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With the popularity of machine learning growing in the field of catalysis there are increasing numbers of

catalyst databases becoming available. These databases provide us with the opportunity to search for

catalysts with desired properties, which could lead to the discovery of new catalysts. However, while

there are search methods for molecules based on similarity metrics, for solid-state catalyst systems there

is not yet a straightforward search method. In this work, we propose a neural network embeddings

based similarity search method that is applicable for both molecules and solid-state catalyst systems. We

illustrate how the search method works and show search examples for the QM9, Materials Project (MP)

and Open Catalyst 2020 (OC20) databases. We show that the configurations found present similarity in

terms of geometry, composition, energy and in the electronic density of states. These results imply the

neural network embeddings have encoded effective information that could be used to retrieve

molecules and materials with similar properties.
1 Introduction

Data is the central part of almost all machine learning appli-
cations. With the increasing capacity to generate and storemore
data, efficient methods to retrieve target data of interest has
become much more in-demand. In the chemistry eld, the sizes
of the datasets have grown dramatically in the past decade. For
example, the Materials Project has more than 140 thousand
inorganic compounds, 530 thousand nanoporous materials,
and their properties.1 PubChem includes more than 100million
compounds.2 Open Catalyst 2020 (OC20) provides DFT calcu-
lations of more than 130 million adsorption structures.3 Given
the huge sizes of existing datasets and potentially larger data-
sets in the future, we need fast methods to explore and search in
these datasets. While a lot of progress has been made for
searching molecules, the ability of searching catalyst systems is
still lacking.

Usually, researchers may want to search for molecules or
materials with similar properties in applications like discov-
ering new drugs or cheaper materials.4–6 Many similarity search
methods have been developed for this purpose.7,8 In general,
a similarity search approach consists of three essential
components: a molecular representationmethod, a quantitative
metric to measure the similarity of two molecules, and a search
algorithm. The search process usually starts with one or more
gie Mellon University, 5000 Forbes Ave.,
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query molecules (e.g., congurations that have desired proper-
ties). Then the representation method converts them into
numerical representations which could be used to calculate the
pair-wise similarities. Aer that, the search algorithm retrieves
candidates on the basis of the similarity measurement. The
retrieved molecules are ranked by their similarities to the query
molecule(s) in descending order. Signicant efforts have been
spent on designing ngerprints to represent molecules. For
example, SMIfp (SMILES ngerprint) converts a molecule into
a 34-dimension scalar ngerprint.9 Each element of the nger-
print counts the occurrences of 34 symbols in SMILES, where
SMILES (Simplied Molecular Input Line Entry System) is
a chemical language and information system used to represent
different atoms and bonds with ASCII characters.10,11

The substructure-based ngerprint is also a popular choice
to represent molecules. Each item of the ngerprint encodes
whether or not a substructure is present in a molecule. Typical
examples include the Molecular ACCess System (MACCS) and
the Barnard Chemical Information Ltd. (BCI) ngerprint.12,13

MACCS uses 166 structural fragments as the keys while BCI
contains 1052 substructures. These ngerprints rely on a pre-
built library of substructures as the keys, which limits their
applications only for molecules which have well-dened bond-
ings. Also, they cannot be used for chemical systems repre-
sented with the periodic boundary condition (PBC). However,
catalyst systems, such as complex adsorbates on solid surface,
are usually represented with PBC and there is no well-dened
bonding between atoms. Therefore, these methods cannot be
used. To cope with the PBC problem, several molecular repre-
sentation methods have been proposed such as the Atom-
Centered Symmetry Functions (ACSF),14 and Smooth Overlap
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 The schematic of the search method. In the building phase,
a GemNet is trained with the database. Then, GemNet is used to
calculate the atomic embedding for each atom in the database. With
all the atomic embeddings, the FAISS package is used to build an index
for the atomic embeddings so that similar atomic embeddings can be
efficiently queried. In the searching phase, the atomic embeddings of
atoms in the target local structure will be calculated with the trained
GemNet. The top k similar atomic embeddings for each target
embedding can be queried using the built index. The tables for each
target embedding will be merged with a heuristic to get the top n
systems that contain the similar local structure.
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View Article Online
of Atomic Positions (SOAP).15 However, these methods have very
poor scaling regarding the number of elements in the database.
Hence, a method that deals with PBC and that has good scaling
regarding the number of elements is needed.

