denition of percolation, in
this case, is local to the image, and not necessarily representative
of the material as a whole.

From the images with manually labeled nanowire masks of
the dispersed and network morphologies, we created the
segmentation ground truth binary maps in different resolu-
tions, i.e. 224 � 224, 384 � 384, 512 � 512, 768 � 768 and 1024
� 1024. The binary maps are the standard truth and prediction
target for binary segmentation task (for multi-class segmenta-
tion tasks, the binary map extend to the number of object class
plus one, (for background)). In the binary map, nanowire pixels
were given value of 1, whereas background pixels were given
value of 0. The distribution of nanowire pixel density i.e.,
percentage of “nanowire pixels” over all pixels in a segmenta-
tion ground truth binary map, of both dispersed and network
morphologies was obtained from binary maps of resolution 224
� 224 (Fig. S8†).

For the metal nanoparticle (mNP) dataset, we selected TEM
images of nanoparticles from the mNP dataset.65 The mNP
© 2022 The Author(s). Published by the Royal Society of Chemistry
dataset contains TEM images of short or long nanorod assem-
blies and triangular prism assemblies. The MIB soware63 was
used to convert the images of le type .dm4 to .jpg. Aer
inspection of the TEM images, we categorized the assembled
nanoparticles into three categories: dispersed nanoparticles,
separate clusters, and percolating cluster, with each
morphology containing 100 images. The mNP images are of
resolution 2048 � 2048.

For the TEM virus dataset,66 we used 9 of the 14 virus data-
sets (Astrovirus, Nairovirus, Coxpox, Inuenza, Nipah, Nor-
ovirus, Orf, Papilloma, Ri Valley). Adenovirus, Ebola, Lassa,
Marburg, and Rotavirus datasets were the 5 datasets not used
because these were easily confused across the categories
judging by the confusion matrix provided in the original
paper.51 The TEM virus images are of resolution 256 � 256.
Description of self-supervised training of image encoder

A self-supervised encoder training process consists of four main
components: image augmentation, image encoder, projector, and
the loss function. We implemented two self-supervised training
methods: SimCLR47 and Barlow-Twins.57 The two methods only
differ in the loss function. For both methods, batch size (i.e., the
number of images to train at a time) is an important parameter.
Larger batch sizes oen lead to higher performance and shorter
training time. However, batch size is usually limited by the GPU
memory available. We chose batch sizes of 16, 32, and 64 to tune
during hyperparameter tuning. All self-supervised training of the
encoder was done on a single Nvidia P100-PCIE GPU provided by
Google Colab Pro subscription.

For image augmentation, we performed random cropping,
random le-right ip, and random color jittering. The combi-
nation of random cropping and random color jittering was
shown in the original implementation of SimCLR trained on
everyday images to give better performance compared to other
augmentation combinations. However, TEM images, being in
grayscale, are expected to be more impacted by random crop-
ping. Thus, we chose the method of random cropping as
a hyperparameter to tune. We rst chose the side length of the
cropped image to be either 1

4 or 1
2 or a random percentage

between 1
4 and

1
2 of the side length of the original image. Then

the le-bottom point of the cropped image was randomly
picked so that the cropped image is not out-of-bounds of the
original image. Finally, the cropped image was resized to the
resolution of the original image. Random le-right ip is set to
a probability of 0.5. Random color jittering consists of random
hue, random contrast, and random saturation. The hue,
contrast, and saturation of the image were shied (each sepa-
rately with probability of 0.8 and in random order) by a random
number applied on all the pixels. For hyperparameter tuning,
we also tested a model where we do not crop the image and only
perform random le-right ip and random color jittering.

The encoder took in the augmented images and distilled the
information into feature maps. We used ResNet50 as the
encoder architecture. The ResNet50 was initialized with weights
trained on ImageNet images as initializing the encoder with
transferred weights gives higher performance.71 We removed
Digital Discovery, 2022, 1, 816–833 | 827
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Fig. 7 Differences in vector multiplication when calculating the loss functions for SimCLR and Barlow-Twins methods. (A) With SimCLRmethod,
a cosine similarity coefficient is obtained from pairs of projections. (B) With Barlow-Twins method, a cross-correlation matrix is obtained from
pairs of projections.
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the classication layer and keep the weights of the encoder to be
trainable during training. The output of the encoder, i.e.,
feature map was of dimension 2048.

The projector was constructed with three linear layers with
number of nodes: 128, 64, 1024. The number of nodes in the
nal layer was also considered as a hyperparameter. All three
layers were followed by a batch normalization layer. The rst
two layers also had rectied linear units as activation layer. The
output of the projector is called the projection.

