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The growth of machine learning as a tool for research in computational chemistry is well documented. For

many years, this growth was heavily driven by the paradigms of supervised and unsupervised learning.

Recently, however, there has been increased interest in the use of a third paradigm: reinforcement

learning. This approach, in which an agent interacts with an environment to learn which actions it should

take to maximise a long-term objective, is particularly suited to problems of planning or sequential

decision making. In this review, we present an accessible summary of the theory behind reinforcement

learning (and its common extension, deep reinforcement learning) tailored specifically to chemistry

researchers. We also review the applications of reinforcement learning which already exist within the

world of chemistry, and consider the future direction of research based on this promising technique.
1 Introduction

The subject of machine learning, drawing strengths from
probabilistic inference, function approximation and optimiza-
tion, theory of dynamical systems, and parallel and distributed
computing, is the driver of all recently reported advances in
articial intelligence. Much of the applications of machine
learning, including applications seen in chemistry, are centred
around supervised and unsupervised learning formulations,
solving regression, classication, density estimation and low
rank matrix approximation problems. Advances in instrumen-
tation and our collective ability to generate, archive and
distribute vast quantities of data, along with advances in
complex models and algorithmic tricks around their training
have achieved step advances in several applications such as in
silico screening of drugs.1

Supervised and unsupervised learning paradigms essentially
learn static or dynamic mappings in a space of features.
Unsupervised learning aims to characterise the probability
distributions of these features, or discover subspaces in which
the derived data may live, while supervised learning uses
labelled data to infer relationships between features. Such data
is usually seen as arising from an underlying probabilistic
generating mechanism, sampled in an identical and indepen-
dently distributed IID manner.2

A machine learning paradigm that is distinct from the above
two is that of reinforcement learning (RL),3 which addresses
planning or sequential decision making problems. Reinforce-
ment learning assumes a setting in which an agent interacts
with an environment to acquire data and learn about the
hampton, University Road, Southampton,

n.ac.uk

r Science, University of Southampton,

1BJ, UK

the Royal Society of Chemistry
environment, and executes actions that will maximise a long
term objective. The environment in this setting makes transi-
tions between states whenever the agent executes an action. The
resulting state the environment transitions into is either fully or
partially observable by the agent, which is also given a short
term reward resulting from the chosen action. A diagram of this
process is shown in Fig. 1.

The problem then is to combine the information contained
in the observed state transitions and received immediate reward
so as to act in a way that a long term objective is met. The
challenge, of course, is that greedily accumulating the imme-
diate rewards obtained need not be the optimal decision
because such decisions could drive the agent along trajectories
that may subsequently offer low rewards. The action an agent
takes in any state is referred to as a policy, and discovering an
optimal policy while characterising the uncertain behaviour of
the environment is the learning challenge in this paradigm. The
formulation is closely related to the subject of stochastic
optimal control.4

Recent developments in the reinforcement learning have
been heavily inuenced by the use of powerful non-linear
Fig. 1 Diagram of the reinforcement learning process. The agent
receives information from the environment via the state st and reward
rt (t > 0) at time step t and chooses an action at which affects the
environment at time step t + 1.
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function approximation methods derived from neural network
architectures, and the algorithmic developments around them.5

Such function approximations are used to model parametric
forms of optimal policies or to approximate what we could
loosely refer to as the usefulness of reaching any state along the
trajectory towards the optimal one in the long term. It is this
combination of learning paradigm and neural architectures
that have led to several advances in articial intelligence such as
defeating the world's best human players of complex game of
Go.6

Machine learning is now relatively widespread in chemistry
research. Both supervised and unsupervised learning, driven by
the rise of articial neural networks, have seen use in virtually
every important discipline within the eld.7 Until recently,
reinforcement learning was less widely utilised. In the last ve
years this has begun to change, and examples of RL can now be
found in a wide variety of areas from drug discovery to reaction
control. This review aims to act as a guide to the use of rein-
forcement learning within chemistry, setting out the theory
required to use it, discussing the practical issues which may be
encountered, and reviewing the applications that already exist.

The remainder of this paper is organised as follows. In
Section two, we introduce the theoretical principles of rein-
forcement learning. In Section three, we present a brief review
of deep neural network architectures. In Section four, we review
the applications of RL to real problems within chemistry that
have been conducted to date. Finally, we consider the future of
RL as a tool in chemistry research.

2 Theory of reinforcement learning

Reinforcement learning is a vast subject with much prior work.
This paper provides a high level summary; more detail on the
considered concepts is provided by Sutton and Barto3 among
others.

A reinforcement learning agent is designed to select a partic-
ular action from a set of possible actions, given the current state
of a system within a set of possible states. Both the state space
and the action space may be continuous or discrete; the action
space may differ between states. Actions are selected using
a policy which gives the probability of selecting an action given
the current state. Each action that may be selected both changes
the state of the system at the next time step and leads to the agent
receiving a different reward, which is dened by a reward func-
tion. The agent wishes to maximise the total reward received
during the length of the simulation. In most applications, the
simulation length is nite and reaching a specied number of
time steps or a specied subset of the state space will cause the
simulation to end, but innite-step simulations are also possible.
A key challenge in reinforcement learning is the exploit-explore
problem of nding the correct balance between taking actions
which are known to give high expected rewards and exploring
actions which have not yet been investigated.

Reinforcement learning is oen framed in the context of the
Markov decision process,8 in which the current state is all that is
needed to determine an action: knowing the previous history of
the states and actions taken to reach the current state provides
552 | Digital Discovery, 2022, 1, 551–567
no additional information with which to select the next action.
This allows the agent to learn efficiently, as the reward of taking
the same action while in the same state is effectively constant.
However, this is also a strong assumption, as there are real
processes in which the most rewarding action may depend on
the process history as well as the current state. These are
referred to as hidden state problems, since the behaviour of the
system would be Markovian if the state observed by the agent
captured all of the information which dened the reward.9 They
can be handled via the more general partially observable
Markov decision process, allowing the agent to interact with an
incomplete representation of the state space; a discussion of
how different methods compare in this respect was provided by
Jaakkola et al.10

The design of the reward function plays an important role in
RL, as this determines what the agent is aiming to maximise
through its policy learning. Reward functions can be discrete or
continuous, and may include rewards at every time step of the
simulation or at only the nal time step. They may also include
a discount value to decrease the importance of expected rewards
as the number of time steps beyond the current one increases.
The use of additional rewards not motivated directly by the
underlying problem to help the agent to learn is called reward
shaping, and has been the subject of signicant research.11

Designing a reward function to ensure the agent performs well
for the specied task is challenging and somewhat subjective,
and most RL work in chemistry has approached this using
subject-specic expert knowledge. In inverse reinforcement
learning, the reward function is treated as unknown and a good
reward function is learned by the agent based on a set of
examples with properties which the agent wishes to replicate.
Further details of this approach can be found in Hadeld-
Menell et al.12
2.1 Types of reinforcement learning