In the past decade, the development of deep learning
methods has changed the way we can represent data like text
and images. Deep learningmodels like the convolutional neural
network (CNN) and recurrent neural network (RNN) have been
widely applied in computer vision and language processing
tasks.16–19 For most of the deep learning models, the last layer of
the deep neural network represents the input data as a numer-
ical vector which contains rich information about the data. This
vector representation is also called an embedding. Since the
neural network output usually depends linearly on the embed-
ding, we can also regard the embedding as a nonlinear
dimensional transform of the input into a space where the
output is linear. More importantly, this numerical vector is
a ngerprint of the input that may be useful in search. The
promising performance of the deep learning models in various
tasks implies the embedding must represent the data in
a reasonable way. Therefore, these neural network embeddings
have been applied in many information retrieval systems
involving images and text.20–22

For molecular data, several graph neural network (GNN)
models have been proposed to learn the embeddings to repre-
sent the atomic congurations, such as the CGCNN and the
GemNet model.23,24 The atomic embeddings contain informa-
tion including the element type of the central atom, positions,
and elemental information of the neighboring atoms. When
applied in specic tasks (e.g., energy and force prediction), it is
reasonable to think that neural networks could be trained to
generate atomic embeddings in a space where the specic
property (e.g., atomic energy) is linearly related to the embed-
ding vectors. Therefore, the distance between the embeddings
in this space could serve as a similarity measure of a specic
property.

In addition to the molecular representation part, the other
important component in the molecular similarity search is the
search algorithm. Exhaustive search for similar vectors to
a high-dimensional query vector in a large database is both
time- and resource-consuming. Therefore, many approximate
nearest neighbor (ANN) search methods have been proposed to
nd approximate results with much less time and fewer
resources.25 The ANN search methods can be classied as
hashing-based, quantization-based, tree-based, or graph-based
methods according to the techniques used to accelerate the
search process.26 Typical examples include locality-sensitive
hashing, SPTAG, and ScaNN.27–29 There are also packages
released to implement these ANN search algorithms such that
more research work can be beneted from these ANN search
methods. For example, Facebook AI Similarity Search (FAISS) is
a library containing implementations for several ANN search
algorithms.30

In this work, we show a method based on neural network
embeddings to search for similar structures. We demonstrate
that the method can be applied to any atomistic system
including organic molecules, bulk materials, and adsorption
© 2022 The Author(s). Published by the Royal Society of Chemistry
systems. When combined with ANN search methods, neural
network embeddings can be used to retrieve similar atomic
structures efficiently in large databases. We also show that the
similarity is related to the specic property which is used to
train the neural network models. Therefore, this method has
the potential to search for similar molecular structures in
a property-oriented way.
2 Methods
2.1 Searching similar molecules via neural network
embeddings

In this section, we introduce the overall framework to search for
similar molecules in a database using neural network embed-
dings. This framework is shown in Fig. 1. The whole workow
can be divided into two stages: preparation and query. In the
preparation stage, we use a database of molecules to train
a neural network model on some property. Then we use the
trained model to calculate the embeddings of the atoms in the
database. These atom embeddings are processed into a specic
Digital Discovery, 2022, 1, 636–644 | 637
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Fig. 2 The overall architecture of the modified GemNet-dT. The red
dotted parts are from the original GemNet-dT and the blue parts are
from themodified GemNet-dT. xca is the distance between atom a and
atom c. 4cab is the angle:cab. RBF and CBF are the spherical Fourier–
Bessel bases with polynomial envelopes developed by Klicpera et al.24