For each batch of images in training, two augmented images
were generated from each of the original images. The projections
of the images were used as inputs in the loss function. Two
projections undergo row vector � column vector multiplication
and obtain a cosine similarity coefficient (SimCLR method) or
undergo column vector � row vector multiplication to obtain
a cross-correlationmatrix (Barlow-Twinsmethod), as illustrated in
Fig. 7. The loss function for SimCLR method consists of two
terms: a similarity term measuring the L2-normalized cosine
similarity coefficient of a “true” pair of projections (coming from
the same original image), and a contrast term measuring the L2-
normalized cosine similarity coefficient of a “false” pair of
projections (coming from different images) as shown in eqn (3).
The loss function for Barlow-Twins method also consists of two
terms: an invariance term in the form of L2-normalized sum-of-
squares penalizing the diagonal values in the cross-correlation
matrix for deviating from unity, and a redundancy reduction
termmeasuring the L2-normalized sum-of-squares of off-diagonal
values in the cross-correlation matrix as shown in eqn (4).

L SimCLR ¼ �
X
b

�
zAb ; z

B
b

�
skzAb k2kzBb k2

þ
X
b

log

 X
b
0sb

exp

 D
zAb ; zBb0

E
skzAb k2kzBb0 k2

!!

(3)

L Barlow-Twins ¼
X
b

0
@X

i

 
1�

D
zAb;i; z

B
b;i

E
kzAb;ik2kzBb;ik2

!2

þ l
X
i

X
jsi

 D
zAb;i; zBb;j

E
kzAb;ik2kzBb;jk2

!21
A (4)
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where zA and zB are the projections, b indexes the sample in
a batch, i indexes the vector component of the projection, s is
the temperature parameter analogous to statistical mechanics,
we use the recommended value of 0.10 in our trainings, l is the
weighting factor for the redundancy reduction term, we use the
recommended value of 0.005 in our trainings.

For training, we used an initial learning rate of 0.2 and the
learning rate decay schedule described in the original SimCLR
or Barlow-Twins paper's implementation. All trainings were
done with SGD optimizer for 200 epochs.

Protocol for hyperparameter tuning model selection of self-
supervised encoders

All self-supervised training of the encoder was done on a single
Nvidia P100-PCIE GPU provided by Google Colab Pro
subscription. All training of classication models was done on
a single Nvidia K80 GPU provided by Google Colab free version.
Three important hyperparameters (batch size, crop method and
nal projection layer size) were tuned for optimization of the
self-supervised encoders with cross-validation for model selec-
tion on the morphology classication task. Five self-supervised
encoders were trained with either Barlow-Twins or SimCLR
method for each of the different hyperparameter sets we
explored, the difference being the random seed used to select
the 832 generic TEM images of resolution 224 � 224 to train.
For the classication task, we used the trained encoders to
transform the morphology images into feature maps. We used
ve different random seeds to split the nanowire morphology
images into 80% training data, and 20% test data (not used)
while keeping the class distribution balanced in both training
and test sets. We performed 4-fold cross-validation on the
training data, i.e., 60% of all morphology images as training
data and 20% of all morphology images as validation data. We
trained a linear classier consisting 4 neurons to classify the
feature maps of morphology images (obtained from trained
encoder) into their respective morphologies. Thus, for each
model hyperparameter set, we had 5 encoders� 5 data split� 4
folds ¼ 100 linear classiers trained giving 100 accuracies as
statistics. To mitigate overtting, we used an early stopping
criterion that stops the training of the linear classier when the
validation accuracy stops increasing in 10 consecutive epochs.
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 9 Impact of input image resolution on self-supervised training of
Barlow-Twins method. Accuracies for classification model perfor-
mance with feature maps obtained from the trained encoders. The
batch size when training images of the three resolutions 224, 384, and
512 was 64, 16, and 8, respectively.
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Adam optimizer with default learning rate of 0.001 was used for
training the linear classier.

For batch size, we looked at batch sizes of 16, 32 and 64, with
64 being the largest batch size we can use due to limitation of
the GPU memory. For the crop method, we looked at Randcrop,
i.e., the cropped image length is random between 1

4 and
1
2 of the

original image length; crop25, i.e., the cropped image length is 1
4

of the original image length; crop50, i.e., the cropped image
length is 1

2 of the original image length and no crop, where the
generic images were not cropped during augmentation., We
used 64, 256 and 1024 neurons as the size of the last projection
layer.

When tuning batch size, we used the Randcrop method and
a last projection layer size of 1024. For the batch size, we
observed that the classication performance of feature maps
obtained with encoders trained with SimCLR method had
a strong dependence on batch size while that trained with
Barlow-Twins method was insensitive to batch size (Fig. 8A).

When tuning crop method, we used a batch size of 64 and
a last projection layer size of 1024. For the crop method, we
observed that the classication performance of feature maps
obtained with encoders trained with SimCLR method became
worse when the crop method was more rigorous, i.e., cropped
image is more different from the original image, while those
trained with Barlow-Twins were insensitive to the crop method
(Fig. 8B).

When tuning the size of the nal projection layer, we used
a batch size of 64 and the Randcrop method. Both methods are
insensitive to the size of the nal projection layer (Fig. 8C).