In most RL settings the key aim of the agent is to learn a policy
to maximise the expected reward as much as possible during
the simulation. The two broad approaches for this are policy
learning and value learning. In policy learning, the agent aims
to directly learn an optimal policy to maximise the total ex-
pected reward. Value learning instead focuses on learning
a value function which denes the expected reward of either
every state or every pair of state and action, and uses this to
select the most rewarding policy. Policy learning works directly
with the quantity of interest and is very stable but can be highly
sample inefficient, while value learning offers a greater sample
efficiency at the cost of possible instability and the risk of
diverging from the optimal policy.13

Another important distinction for RL is whether an algo-
rithm is model-based, in which a model for the dynamics of the
environment is used during learning and action selection, or
model-free, in which case a policy is learned and actions
selected without the use of such amodel. An algorithmmay also
be on-policy, if the states and actions used in training the agent
are generated by the current policy, or off-policy if they are
generated in some other way.
© 2022 The Author(s). Published by the Royal Society of Chemistry
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The scope of problems which can be addressed with tradi-
tional RL is limited by practical concerns around the size of the
state space and action space. For example, in value learning, the
expected value of every state–action pair must be recorded,
which quickly becomes infeasible as the number of possible
states increases. Recent advances in the eld have been driven
by deep reinforcement learning, in which unknown functions of
the state and action space such as the policy or value function
are approximated via a deep neural network. Since these func-
tions can be approximated based on a small sample of obser-
vations, the dimensionality of the state space is no longer
a limitation and more complex problems can be tackled.5 This
approach does introduce additional complexities arising from
the additional variance imposed by the approximation, and in
the choice of neural network used; the types of neural network
which may be considered for the purpose are discussed in
Section 3.
2.2 Policy optimisation algorithms

Many different algorithms have been used for policy optimisa-
tion in chemistry. The most popular forms of value learning are
based on Q-learning, a model-free method in which the agent
learns a Q-function describing the expected rewards of state–
action pairs. In its simplest form, Q-learning is a tabular
method in which the agent learns by evaluating every state–
action pair and updating Q values using value iteration. Wat-
kins and Dayan14 proved that this method converges to the
optimal policy if every action can be attemptedmultiple times at
every state, but this is impractical if the state space is large.
Deep Q-learning15 overcomes this obstacle by using a neural
network called a deep Q-network to approximate the Q-function
given a sample of state–action pairs. Using a non-linear
approximation to the Q-function can cause instability in the
learning process; this is addressed via a technique called
experience replay, in which recent observations of the agent at
each time step are stored in memory and Q value updates are
made with respect to samples from the agent's experience
instead of single values. A variant named double Q-learning16
Fig. 2 Diagram of a reinforcement learning agent using an actor-critic
policy optimisation method. The agent is split into two modules,
a critic which estimates the value of state–action pairs given the state
st and reward rt, and an actor which chooses an action at given the
state and the value.

© 2022 The Author(s). Published by the Royal Society of Chemistry
uses two estimates of the Q-function trained on different
experiences. This xes an issue with standard Q-learning in
which the expected value of certain actions can be over-esti-
mated in stochastic environments.

Most policy learning algorithms are based on two key
concepts: policy gradient and actor-critic. Actor-critic methods
consist of two modules: an “actor” model estimating the policy
function, and a “critic” model estimating the value function.
The parameters of the actor are updated based on the output of
the critic given the current parameters to determine a policy
which will lead to good expected rewards. Fig. 2 presents this
form of RL agent diagrammatically. In contrast to Fig. 1, the
agent is now split into the actor module choosing actions based
on the current state and the value function estimate, and the
critic module learning the value function based on the current
state and reward.

Actor-critic methods are frequently characterised by the
nature of the critic module, such as the pioneering temporal
difference actor-critic (TD-AC) algorithm of Barto et al.,17 and
the advantage actor-critic (A2C) algorithm of Peters and
Schaal;18 the latter was developed further by Mnih et al.19 into
asynchronous advantage actor-critic (A3C). The actor may
optimise its parameters using any method, but in recent work it
is common for a version of policy gradient learning to be used.

In policy gradient methods, the parameters of the policy are
optimised by updating them proportionately to the partial
derivative of the performance of the policy with respect to the
parameters (the gradient function). This is equivalent to opti-
mising a stochastic policy via a function approximating the true
policy. The optimisation step may be conducted using any
gradient ascent method. Direct computation of the gradient is
difficult as it depends on both the action selection under the
current policy, and the distribution of states under an optimal
policy; however, the policy gradient theorem states that it is
possible to obtain an unbiased estimate of the gradient given
a sample of experiences from a reasonable function approxi-
mation.20 The earliest policy gradient algorithm, named REIN-
FORCE or ‘vanilla’ policy gradient, was introduced by
Williams.21 This is a form of on-policy Monte Carlo approxi-
mation using the likelihood ratio trick, and remains popular
due to its simplicity to implement. Other approaches to simple
policy gradient learning include nite difference methods;
a comparison of these early algorithms is given by Riedmiller
et al.22 However, there are several disadvantages: they can be
slow to converge and require many samples to learn a near-
optimal policy, have very high variance and will oen converge
to a local optimum instead of a global one.

These weaknesses led to the development of more advanced
methods incorporating actor-critic techniques. Schulman
et al.23 developed Trust Region Policy Optimisation (TRPO), an
algorithm based on a series of approximations to a theoretical
result concerning policy improvement by minimising surrogate
loss functions. A restriction on the divergence between the old
and new policy is enforced to prevent overly large updates which
may harm convergence, while still allowing large updates within
a trust region where it is safe to do so. Proximal Policy Opti-
misation (PPO)24 follows a similar strategy but works with
Digital Discovery, 2022, 1, 551–567 | 553
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a clipped surrogate objective function, increasing the range of
problems to which it can be applied and reducing the
complexity of implementation while maintaining many of the
benets of TRPO.

Another way to improve the efficiency of actor-critic policy
gradient algorithms is to utilise off-policy updates to reduce the
amount of interaction required with the environment. Deep
Deterministic Policy Gradient (DDPG)25 is an early example of
this which can be viewed as an extension of deep Q-learning to
a continuous action space: learning is conducted via gradient
descent on the Q function and gradient ascent on the policy
function, resulting in a model-free algorithm which is easy to
apply and does not require discretisation of the action space.
Fujimoto et al.26 combined DDPG with ideas from double Q-
learning by using two critic networks, delaying policy updates
until value learning is complete, and adding a regularisation
step with the combined effect of reducing variance and poten-
tial overestimation bias; the resulting algorithm is named Twin
Delayed Deep Deterministic Policy Gradient (TD3). DDPG and
TD3 are extremely efficient, but can suffer from sensitivity to
hyperparameter selection. An off-policy method that aims to
address this is the so actor-critic algorithm,27 in which the
actor network aims to simultaneously maximise expected
reward and entropy.