Therefore, e(ca)RBF and e(cab)CBF are the distances and angles expanded into
those bases. z is the element information of all atoms in the chemical
system.m(l)

ca is the edge embedding between atom c and atom a. Edge
embeddings for all arbitrary atom c regarding atom a, will be used to
predict the atomic forces of atom a. h(l)a is the atomic embedding of
atom a. It will be used to predict the atomic energy of atom a and it is
the atomic fingerprint used in this work. (ml

ca is the edge embedding
between atom c and atom a. While it is not used in this work, it can be
used to predict the contribution to the atomic forces of atom a from
atom c).
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data structure for future searching by an approximate nearest
neighbor (ANN) search algorithm. In the query stage, given
a query molecule, we use the same trained neural network
model to get the embeddings for the atoms in the molecule.
Then we retrieve neighboring atom embeddings using an ANN
search method and return the corresponding molecules as the
results for the query event. If the query wants to nd similar
atomic environments, then the atoms corresponding to the
embeddings are directly returned. In this work we used GemNet
to generate the atomic embeddings.24 The FAISS package was
used for the ANN search algorithm.30 More details of each step
will be discussed in the following sections.

2.2 GemNet to generate atom embeddings

To query similar chemical systems from a database, it is
important for each chemical system to have a characteristic
ngerprint, so the similarity between different systems can be
evaluated. In this work, the ngerprint for each chemical
system is a collection of atomic ngerprints (atomic embed-
dings) obtained from a modied version of the GemNet-dT. The
overall architecture of the modied GemNet-dT is shown in
Fig. 2. The modication is in the output atomic embeddings.
Instead of using the output atomic embeddings of all interac-
tion blocks to predict the atomic energy, the modied version
only uses the output atomic embedding from the last interac-
tion block. The drawback of the modication is that the atomic
embeddings will be less detailed. While the output atomic
embedding from the last interaction block contains all infor-
mation of the center atom and its local environments, the
output atomic embeddings from previous interaction blocks
have more detailed information of the center atom and its
neighboring atoms in smaller neighborhoods. However, the
modication is necessary for two main reasons. First, including
those output embeddings will make the dimensionality of the
atomic embeddings too high and every atomic embedding
could seem to be far from each other due to the curse of
dimensionality.31 Second, the high dimensionality will make
the computational cost higher. The detailed architecture of
each block of the modied GemNet-dT is the same as the
original GemNet-dT. A detailed analysis of the GemNet archi-
tecture is out of the scope of this work but it can be found in the
original paper.24 The GemNet code we used is adapted from the
Open Catalyst Project models codebase.3 The hyperparameters
used are shown in the ESI.†

To obtain the GemNet atomic embedding, we trained the
GemNet on the energies of each entry in the database. Once the
GemNet is trained, the output atomic embedding, h(l)

a , which is
used to predict the atomic energy Ea, will be the atomic
embedding used to describe the local environment of the atom
in the chemical system.

2.3 Approximate nearest neighbor search

Searching for the exact k closest results to a query vector is
computationally expensive for large databases and high-
dimensional data. Therefore, we used ANN search as the
search engine to obtain approximately neighboring results in
638 | Digital Discovery, 2022, 1, 636–644
our work. Specically, we used the FAISS library to implement
the ANN search part.30 Its IndexIVFPQmode is used in our work.
The bases of IndexIVFPQ are an inverted le system and
product quantization.32,33 The inverted le system is built by
applying k-means clustering on a database of vectors to form
a set of centroids. These centroids allow rapid access to a small
fraction of nearby vectors for a query vector, which avoids
exhaustive comparisons against each vector in a database.
Then, the search efficiency is further enhanced by using
product quantization on the residual query vector (subtracting
© 2022 The Author(s). Published by the Royal Society of Chemistry
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the corresponding centroid from the query vector). The essen-
tial idea of product quantization is dividing a vector into small
subvectors, applying k-means clustering on these subvectors,
and using the corresponding centroids of the subvectors to
represent the original vector. Recording the centroid index uses
less memory compared to saving the whole real vector. The
computational complexity of IndexIVFPQ for querying k nearest
neighbors is about O(n + k log k log log n) assuming only search
for one partition of vectors,33 where n is the number of vectors in
that partition. The parameters of the FAISS IndexIVFPQmethod
used in our work are attached in the ESI.† FAISS supports
similarity metrics like L2 distance and the inner product. L2
distance was used in our work.