Based on observations of the hyperparameter tuning
process, we have chosen batch size of 64, crop method of
Randcrop and last projection layer size of 1024 for Barlow-Twins
method training and batch size of 64, not cropping and last
projection layer size of 1024 for SimCLR method training.

For the Barlow-Twins method, we also looked at how the
resolution of the images used to train the encoder impacted the
classication performance of feature maps (Fig. 9). Given the
insensitivity of Barlow-Twins method to batch size, higher
Fig. 8 Hyperparameter tuning accuracies for classificationmodel perform
Twins and SimCLRmethod, respectively, on generic TEM images. (A) Imp
in training. The performance of SimCLR method, however, suffers when b
insensitive to the crop method, but SimCLR performs better without cr
insensitive to the size of the last projection layer.

© 2022 The Author(s). Published by the Royal Society of Chemistry
resolution images can be used as input when training the
encoder using smaller batch size without losing accuracy.
Protocol for classication task performance assessment

All training of classication models was done on a single Nvidia
K80 GPU provided by Google Colab free version. Except for the
SimCLR_SotA_ImageNet encoder which was obtained as pub-
lished from the official SimCLR repository on Github, the other
four encoders were the best performing encoders selected from
the hyperparameter tuning protocol.

For the classication task, we used the trained encoders to
transform the morphology images into feature maps. For the
peptide/protein nanowire dataset and the mNP dataset, we used
different random seeds to split the nanowire morphology
images into 80% training data, and 20% test data while keeping
the class distribution balanced in both training and test sets.
From the 80 training images per class, we then randomly
ancewith featuremaps obtained from encoders, trained with Barlow-
act of batch size. Barlow-Twins method is insensitive to batch size used
atch size is small. (B) Impact of crop method. Barlow-Twins method is
opping. (C) Impact of the last projection layer size. Both methods are

Digital Discovery, 2022, 1, 816–833 | 829
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Fig. 10 Detailed schematic of the Unet architecture with transferred encoder.
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selected 1, 2, 4, 8, 16, 32 or 80 images per class (with a xed
random seed of 42) as the labeled training image set. For the
TEM virus dataset, we used the training, validation and test
dataset provided by the original paper. We then randomly
selected 10, 20, 40, 80, 120, 200 or 600 images per class (with
different random seeds) as the labeled training image set. To
keep the sample size the same for performance assessment, we
used 100 random seeds for SimCLR_SotA_ImageNet encoder
and 20 random seeds for the other four locally trained encoders
because each locally trained encoders already had 5 replicate
models during self-supervised training. The training procedure
of the linear classier was the same as described in the hyper-
parameter tuning protocol.

Segmentation model description

We used the Unet architecture59 as the segmentation model
with our trained encoder as the down sampling module. Skip
connections were established between the transferred encoder
and a decoder with random initialized weights. The exact
encoder-decoder network is shown in Fig. 10. The weights of the
transferred encoder were not updated, i.e., xed as constants
during training.

Protocol for segmentation task performance assessment

All training of segmentationmodels was done on a single Nvidia
K80 GPU provided by Google Colab free version. Compared to
the classication task, the segmentation task was much slower
830 | Digital Discovery, 2022, 1, 816–833
(2 orders of magnitude in terms of training and prediction time)
due to the large overhead of the encoder-decoder model. Five
encoders were trained with Barlow-Twins method on generic
TEM images of resolution of either 224 � 224, 384 � 384 or 512
� 512, i.e., ve encoders for each resolution. For the nanowire
morphology images of dispersed and networkmorphologies, we
resized the images to resolutions of 224 � 224, 384 � 384, 512
� 512, 768 � 768 and 1024 � 1024. For the segmentation task,
we used the images as inputs to the encoder-decoder network.
We used one xed random seed of 42 to split the nanowire
morphology images into 80% training data, and 20% test data,
while keeping the class distribution balanced in both training
and test sets. We then from the 80 training images per class
randomly selected 1, 2, 4, 8, 16, 32 and 80 images per class (with
a xed random seed of 42) as the labeled training image set. We
used (1 − Dice score) as the loss function in training of the
segmentation model. For the Dice scores or IoU scores, the
sample size was 5 encoders � 40 images in the test set ¼ 200.
Adam optimizer with default learning rate of 0.001 was used for
training the segmentation model. The number of epochs for
models with different number of labeled training images were
120, 120, 120, 60, 40, 30 and 20 respectively.

Data availability

The python code for implementing the machine learning
models with Keras and Tensorow is available at https://
github.com/arthijayaraman-lab/semi-supervised_learning_
© 2022 The Author(s). Published by the Royal Society of Chemistry
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microscopy_images. The image dataset of nanowire
morphologies is deposited on the open-access data repository
Zenodo with DOI: https://doi.org/10.5281/zenodo.6377140. All
data and models generated during and/or analyzed during the
current study are available from the corresponding author upon
reasonable request.
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