Finally, the popular decision-making algorithm Monte Carlo
tree search (MCTS) can also be viewed as a form of reinforce-
ment learning. MCTS was introduced by Coulom28 as a search
algorithm for decision-making processes, drawing on a form of
Monte Carlo simulation named rollout within a decision tree.
More recent developments in MCTS have incorporated RL
techniques, and several scholars have noted the links between
the general MCTS formulation and reinforcement learning;
a detailed study of the relationship between the two elds was
undertaken by Vodopivec et al.29

The choice of which algorithm to use is a difficult one and
somewhat subjective, although it will depend on the nature of
the environment (for example if the state space is represented in
a discrete or a continuous form). There have been several
studies conducted to aid in this decision, including compari-
sons on the cart-pole problem by Nagendra et al.,30 a guide to
statistical comparisons by Colas et al.,31 and a comparison
across several benchmark problems by Jordan et al.32 It should
be noted that the list of RL algorithms given here is not
exhaustive, and that the development of algorithms is an active
area of research – a recent example being the Invariant Decou-
pled Advantage Actor-critic method of Raileanu and Fergus,33

which aims to improve the ability of an agent to generalise to
new environments.
Fig. 3 Example fully connected feedforward neural network with two
inputs, two hidden layers of size three and one output. Information
travels through the network strictly from left to right, and every node in
one layer is connected to every node in the next layer.
3 Neural networks for deep
reinforcement learning

The term neural network (NN) may in principle describe any
computational network which aims to learn from data in a way
which mimics the behaviour of a biological brain. Networks are
composed of layers of nodes or neurons which are
554 | Digital Discovery, 2022, 1, 551–567
interconnected to allow the processing of information, and are
closely related to the wider concept of machine learning.

A neural network must contain an input layer and an output
layer. Hidden layers between the input and output layers are
required for all but the simplest computations to be achieved.
Deep neural networks contain multiple hidden layers; while
there is no general denition for the lowest number of layers
required for a network to be considered deep instead of shallow,
the most common threshold is that of any network with two or
more hidden layers. Schmidhuber34 provides a more detailed
account of the history of deep neural networks.

The number of layers in a neural network, and the number of
nodes in each layer, can have a signicant effect on the
behaviour of the network. A network with more or larger layers
is more powerful and can t well to a wider range of underlying
data generation processes, at the expense of increased
complexity and a risk of overtting to the training data. This is
however rarely considered in reinforcement learning literature,
where it is common to simply present the network used without
consideration of alternatives. One approach adopted by some
authors is to treat neural network architecture as an optimisa-
tion problem and search the space of possible architectures for
the best model; this is discussed by Benardos and Vosniakos35

and Luo et al.36 among others.
3.1 Feedforward neural networks

The simplest and oldest form of neural network is a feedforward
network, in which there are no cycles connecting the nodes of
the network. In this structure, information only moves forwards
from the input nodes to the output nodes.

In principle, any directed acyclic graph may be used as the
basis for a feedforward NN. The most common network struc-
ture is a fully connected network, in which every node in a layer
has a connection to every node in the next layer. An example of
a fully connected feedforward NN with two hidden layers is
shown in Fig. 3. This type of network is oen referred to as
a multilayer perceptron (MLP), although this terminology is
somewhat confusing as other authors restrict it to specic types
© 2022 The Author(s). Published by the Royal Society of Chemistry
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of fully connected network. Feedforward neural network are
usually trained using iterative optimisation methods such as
gradient descent or stochastic gradient descent, with the
backpropagation algorithm used to compute the gradient with
respect to a loss function.

Feedforward neural networks have found widespread use in
elds as diverse as facial recognition,37 dynamic systems
control,38 geology and mining,39 and urban sustainability.40 In
some application areas, however, the lack of ability for infor-
mation to move backwards between layers can be a limitation.
3.2 Recurrent neural networks

A recurrent neural network (RNN) is a network which contains
at least one cycle between nodes. The simplest possible example
of an RNN is shown in Fig. 4. The structure of an RNN with
practical uses will be more complicated in terms of its nodes
and the connections between them, but the dening principle is
the same: in contrast to an FNN, loops connecting nodes in the
hidden layer(s) mean that information no longer travels strictly
forwards. This allows information to be stored within the
network via a form of internal memory RNNs are of particular
use for sequential data and sequence modelling, and can
handle inputs of variable lengths and time series data. RNNs
have been used in numerous elds including musical compo-
sition41 and musical computation,42 water table modelling,43

and electrical load forecasting.44 An area of particular focus has
been natural language processing45 and text classication and
prediction;46 indeed, for language modelling, a review by Sun-
dermeyer et al.47 demonstrated that RNNs offer signicant
advantages over comparable methods based on feedforward
networks.

The presence of cycles in RNNs affects the way in which the
network can be trained, and methods based on back-
propagation can be problematic due to repeated multiplica-
tion of gradients causing terms to vanish or explode. This was
addressed by Hochreiter and Schmidhuber48 through the
creation of Long-Short-Term Memory (LSTM), a system in
which information is stored in a cell and the ow of infor-
mation to and from the cell is regulated by a series of gates.
The Gated Recurrent Unit (GRU) is a more recent development
with a similar but simpler structure, and was shown by Chung
et al.49 to offer comparable performance on a selected set of
problems.
Fig. 4 Simple recurrent neural network with one input, a single one-
node hidden layer and one output. The grey arrow connecting the
node in the hidden layer to itself is the source of recurrence in the
network.

© 2022 The Author(s). Published by the Royal Society of Chemistry
LSTM and GRU architectures can struggle with certain tasks
due to limitations of their structure. Difficulties in sequence
prediction with these methods motivated Joulin and Mikolov50

to investigate augmentation of RNNs with a neural stack to
increase the memory capability of the network. Similar work on
extending RNNs with structures analogous to stacks and queues
was conducted by Grefenstette et al.51 to overcome challenges in
learning natural language transductions. Stack-augmented
RNNs (stack-RNN) extend the network with cells consisting of
multiplicative gates dening a memory stack, on which a PUSH
(insert) or POP (remove) operation may be conducted to change
the makeup of the vectors stored within the network's memory.
This allows the network to learn longer-term dependencies
between features of the training data.

3.3 Generative adversarial networks

While traditional neural networks are extremely good at clas-
sication and regression problems, they are less well tuned to
generative modelling. This is particularly important in chem-
istry problems such as drug design. The generative adversarial
network (GAN) architecture was proposed by Goodfellow et al.52

as a framework designed specically for generative modelling.
It consists of a pair of networks working in competition with
each other: a generator network G which aims to produce new
data which could plausibly come from the training set, and
a discriminator network D which is given a sample of data and
aims to determine if this comes from the training set or the
generator network. Based on the output of the discriminator,
the generator can improve its generation process over time to
generate more realistic samples. A diagram of this process is
shown in Fig. 5.

The networks G and D may take several forms, but are typi-
cally FNNs or RNNs. GANs were extended to handle sequential
data using reinforcement learning in the SeqGAN method of Yu
et al.53 Application areas include text-to-image generation,54

astronomical image restoration55 and several problems in
medical imaging.56 GANs are a developing area of machine
learning, both in terms of structure and applications; a more
detailed review of recent progress was provided by Alqahtani
et al.57
Fig. 5 Diagram of a generative adversarial network architecture.

Digital Discovery, 2022, 1, 551–567 | 555
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Fig. 6 Hierarchical diagram of chemistry problems to which rein-
forcement learning has been applied.