In this work, the similarity search is operated on two aspects,
at the atomic level and the molecular level. At the atomic level,
we can directly use ANN search on the atom embeddings based
on the Euclidean distance. However, for the nearest molecules
search, we need to convert the similarity of atom embeddings
into the similarity of the molecules. This process is shown in
Algorithm 1. Basically, for each atom in a molecule, we search
for k approximate nearest atom embeddings in a database.
These atom embeddings are considered matched for the query
atom. The corresponding molecules containing these matched
atoms are added to a candidate set. Aer looping over all atoms
in the query molecule, we rank the molecules in the candidate
set according to the number of matched atoms in descending
order (sum of Euclidean distances between the matched atom
embeddings is used to break ties). Top n molecules are the n
approximate nearest neighbors. Large k prefers the candidates
that are globally similar to the query molecule while small k
favors the molecules containing local environments with high
similarity to the query molecule. We used k around 10 times n in
our work.

2.4 Datasets

We demonstrate the ANN search on three datasets across
organic molecules, bulk materials and surfaces. For the organic
molecules, we applied our search method on the QM9 data-
set.34,35 QM9 contains properties of 134k small organic
© 2022 The Author(s). Published by the Royal Society of Chemistry
molecules with elements of C, H, O, N, and F. In terms of the
bulk materials, we adopted the Materials Project dataset which
includes more than 126k bulk crystals.1 The QM9 and Materials
Project databases were obtained from the SchNetPack
package.36 For the surface systems, we used the IS2RS subset
from the newly released OC20 dataset,3 which contains about
460k relaxed adsorption congurations. For each of the above
dataset, we train a GemNet model on their potential energy data
to learn the atom embeddings. Aer that, the atom embeddings
were used in the search tasks.
3 Results

In this section, we demonstrate the GemNet embedding-based
ANN search results for different molecular systems: small
organic molecules, metallic bulk materials, and metallic
surfaces with adsorbates.
3.1 ANN search for organic molecules

The rst case of ANN search is for small organic molecules,
which was performed in the QM9 dataset. The whole dataset
was split into the training and validation sets randomly with
a ratio of 0.8 : 0.2. A GemNet model was built on the training
set. The energy mean absolute error (MAE) on the training and
validation sets was 4.57 eV and 4.97 eV separately. Noticeably,
the errors are much larger than the benchmark results on
QM9.36 This is because we trained the GemNet on the raw
energy instead of the scaled energy which has already
accounted for the contributions from different elements. The
benet of using the raw energy is that the GemNet embedding
will be able to better learn elemental information from the
data. We then used this model to obtain the embeddings for
atoms in the QM9 dataset and search for similar molecules in
this database. We chose several molecules and functional
groups as the queries to search for similar (sub)structures. The
examples include molecules of benzene and toluene, as well as
groups of hydroxyl, amino, and imino. Here, we only discuss
the results for benzene and a joint search of amino and
hydroxyl groups. Results for other examples can be found in
the ESI.† For benzene, we used the GemNet embedding of each
atom as the query vector to search for similar atomic envi-
ronments. Then we sorted the candidate molecules based on
their number of matched atoms and the sum of the L2
distances as mentioned in Section 2.3. The found molecules
are shown in Fig. 3. The top lemolecule is the query benzene
while the Fig. 3b to f are the nearest 5 molecules. They all
contain a 6-atom ring structure with some small difference
against the query benzene. Basically, the 6 atoms in the ring
are all carbon. Except in Fig. 3c and f, one carbon atom is
replaced by a nitrogen atom. There are also some extra groups
on the rings like hydroxyl and amino groups. But generally,
these searched molecules are similar to benzene in terms of
elemental and geometric features.

Because QM9 is a molecule database, methods developed for
drug discovery can also be used. Therefore, to understand the
search results from our method, we compared them with the
Digital Discovery, 2022, 1, 636–644 | 639
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Fig. 3 Retrieved similar molecules (top 5) for benzene. Figure (a) is
benzene used as the querymolecule. Figures (b) to (f) show the nearest
molecules in the QM9 dataset.
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results obtained using a typical molecular similarity search
method, which served as a baseline for the search results. For
the molecular similarity search, we used the Morgan Finger-
print with a diameter of four,37,38 and the similarity metric used
was the Tanimoto similarity.39 The Morgan ngerprint is a bit
vector that essentially tells whether there are certain local
structure (e.g. aromaticity, double bond, hydroxyl group, etc.) in
the molecule. The Tanimoto similarity is calculated by eqn (1).

S ¼ FP1 � FP2

jFP1j þ jFP2j � FP1 � FP2

(1)

Therefore, if two molecules contain a lot of the same local
structures, the Tanimoto similarity will be high and the mole-
cules will be considered similar.

The search results of the Morgan ngerprints and the
Tanimoto coefficient are shown in Fig. 4. The main difference
from the GemNet result is in Fig. 4b and c, where larger rings
are retrieved in the search results. These two molecules are less
similar to benzene from the aspect of atom numbers and bond
angles in the ring structure. According to the top 5 nearest
Fig. 4 Searched similar molecules (top 5) using Morgan fingerprint
with Tanimoto coefficient as a distancemeasure. Figure (a) is the query
molecule. Figures (b) to (f) show the nearest molecules in the QM9
dataset.

640 | Digital Discovery, 2022, 1, 636–644
molecules, GemNet embedding retrieves more similar mole-
cules than Morgan ngerprint. This shows that the kind of
vector ngerprint used in the search is important.

In addition to the qualitative evaluation of the similarity by
visual comparison over the elemental and geometric features,
we also analyze the similarity among the molecules by investi-
gating their relevance in the energetic embedding space. We
built Gaussian process regression (GPR) models using the
found molecules as the training set. The hypothesis is that
training on similar molecules will result in a more accurate
model more quickly for a query than training on random
molecules.

We used the FLARE package as the implementation of the
GPR models.40 The hyperparameters for the GPR model are
provided in the ESI.† During the training process, we iteratively
added the found molecules one by one into the training set and
updated the GP model. Then we used the GPR model to predict
the energy of benzene and compared the prediction with the
true label. The results of the GPR models are shown in Fig. 5.
We included the results from the training set searched using
GemNet embeddings and Morgan ngerprints, as well as a set
of random molecules from the QM9 dataset as the baseline. In
Fig. 5, we can see that as we add more congurations into the
training set, the prediction error and standard deviation are
generally decreasing. However, using molecules found in
different ways, the GPR models have different performances.
The GPR model trained on the molecules retrieved by GemNet
embeddings has the smallest prediction error (0.04 eV) and
standard deviation (0.02 eV). The GPR model from Morgan
ngerprints has a larger error (3.64 eV) and standard deviation
(17.14 eV). The GPR model from the random molecules has the
largest error and prediction uncertainty, which is 5.76 eV and
43.44 eV respectively with up to 15 congurations. These results
imply that GemNet embedding has a representation of the
atomic environments that is more relevant to the energetic
property of the molecules. This is not surprising since the
GemNet model was trained on the energy data of the molecules
and the atomic energy prediction is a linear regression on the
atom embeddings.
Fig. 5 Prediction performance of GPR models trained on molecules
searched using GemNet embeddings and Morgan fingerprints, as well
as a set of molecules randomly sampled from the QM9 dataset. The
left figure shows the prediction error while the right figure shows the
standard deviation (std) of the GPR prediction. The number of added
configuration means the number of molecules added into the training
set to build the GP regressionmodel. The annotations in the figures are
the mininum prediction error and standard deviation for the models
trained on different number of configurations.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 Top 7 nearest atoms to the query oxygen atom in the Materials
Project dataset. Atom 9 in figure (a) is the query atom. Atom 10, 13, 15,
and 17 in figure (b), atom 6, 8 in figure (c), and atom 17 in figure (d) are
the searched atoms. The table in the figure shows the Euclidean
distances between the GemNet embeddings of the searched atoms
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In addition to the search for a whole molecule, we can also
use the GemNet embeddings to search for substructures. Here,
we demonstrate an example of searching for a molecule con-
taining similar substructures to the hydroxyl group of the
butanol and the amino group of the glycine. The search
procedure is similar to the method for benzene but has an
additional step to join the search results from hydroxyl and
amino groups, which is similar to an and operator on two sets.
Fig. 6 shows the query substructures and the searched mole-
cule. The atoms in the query and matched substructures are
marked with crosses. Both the hydroxyl and amino groups are
retrieved in the resulting molecule. In addition, the retrieved
hydroxyl and amino groups are somehow similar to the queries.
For the hydroxyl groups, they are both at the end of a three-
carbon chain for the query and searched molecules. For the
amino groups, they are at the end of a two-carbon chain and
there is a –OH group at the other end.
(excluding the query atom itself) and the query atom.
3.2 ANN search for bulk local environments