Digital Discovery Review

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 3

0 
A

ug
us

t 2
02

2.
 D

ow
nl

oa
de

d 
on

 1
1/

21
/2

02
5 

7:
49

:2
3 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
3.4 Other networks

A convolutional neural network (CNN) is a network which
includes hidden layers to perform convolution operations on
the inputs to the layer. Compared to fully connected feedfor-
ward NNs, the convolutional layers act to regularise the network
to reduce overtting, and allow fewer neurons to be used. CNNs
also commonly include pooling layers for dimension reduction.
The input to a CNN is of tensor form, so they are particularly
effective for spatial data: the most active eld of application is
image processing, for example by Krizhevsky et al.58 and Valueva
et al.59 CNNS can work directly with graphical inputs, with
applications in molecular chemistry.60 A more general CNN-
based machine learning method for graphs named message
passing neural network (MPNN) was developed by Gilmer et al.61

and applied to quantum chemistry problems.
The variational autoencoder (VAE) was introduced by

Kingma and Welling62 as an application of neural networks to
variational Bayesian methods for approximate inference. It
consists of two networks, an encoder and a decoder, which map
inputs to and from a latent variable space which is otherwise
intractable. The encoder and decoder must be selected from the
stable of other neural network architectures: early work by
Bowman et al.63 made use of RNN encoders and decoders for
language modelling, and similar techniques have since been
applied to automatic chemical design by Gómez-Bombarelli
et al.64 and Griffiths and Hernández-Lobato.65

Another signicant encoder–decoder structure is the trans-
former architecture of Vaswani et al.66 The encoder and decoder
are built from a series of layers comprising FNNs and sub-layers
based on attention mechanisms, a form of mapping which
enhances the importance of some parts of the input data while
reducing the importance of other parts. In contrast to RNNs,
transformers process an entire input at once, even if the input is
sequential in nature. Transformers have found success in
natural language processing tasks, and have largely replaced
RNNs as the method of choice in the eld.67 Recent papers by
Chen et al.68 and Janner et al.69 link the transformer method to
reinforcement learning by framing RL as a sequence modelling
problem.
4 Applications of reinforcement
learning in chemistry

The range of chemistry problems to which RL has been applied
is extremely varied, with at least some active areas of research in
most sub disciplines of the eld. Fig. 6 depicts these problems
hierarchically by broad area of application. There is consider-
able variation in activity between elds: while most of the topics
listed under “Other areas” have been the subject only one or two
RL papers each, the eld of structure design (both molecular
and biochemical) has seen a vast array of relevant publications.
This section is therefore divided into six headings: drug
discovery and small molecule design, molecular geometry
optimisation, biochemical sequence design, proteins, reaction
management and process control, and other areas.
556 | Digital Discovery, 2022, 1, 551–567
4.1 Drug discovery and small molecule design

The design and investigation of new molecules for use in
pharmaceutical treatment is an extremely important problem,
but there are many challenges associated with this process. As
discussed by Torjesen,70 only around one in every 5000 possible
new drugs will be successful, and even a successful design will
require around 12 years of research and development. There has
therefore been a great deal of interest in utilising machine
learning to improve this.

The area in which computational methods have shown the
most promise is in the generation of candidate molecules with
promising properties. In principle, a generative model can be
used to propose molecules which are more likely to be
successful for a given task. While this is not a new idea, the rise
of neural networks in recent years has led to drug design
becoming one of the most active areas of machine learning
research in chemistry, and a wide variety of approaches have
been taken. Authors such as Mandlik et al.,71 Schneider and
Clark,72 Vamathevan et al.1 and Mouchlis et al.73 have provided
detailed coverage of the topic. Most relevant to this review,
however, is the large body of work consideringmolecular design
as a sequential problem in which decisions are made to improve
the properties of the molecule(s) being proposed. Reinforce-
ment learning is an ideal tool to achieve this.

The use of reinforcement learning in drug discovery began
with the work of Guimares et al.74 and Sánchez-Lengeling et al.75

The problem formulation is based on SMILES, a widely-used
string representation of a molecule. The states of the RL agent
are partially-completed SMILES strings, and the action space is
the selection of the next character to be added to the string.
Constructing a string in this fashion is a difficult problem, as
SMILES syntax is notably fragile. The vast majority of combi-
nations of characters are invalid, including those generated at
intermediate time steps en route to a valid string. Among valid
strings, very small changes may dramatically alter the chemical
properties of the associated molecule, so it is difficult to
construct a string which is likely to correspond to a desirable
molecule. Non-RL methods to do this have been proposed with
some success, notably that of Ikebata et al.,76 but even among
these the proportion of valid, chemically desirable sequences is
relatively low.
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Themethod introduced by Sánchez-Lengeling et al.,75 named
Objective-Reinforced Generative Adversarial Networks for
Inverse-design Chemistry (ORGANIC), is based on the SeqGAN
approach of Yu et al.53 It utilises a GAN neural network struc-
ture, with an LSTM RNN as the generator network and a CNN as
the discriminator. The reward function is a linear combination
of the discriminator and a quality metric based on the proper-
ties of the sequence; Monte Carlo rollout is used at intermediate
time steps to estimate expected future rewards, with policy
gradient optimisation used for policy learning. This work was
later extended by Putin et al.77 using a differentiable neural
computer in place of LSTM, allowing longer and more complex
sequences to be learned and generated. The resulting Rein-
forced Adversarial Neural Computer (RANC) architecture was
shown to generate a higher proportion of unique molecules
with desirable properties.

Also in 2017, Olivecrona et al.78 proposed a different RL
method for drug discovery. With the same state and action
spaces, this method trains an RNN with three layers of 1024
GRUs each on a set of 1.5 million SMILES strings corresponding
to existing molecules, and uses RL to augment the likelihood of
the RNN so that molecules with desirable properties will be
constructed. The authors state that a policy-based learning
approach is more appropriate than a value-based approach for
this problem, and make use of the REINFORCE algorithm to
learn an optimal policy. The reward functions used are based
solely on the desirability of the sequences created, for example
to promote DRD2 activity. REINVENT, a direct extension of this
approach incorporating a memory unit in the scoring function
so that a more diverse range of molecules are proposed, was
developed later by the same research group and published in
a paper by Blaschke et al.79

There are many further examples of RL agents constructing
SMILES strings one character at a time. Popova et al.80 used the
REINFORCE algorithm and a reward function based only on
molecular properties and no intermediate rewards while
making use a generator-predictor structure: a memory
augmented single layer stack-RNN was chosen to generate new
SMILES strings directly without recourse to descriptor-based
modelling, while an LSTM RNN was used for property predic-
tion. This approach was shown to propose novel compounds to
inhibit Janus kinase 2 (JAK2), a protein linked to several
important cellular processes in the human body. Later, Yoshi-
mori et al.81 maintained the same architecture as Olivecrona
et al.,78 while replacing the reward function with the output of
the LigandScout 3D pharmacophore model of Wolber and
Langer82 to aid the discovery of molecules with the desired
pharmacophores.

Neil et al.83 conducted a thorough exploration of several
approaches to molecular design using RL. Focusing on multi-
objective optimisation, the authors tested several different
neural network architectures and policy optimisation methods
against a set of 19 benchmarks for molecular design. Proximal
policy optimisation with a single LSTM RNN was found to
perform best of the RL approaches, outperforming both
advantage actor-critic and vanilla policy gradient as well as GAN
architectures (although as noted above, GANs have advanced
© 2022 The Author(s). Published by the Royal Society of Chemistry
signicantly in the years since). The non-RL method Hillclimb-
MLE, based on repeated maximum likelihood estimation, was
also found to offer competitive performance levels.

Recent work by Pereira et al.84 used six-layer RNNs incorpo-
rating both LSTM and GRU structures within their layers to both
generate SMILES strings and determine the reward to given to
the generated molecule. Given a target receptor to inhibit, the
IC50 is dened as the amount of a substance required to inhibit
50% of the receptor. The RL reward function is based on the
negative predicted log IC50 of the compound generated with
respect to the target, with a penalty term if the molecule is
lacking in novelty. This has the effect of biasing the generator
model towards both desired chemical properties and increased
molecular diversity. Another recent paper, Born et al.,85 directly
incorporated information on the target disease (in this case
cancer) into the molecular generation process. Molecules are
generated using two VAEs running in conjunction, one gener-
ating a gene expression prole and the second generating
SMILES strings for molecules based on the generated gene
expression prole, with a reward function based on the IC50 as
estimated by the PaccMann drug sensitivity model.

Another distinct approach to SMILES string generation for
drug design is that introduced by Krishnan et al.86 This
approach draws on transfer learning, in which policies learned
by an agent in one problem may be applied to another related
problem; it has previously seen use in both molecular library
generation87 and RL research.88,89 A stack-augmented RNN with
gated recurrent units is trained to generate strings, and is
combined with a set of molecules known to inhibit proteins
similar to the intended target using transfer learning to create
a target-specic generative model. A property prediction model
is then used to guide the generator towards more desirable
molecules, with a reward function based on the predicted
docking score of the generated molecule. The method was
tested on the problem of inhibiting the JAK2 protein; it was able
to both reproduce existing JAK2 inhibitors without similar
molecules being included in the training set, and to design
potential new inhibitors.

The wide variety of reward functions used in the work
described so far highlights the importance of reward function
construction in drug design problems. To bypass this challenge,
Agyemang et al.90 treated drug design as an inverse RL problem
and inferred the reward function for the agent from the SMILES
strings of known molecules with desirable properties. Molecule
generation is handled by a multiple layer stack-augmented
RNN, with PPO for policy learning. The authors demonstrated
this method on several examples, including JAK2 inhibition.

As previously mentioned, the challenging syntax of SMILES
strings makes their construction difficult. For this reason,
Thiede et al.91 worked with SELFIES strings, in which every
combination of characters is valid and the substrings generated
during the construction process can be directly interpreted.
Optimisation is handled via PPO, while the reward function is
dened by a combination of an extrinsic reward (based on the
predicted properties of the molecule) and an intrinsic reward
named curiosity to encourage increased exploration of the state
space.
Digital Discovery, 2022, 1, 551–567 | 557
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An alternative to string-based molecular representations are
two-dimensional graphs, which offer increased robustness and
interpretability, for example of partially-constructed graphs as
molecular substructures. Fig. 7 shows a highly simplied
example of how a molecular graph may be constructed using
reinforcement learning. The action space consists of two
distinct action types: addition of a new atom in the molecular
graph and addition of a bond between existing atoms. A stop-
ping criterion to determine when a molecule is considered
“complete” is also required. The methods used in practical
applications are signicantly more complex than this, but are
usually based on similar principles.

The pioneering RL work for graphical molecular construc-
tion was that of You et al.92 Given a set of scaffold subgraphs
corresponding to atoms or molecular substructures, the state
space of the RL agent is dened as the set of graphs which can
be constructed from these subgraphs, and the action space as
the set of possible extensions to the existing graph by either
connecting existing nodes in the graph or adding an additional
scaffold subgraph. Two deep graph convolutional networks
were used as a generator and a discriminator in an adversarial
setting, with rewards based on molecular properties and
adversarial loss. This method was tested on problems of
molecular property optimisation and property targeting, and
demonstrated to offer signicant improvements over earlier
approaches. Later, Khemchandani et al.93 integrated the work of
You et al.92 with a neural network method for property predic-
tion introduced by Yang et al.94 to create a new method for
generation of molecules with desirable properties. A recent
paper by Atance et al.95 uses a gated graph neural network in
place of a convolutional network, with a memory-aware RL
approach developed from that of Olivecrona et al.78 and a best
agent reminder loss function. This method shows signs of
strong performance on QED optimisation and DRD2 activity
tasks.

Zhou et al.96 took a different approach, aiming to optimise
existing molecules for drug discovery. By making only chemi-
cally valid changes – atom addition, bond addition or bond
removal – to molecules, the authors ensure the nal molecule is
itself chemically valid, and avoid the need for pre-training on
existing data to reduce the risk of bias in the model. A deep Q-
network structure utilising a fully connected feedforward NN
with four layers is used for value function learning, with
a reward function (which includes intermediate rewards but
weights the nal reward most highly) dened by the molecular
properties to be optimised.

In a similar vein, Ståhl et al.97 introduced DeepFMPO,
a temporal difference actor-critic RL with two LSTM RNNs to
Fig. 7 Simplified demonstration of the process of constructing
a molecular graph using reinforcement learning. Starting from an
empty canvas, the agent places atoms and adds bonds between them
to create a molecule.

558 | Digital Discovery, 2022, 1, 551–567
discover novel molecules which optimise multiple objectives
through molecular modication. First, a library of molecular
fragments is created by fragmenting a set of initial molecules,
and fragments are encoded in such a way that similar molecules
have similar encodings. The agent alters one fragment in the
molecule at each time step, with rewards given for molecular
validity and improvement in the target properties. The reward
function is updated over time as the agent discovers more
molecules with desirable properties.

Two papers published in 2020 focus on ensuring that the
proposed new molecules can be synthesised and that the
synthesis route for the molecule can be determined. Gottipati
et al.98 developed an approach named policy gradient for
forward synthesis. The state space is the set of molecules to be
used in a chemical reaction, and the action space is split into
two parts: an intermediate action of selecting a reaction
template, and a nal action of selecting a reactant to combine
with the current molecule to produce a new molecule with
desirable chemical properties. A k-nearest neighbour algorithm
is used to discretise the otherwise extremely vast reactant space,
and the selection policy is optimised using twin delayed deep
descent policy gradient (TD-DDPG). Three neural networks are
used, one each for predicting the best reaction template,
computing the action to be taken, and estimating the Q-value of
the product molecule. Each network is a fully connected feed-
forward NN with four layers, although the number of neurons in
the hidden layers varies between networks. Similarly, Horwood
and Noutahi99 take a given set of initial molecules and reactants
and dene the transitions between states in terms of sequences
of chemical reactions. Actions are treated hierarchically in
terms of selecting a reaction template and then a reactant.
Molecules are represented using Morgan ngerprints and
reaction templates by SMARTS syntax. An advantage actor-critic
algorithm is used for policy optimisation.