We next applied the ANN search method on metallic bulk
systems with the Materials Project dataset.1 A critical difference
in bulk environments from molecular systems is that bulk
systems are typically described in unit cells with periodic
boundary conditions. Consequently, the ngerprints must
account for this.

Similar to the QM9 case, the whole Materials Project data-
base was split into the training and validation sets randomly
with a ratio of 0.8 : 0.2. A GemNet model was trained on the
training set. The energy MAE on the training and validation set
was 0.62 eV and 1.42 eV respectively. There is an apparent gap
between the accuracy of the GemNet model on the training and
validation set. We attribute this gap to the conguration
extrapolation in the validation set. At the point we stop the
training, there was no increase of the MAE on the validation set
along with the training steps, which implied the model was not
located in the overtting region. We then used the trained
model to search for similar atomic environments in the Mate-
rials Project training dataset.

As an example query, we search for an oxygen atom in
a Al2Cu3O6 bulk cell. The query and found atoms are shown in
Fig. 7. The distances of the searched atoms to the query atom
and their ranks are shown in Fig. 7. The query oxygen atom is
atom 9 in Fig. 7a, which is closely neighboring to a copper atom
(atom 3). There is also an aluminum atom (atom 0) near the
query oxygen atom. These three atoms form an angle around
Fig. 6 Joint search result for hydroxyl and amino groups. The query
substructures are marked as crossed at the left of the arrow. The
retrievedmolecule is at the right side with matched atoms alsomarked
as crossed.

© 2022 The Author(s). Published by the Royal Society of Chemistry
135� with the aluminum and copper atoms at two ends and the
oxygen atom at the vertex. There is also another oxygen atom
(atom 5) at the opposite position to the query oxygen atom
across the copper atom. These geometric features also appear in
the searched atoms in Fig. 7b (atoms 10, 13, 15, 17) and Fig. 7c
(atoms 6, 8). Periodic boundary conditions should be consid-
ered when examining the geometric similarity for atom 10 and
atom 13 in Fig. 7b. In Fig. 7d, atom 17 is also the found atom
and it is ranked as 7th in all atomic environments although its
neighboring environment looks not so similar to the query
atom. This is because there are no more similar atoms like the
previous ones in the remaining pool.

As shown in Fig. 7, the Euclidean distance of the atom
embeddings for the searched atoms in Fig. 7b and c to the query
oxygen atom ranges between 0.06–0.11. This distance jumps to
0.17 for atom 17 in Fig. 7d. The distance of the atom embed-
dings also implies that atom 17 of Fig. 7d is not so similar to the
query oxygen atom from the view of the GemNet model. It is also
worth noting that during the searching process, we did not
explicitly restrict the searching pool to be oxygen atoms. This
atomic identity feature was already encoded into the GemNet
atomic embeddings, and this is why the retrieved atoms are all
oxygen atoms in Fig. 7 although with different local environ-
ments. For more examples, please refer to the ESI.†
3.3 ANN search for surfaces

In this section, we move on to a more complicated system:
metallic surfaces with adsorbates. Relaxed congurations in the
OC20 dataset were used in this case. There are more than 460k
congurations in the training set and about 24k congurations
in the validation set. A GemNet model was trained on the
training set with the energy MAEs of 0.82 eV and 0.92 eV on the
training and validation sets respectively. Atom embeddings
were generated by this GemNet model to be searched during the
query events. We illustrate the application of the GemNet
embeddings to search for similar adsorption congurations via
two examples.
Digital Discovery, 2022, 1, 636–644 | 641
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Fig. 9 Density of states projected onto the p-orbital of the query and
searched oxygen atoms. Figures (a) to (d) correspond the configura-
tions (a) to (d) in Fig. 8. The blue curve is the original DOS energy and
density data. The orange line is the linearly interpreted data from the
original DOS data to make the energy stamps to be the same across
the configurations. Cosine similarity was calculated using the inter-
preted data.
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The rst query example is an oxygen atom adsorbed on
a tilted hollow site consisting of two Pd atoms and one Ag
atom. The local congurations are shown in Fig. 8a. We seek
examples from the database that are similar to this query.
During the searching, we did not explicitly provide informa-
tion about the element types of the central and surrounding
atoms. Only the GemNet embeddings were used to measure
the similarities. According to the search result in Fig. 8, (a
zoomed-in view can be found in the ESI†) this elemental
information as well as the geometric information of the
adsorption site has already been encoded into the GemNet
embeddings. On the one hand, the retrieved atoms are all
oxygen atoms. On the other hand, the adsorption sites are all
hollow sites with two Pd atoms.

In addition to these apparent similar geometric features,
we also present the similarity between the query atom and the
searched atoms via the density of states projected to these
atoms (ADOS). The ADOS data was calculated by the Vienna Ab
initio Simulation Package (VASP).41 The ADOS data is shown in
Fig. 9. For the searched atoms, their ADOS curves almost
overlap with the query oxygen atom. Their cosine similarities
are all above 0.6 (1.0 would be identical ADOS). As a compar-
ison, we show the ADOS data of four randomly selected oxygen
atoms (see detailed congurations in the ESI†) in the OC20
dataset in Fig. 10. These random atoms have different ADOS
from the query atom and their cosine similarities are generally
smaller than the searched ones. This example shows that the
GemNet embeddings are able to search for elementally and
geometrically similar local environments for a single atom
adsorbed on metallic surfaces. These similarities also lead to
the similarity in the density of states (DOS). This example also
implies a potential application of searching for similar local
structures using the projected DOS with vector search
methods, since similar DOS suggests similar elemental and
geometric environments, as well as potentially similar
Fig. 8 Configurations of the query and found atoms (marked as
crossed). Configuration (a) is the query oxygen and configurations (b)
to (d) are the retrieved atoms.

642 | Digital Discovery, 2022, 1, 636–644
chemical properties. Storing DOS data when building a data-
base with some extra resources would be benecial to this kind
of application in the future.