There has also been interest in using RL for three-dimen-
sional molecular design, which can take advantage of spatial
information not captured by string or graphical representa-
tions. Simm et al.100 developed an RL agent which designs
molecules by placing atoms onto a canvas in 3D space. The
reward function is based on fundamental physical properties of
the constructed molecules, in effect encouraging the agent to
learn the laws governing atomic interactions in three dimen-
sions. The state space is the set of currently placed atoms and
their positions plus a bag of atoms remaining to be placed (the
initial set of atoms to be placed must be specied in advance),
with the action space being the selection of the next atom to be
placed and its location, and the placement action chosen based
on the distance and dihedral angle with respect to an already-
placed focal atom when the canvas is not empty. The same
authors develop the method further in Simm et al.101 to exploit
symmetry in the design process using rotationally covariant
state–action representations and neural network architectures.

Another example of 3Dmolecular construction is the work of
Bolcato and Boström,102 an extension of the DeepFMPOmethod
of Ståhl et al.97 discussed above. The revised method uses
conformer search on molecular fragments for 3D alignment so
© 2022 The Author(s). Published by the Royal Society of Chemistry
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that electrostatic and shape similarities may be considered
instead of simpler 2D similarity.

Recently, Meldgaard et al.103 proposed a method combining
imitation learning and reinforcement learning to ensure that
the generated molecules are stable. Imitation learning is
a learning scheme in which an ML model may learn from
demonstrations and has some history of use alongside RL.104

First, an imitation learning agent is trained on a molecular
database to construct existing molecules and predict their
stability using quantum chemistry and 3D information. A deep
RL agent using a Q-learning algorithm then explores the
molecular space to discover new stable molecules, while
simultaneously updating the prediction model in areas of the
space a long way from the training data.

4.2 Molecular geometry optimisation

A closely related problem to that of molecular design is the
prediction and optimisation of molecular geometries. Instead
of searching for a molecule, we now wish to determine the most
likely geometry of a molecule given some information about it,
and potentially also optimise that geometry with respect to
some conditions. This is typically done using molecular
dynamics simulations or density functional theory, but these
methods can be computationally expensive. Two recent papers
have attempted to address this using reinforcement learning.

Cho et al.105 presented a method to predict the 3D structures
of small molecules. Given the SMILES string of a target mole-
cule and a randomised initial structure for its atoms, the agent
takes actions corresponding to the movements of atoms within
the molecule in 3D space, with rewards given by density func-
tional theory energy calculations and deep deterministic policy
gradient optimisation. The agent was tested on ve simple
hydrocarbon targets and was able to correctly locate the lowest-
energy structure of the ve molecules.

Ahuja et al.106 modied a conventional approach for opti-
misation of molecular geometries viaminimisation of potential
energy using the BFGS algorithm to additionally draw on RL.
The state of the agent at each time step consists of the gradients
of the potential energy surface and the updates made to the
positions of the atoms in the molecule at each previous time
step. The action to be taken is to propose a correction term to
the BFGS calculation for the next atomic position update, with
policy learning via PPO, and a neural network architecture
consisting of several feedforward NNs linked by a self-attention
layer for information sharing (the authors note the similarity of
this structure to the transformer architecture discussed above).
Since the aim is to reach an optimal geometry quickly, the
reward function is xed to �1 per time step. This approach is
shown to reduce the number of time steps required to reach an
optimum compared to non-RL methods on a set of test
molecules.

4.3 Large molecule and biochemical sequence design

Molecular design is also a critical problem in biochemistry,
where the molecules of interest are typically much larger.
Design of biochemical sequence structures such as RNA, DNA
© 2022 The Author(s). Published by the Royal Society of Chemistry
and proteins is the focus of signicant research in bio-engi-
neering, as these structures play important roles in a wide range
of medically signicant processes such as signal transduction
and transcription control. The nature of these sequences pres-
ents many challenges distinct from those found in small
molecule design: the search space is very different in character,
and substantially larger as each molecule contains more
components. Biochemical sequence design is closely related to
the inverse folding problem, in which the aim is to design
a sequence that folds to a given structure. (Protein folding, an
important sub-problem, is dealt with in Section 4.4 of this
paper.)

The earliest reinforcement learning work in this eld was
conducted by Eastman et al.107 in the shape of a deep RL agent
for the RNA design or inverse folding problem. Given
a sequence of RNA bases, the agent aims to nd a new sequence
which will fold to a target structure by repeated modication of
the existing structure using a form of local search. Policy opti-
misation is handled by asynchronous advantage actor-critic
algorithm, while the neural network used consists of several
convolutional layers operating on either one or seven RNA bases
at a time, plus a nal fully connected layer for value function
estimation and a somax layer to output action probabilities.
This approach is shown to improve on existing non-RL algo-
rithms for RNA design on a test set of 100 target structures,
although the authors note that further performance improve-
ments should be possible.

Independently, Runge et al.108 introduced LEARNA, a deep
RL algorithm to sequentially design an RNA sequence to fold to
a target structure. Uniquely among chemistry literature, the
neural network architecture is determined via architecture
search: the network always includes an embedding layer and
a fully-connected NN with at most 2 layers, andmay also include
a CNN with at most 2 layers and a LSTM RNN with at most 2
layers. PPO is used for policy learning, with the hyper-
parameters and environment parameters jointly optimised
alongside the network architecture. The reward function is
based on the Hamming distance between the observed struc-
ture from the folding process and the target structure, and
incorporates a local improvement step. The authors also
demonstrate an extension based on meta-learning, which
concerns agents that can learn how to improve their own
learning given relevant previous experience109 and has been
used to improve the training of RL agents.110,111 Meta-LEARNA,
which transfers knowledge learned from solving one RNA
sequence problem to others, was found to improve on the other
algorithms tested, solving a higher proportion of problems in
a signicantly shorter time across three sets of test problems.

The wider problem of general biological sequence design (for
example of DNA or proteins) is tackled by Angermueller et al.112

Given a type of biological sequence to be designed, the state
space is dened as the set of possible sequence prexes, and the
action space as the vocabulary of characters which can appear in
the sequence (in the previously stated examples, DNA nucleo-
tides and amino acids respectively). The reward function is
treated as partially unknown: intermediate rewards are set to
zero and the nal reward penalises overly similar sequences,
Digital Discovery, 2022, 1, 551–567 | 559
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but other than this the reward function must be approximated
during sequence construction. Several surrogate models of
varying complexity are considered for the reward function,
predominantly supervised regression models, including
a Bayesian ensemble of neural networks. The policy is deter-
mined by a new algorithm named DyNA PPO, a form of model-
based optimisation using PPO with additional simulated data
from one or more of the candidate models for the reward
function, with the effect of increasing the sample efficiency of
the agent.