Next, we demonstrate that our method not only works for
simple atoms like oxygen, but also for larger adsorbates like
acetylene. In the OC20 dataset, we search for similar atoms
with embeddings similar to that of the two carbon atoms in
the query acetylene. We did not include the searching for
similar atom embeddings to the hydrogen atoms since the
carbon atom is the main feature of acetylene. Ignoring
hydrogen atoms is also adopted in other molecular nger-
prints like the SMILES.10 The query and searched congura-
tions are shown in Fig. 11. The query object is an acetylene
molecule adsorbed on a hollow site formed by three Cu atoms.
The retrieved adsorption congurations are similar to the
query one. The rst point is that the found adsorbates are all
Fig. 10 Density of states projected onto the p-orbital of four randomly
selected oxygen atoms. The blue curve is the original DOS energy and
density data. The orange line is the linearly interpreted data from the
original DOS data to make the energy stamps to be the same across
the configurations. Cosine similarity was calculated using the inter-
preted data.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 11 Configurations of the query (config. a) and top 3 retrieved
acetylene adsorption configurations (config. b to d). The query and
matched carbon atoms are marked as crossed.

Fig. 13 Density of states projected onto the p-orbital of the carbon
atoms in four randomly selected acetylene adsorption configurations.
The blue curve is the original DOS energy and density data. The orange
line is the linearly interpreted data from the original DOS data to make
the energy stamps to be the same across the configurations. Cosine
similarity was calculated using the interpreted data.
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acetylene without explicitly setting the search pool to be
acetylene molecules. The second point is that the adsorption
sites of the top two results (Fig. 11b and c) are hollow sites with
three Cu atoms which are the same as the query one. This is
not so clear in Fig. 11b, more details of the local structure can
be found in the ESI.†

Similar to the oxygen case, we also compare the ADOS of the
query and searched congurations. Fig. 12 shows the ADOS of
a selected carbon atom of acetylene molecule in these systems.
We can see the ADOS of the searched congurations are
similar to the query one, and their cosine similarities are all
above 0.65 which is much higher than that of four randomly
selected congurations shown in Fig. 13. The similarities in
terms of the adsorbates, adsorption sites, and DOS between
the query and searched congurations suggest that our
method also works well for adsorption systems with large
adsorbates.
Fig. 12 Density of states projected onto the p-orbital of the selected
query and searched carbon atoms. Figures (a) to (d) correspond the
configurations (a) to (d) in Fig. 11. The blue curve is the original DOS
energy and density data. The orange line is the linearly interpreted data
from the original DOS data to make the energy stamps to be the same
across the configurations. Cosine similarity was calculated using the
interpreted data.

© 2022 The Author(s). Published by the Royal Society of Chemistry
The results from the OC20 examples demonstrate that the
method is able to nd atoms in similar chemical environments
illustrated by their similar ADOS. This could be very useful for
catalyst design. One potential direction would be to nd
cheaper alternative catalyst materials which could maintain
similar chemical environments for the adsorbates.
4 Conclusion

In this work, we showed how to use neural network
embedding-based approximate nearest neighbor search
framework to search for similar chemical (sub)structures in
large chemical databases. We discussed two components of
this framework: the neural network embedding and the
approximate nearest neighbor search. The former enables us
to represent local atomic congurations precisely. The latter
provides us with a fast and cheap way to search for neigh-
boring real vectors in a large database. In our work, we used
GemNet and FAISS as the neural network model and the ANN
search implementation. However, the usage of this framework
is not limited to these two examples. Any molecular descrip-
tors and other deep learning models can be used to generate
the representing vectors for atoms or molecules. Factors such
as computational scaling, expressiveness, and computational
cost need to be considered when we make a choice. Similarly
any vector search method can be used as the search engine. A
cheap, fast, and user-friendly package would be favorable,
such as FAISS.

We illustrated the idea with examples across organic mole-
cules, bulk systems, and solid surfaces with adsorbates, and
showed the ability of this framework to nd similar congura-
tions in different databases. We presented the similarities from
different aspects: elemental types, geometric features, energetic
relevance, and the electronic density of states. These examples
also reect the generalizability of this framework for different
types of atomistic systems.
Digital Discovery, 2022, 1, 636–644 | 643
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Data and processing scripts for this paper, including IPython
notebooks, and the indexes are available at https://
kilthub.cmu.edu/ at https://doi.org/10.1184/R1/19968323.
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