Conformer search – the prediction of stable 3D molecular
geometries for exible molecules – is also a relevant and
signicant challenge, analogous to geometry optimisation for
small molecules. This is approached using RL by Gogineni
et al.113 To represent the conformer search problem as a Markov
decision process, the state of the RL agent is taken as the
sequence of conformers observed during the search process so
far. The action space is a discretised version of the torsional
space, consisting of the choice of torsion angles for each
rotatable bond in the current molecule. Node embedding is
handled via a message passing graph convolutional neural
network, a graph pooling operator and LSTM memory unit to
convert the embeddings into a full representation with histor-
ical information incorporated, while torsion action selections
are determined by a feedforward NN. The authors also
demonstrate that the agent's performance may be enhanced via
the concept of curriculum learning, a strategy in which the
agent learns progressively over a series of increasingly complex
related problems building up to the problem of interest.114
4.4 Proteins

Similar problems to those in the more general biochemical
sequence eld have been studied extensively in the specic case
of proteins. In particular, the protein folding problem has
attracted signicant attention, including from a machine
learning perspective. Much of the work conducted on protein
folding using reinforcement learning concerns the 2D hydro-
phobic-polar model, a heavily simplied lattice model for
folding introduced by Dill115 which was nonetheless shown by
Berger and Leighton116 to be an NP-complete problem. Early
work by Czibula et al.117 applies simple Q-learning to the HP
model, with RL actions corresponding to four possible folding
movements in 2D space and a nal reward dened by the
negative energy of the nal protein structure; smaller interme-
diate rewards are offered for valid amino acid congurations.

Li et al.118 took the rst steps into deep RL for the 2D HP
model by introducing FoldingZero, a protein self-folding
architecture based on a deep convolutional network and upper
condence bound tree searching plus an actor-critic RL algo-
rithm to iteratively improve both steps. In this formulation, the
action space is of size three instead of four, as the folding moves
conducted must form a self-avoiding walk. Rewards are
provided for the amount of H–H contact in the nal folded
protein. Later, Jafari and Javidi119 utilised an RNN with three
hidden LSTM layers for deep Q-learning RL via a vanilla policy
gradient algorithm, with the action space dened identically to
560 | Digital Discovery, 2022, 1, 551–567
Czibula et al.117 but a novel reward function: the reward is �1 if
amino acids are lattice neighbours and not consecutive in order
and is a small positive value otherwise, and the agent attempts
to maximise absolute value of the cumulative reward. Results
demonstrated an improvement in both minimising the free
energy in the nal folded state and in the time required to reach
a solution from several starting positions compared to previous
bidimensional folding techniques.

Two recent attempts have been made to address protein
folding in a more realistic framework. The masters thesis of
Gao120 uses a graphical representation of the 3D structures of
proteins: nodes in the graph contain information about resi-
dues in the conformation and edges contain information about
relationships between them. The RL agent operates by changing
the torsion angles of the conformation one at a time, so the
action space consists of selecting torsion angle to be altered and
the number of degrees by which to rotate it. Protein folding is
viewed as an innite-step process, with rewards given so that
the agent aims to minimise the free energy of the conformation.
The neural network architecture is very similar to that used by
Gogineni et al.113 for the broader conformer search problem.

Panou and Reczko121 applied RL to the protein folding so-
ware game Foldit Standalone, introduced by Kleffner et al.122 as
a development of the online game Foldit of Cooper et al.123

Foldit works by allowing human users to interact with an image
of a protein in several ways, with a score awarded to each
protein conguration based on the negative of its energy. In the
work of Panou and Reczko,121 15 of the possible interactions
with a protein form the action set for the RL agent, which works
on pre-processed images of proteins taken from the game. Deep
Q-learning with a CNN composed of several convolutional layers
for feature extraction and two fully connected layers for
prediction is used for policy optimisation, with the reward
function based on the change in Foldit score resulting from an
action. The agent was trained on 20 proteins and tested on 20
more; while performance is highly dependent on hyper-
parameter settings, an optimised agent is able to deliver
consistent structural improvements within a reasonable time,
although it does not exceed human performance at the same
task.

Ideas derived from reinforcement learning have also been
applied to more general protein conformation sampling.
Shamsi et al.124 presented an extension to count-based adaptive
sampling for exploration of protein conformation landscapes,
in which reinforcement learning is used to choose the set of
points in the protein structure at which molecular dynamics
simulations should be run to identify low-energy states. The use
of RL in this work is limited, however, as the policy is never
optimised and must be supplied by a human; instead, the
reward function is used to optimise a set of weight parameters
corresponding to the directions in which sampling may move
from an initial state. Barozet et al.125 developed two methods to
sample the conformational space of protein loop portions, an
important feature of many proteins which are oen represented
unrealistically by a single conformation. The more successful of
the two methods in terms of sampling speed uses an RL-
inspired heuristic for the selection of a tripeptide to be added
© 2022 The Author(s). Published by the Royal Society of Chemistry
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during the loop generation process. Scoring is based on the
probability of successfully closing a protein loop given previous
loops generated using relevant tripeptides, although this is not
a reward function in the traditional sense as there is no
cumulative reward to be maximised.
4.5 Chemical reaction planning, optimisation and control

There are many open problems relating to the planning,
management and optimisation of chemical reactions. Retro-
synthetic planning, or retrosynthesis, concerns attempts to
work backwards from a target molecule to determine a set of
reactions which will lead to the generation of a reasonable
quantity of the target at the lowest cost. The target may be
a small chemical molecule or a larger biomolecular structure.
Several synthesis routes may be possible, and the aim is to
determine themost efficient route. An example of this process is
shown in Fig. 8 for a target molecule A given some available
initial reactants B, C, D, E, F, G. The two routes depicted also
involve intermediate reaction products H, I, J, K, L, M; it is clear
that the second route is to be preferred, as it requires only two
reactions to be conducted instead of six. Retrosynthesis is
commonly done with computer assistance, for example by
Szymkuć et al.126 and Delépine et al.127 among many others, and
has recently seen some use of RL as a strategy to make decisions
about which reaction paths should be investigated.

For chemical retrosynthesis, Schreck et al.128 designed an RL
agent which is given a set of possible reactions leading to
a product (either the nal product or an intermediate) and a set
of commercially available molecules fromwhich the target must
be synthesised. The action space consists of selecting a reaction
at each step in the synthesis chain, and the reward function is
designed to minimise the cost of synthesising the target
product, subject to the total number of reactions required being
no greater than a specied threshold. A form of deep Q-learning
is used for policy improvement. A different RL treatment of the
problem was developed by Segler et al.129 via a method to
proposemolecular transformations and determine their validity
based on Monte Carlo tree search and three separate neural
Fig. 8 Example of retrosynthesis with a target molecule A. Circles
represent molecules, and arrows depict relationships between the
reactants and products of chemical reactions. Given the available initial
reactants (orange), two different synthesis routes can be devised via
different intermediate products (blue); the second route is preferable
as it requires fewer reactions.

© 2022 The Author(s). Published by the Royal Society of Chemistry
networks for expansion policy, rollout policy and prediction.
Koch et al.130 later applied this approach to bioretrosynthesis,
with extensions to handle biological compounds via reaction
rules and combined biochemical scoring.

Having determined a reaction of interest, the next step is to
choose the conditions under which the reaction will take place.
This can signicantly inuence the volume of the target reac-
tion product which can be produced, and there is substantial
literature on optimising reaction conditions via various
methods, for instance Gao et al.131 and Shields et al.132 The key
work on RL for reaction optimisation is that of Zhou et al.133 The
state space of the agent is dened as the set of all possible
combinations of reaction conditions, and the action space by
the set of changes that could be made to the current conditions.
A policy gradient algorithm and a LSTM RNN with two hidden
layers are used. When tested on four real reactions, the agent
consistently nds the optimal reaction conditions faster than
other non-RL algorithms.

In a related problem domain, Li et al.134 use asynchronous
advantage actor-critic RL to control the molecular weight
distribution in atom transfer radical polymerisation. Given the
current reaction system, the agent may add a xed amount of
four possible reagents to the reaction system, provided the
reagent budget has not been reached. A reward of 1 is given if
the actual molecular weight distribution is very close to the
target molecular weight distribution, and 0.1 given if it is
further away but still sufficiently close to be worthy of further
exploration in this approximate region. Two different neural
networks are considered, with a CNN found to outperform
a simple fully-connected NN.

Ma et al.135 treat control of the molecular weight distribution
in nonlinear polymerisation reactions as a process control
problem. The agent chooses the values to which the initiator
and monomer ow rates in the polymerisation process are to be
set, with a positive reward given if the difference between target
and observed molecular weights is sufficiently small, and
negative reward otherwise; the nal molecular weights are given
greater importance than intermediate values. DDPG and two
feedforward NNs are used for policy optimisation. The training
regime is adapted to incorporate historical measurement data
as semi-batch experiments are non-Markovian. A different
reaction control problem was also approached using DDPG by
Alhazmi and Sarathy,136 focusing on the reaction temperature in
a continuous stirred tank reactor (CSTR) network with complex
dynamics and measurement uncertainty. The problem of
temperature control of a CSTR system via reinforcement
learning was earlier considered by Pandian and Noel,137with the
conclusion that using deep RL directly is a better approach than
simply using RL to tune the parameters of a more traditional
controller.

Also relevant is the recent work of Rajak et al.138 on the
problem of optimal synthesis planning for inorganic materials.
The authors use deep RL with policy gradient optimisation to
generate time sequences of reaction conditions for quantum
material synthesis via chemical vapour deposition.

Another approach to better understanding and explaining
chemical reaction mechanisms is to locate the transition states
Digital Discovery, 2022, 1, 551–567 | 561
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in the reaction and use these to determine the factors that
characterise the reaction. This is a difficult problem, as the set
of possible factors is typically much larger than the subset
which actually affect the reaction mechanism, but recent
computational developments have led to renewed interest in
attempting to learn reaction mechanisms automatically. RL was
introduced to this effort by Zhang et al.139 via a method to
determine reaction dynamics and transition state locations
using molecular dynamics simulation and RL with two fully
connected feedforward NNs. The learning approach is named
variational target optimisation and is a combination of two
techniques closely related to actor-critic methods which were
earlier described by the same research group.140

Reinforcement learning has recently begun to play a role in
research into catalysis. Although the key problem of identifying
new catalysts to improve reaction efficiency has yet to be
attempted using RL, there has been promising work on related
problems, including that of Yoon et al.141 on prediction of
kinetic pathways and barriers in potential catalysts under
reaction conditions. The state of the system consists of infor-
mation about the energy surface structure, and the agent
chooses one of four possible actions to modify the surface, with
actor-critic TRPO for policy optimisation. The nal reward is
positive if kinetically feasible surface separation is observed and
negative if the upper energy bound is exceeded, with positive
intermediate rewards given when transition states are observed.
The resulting CatGym method was tested on an Ni–Pd–Au alloy
catalyst and was able to explore the surface efficiently and
generate kinetic pathways to low-energy congurations. Simi-
larly, Lan and An142 used a combination of deep RL and density
functional theory to discover reaction pathways in the Haber–
Bosch process with an Fe(111) catalyst, identifying a path with
a lower free energy barrier than previously known pathways. The
agent uses PPO with two fully connected NNs, with a state space
dened by vectors of length 23 containing information about
the reaction at different surface sites and the number of gas
species along the reaction path, and rewards based on the free
energy barrier connecting the previous and current state aer
an action is taken.

Finally, an unusual application of reinforcement learning to
improve the yield of a chemical product was developed by
Hubbs et al.143 in the form of an agent to determine optimal
production schedules for a chemical manufacturing process.
Here, the action space consists of constructing a schedule to
determine which product is to be produced on each day of the
simulation, and rewards are given based on the prot made
from the production schedule. The RL implementation uses
advantage actor-critic and a neural network with 12 hidden
layers.
4.6 Other areas

4.6.1 Spectroscopy. To date, reinforcement learning has
played only a minor role in research into spectroscopy. Stimu-
lated adiabatic Raman passage, an application of spectroscopy
in quantum physics, was approached by Paparelle et al.144 using
RL with PPO and a feedforward NN with two hidden layers. The
562 | Digital Discovery, 2022, 1, 551–567
actions correspond to on/off settings of pump pulse and Stokes
pulse lasers, and the reward is based on the proportion of the
initial amplitude which ends the simulation in the initial
quantum state, target state and state to be avoided. In one
recent work, Monea145 presented a rare negative result: ve
related RL approaches were considered for the optimisation of
sequence parameters in nuclear quadrupole resonance spec-
troscopy, with a reward function based on the change in signal-
to-noise ration, but all of them were found to perform signi-
cantly less well than Bayesian optimisation.

4.6.2 Quantum chemistry. There has been substantial use
of machine learning in quantum chemistry problems – see for
example Westermayr and Marquetand146 – but little focus on RL
methods. The most relevant work is that of Ostaszewski et al.,147

which applies double deep-Q network RL to variational
quantum circuit architectures and uses this to estimate ground-
state energy of lithium hydride with good results. The state of
the agent is the current quantum circuit and the action to be
taken is the selection of a quantum gate to be added to the
circuit, with rewards based on the circuit energy and time steps
taken.

However, this is perhaps an area of opportunity, as RL has
seen some use in quantum physics which may have applica-
tions to chemistry elds. For example, both Niu et al.148 writing
on an application of RL to quantum control and Bolens and
Heyl149 on RL for digital quantum simulation highlight their
potential uses in quantum chemistry but do not attempt this
themselves. Similarly, the work of Nguyen et al.150 on
measurement of double quantum dot devices may also be
relevant to quantum chemistry research in future.

4.6.3 Chromatography. Recently, two papers have been
published on the application of reinforcement learning to
different aspects of chromatography. Kensert et al.151 applied
a double deep-Q network with two feedforward NNs to the
problem of selecting the scouting runs to improve chromato-
graphic retention models, demonstrating the method on an
example in which the fraction of acetonitrile must be selected to
maximise the information gained from the run. Additionally,
Nikita et al.152 utilised a form of RL to select the ow rate in
cation exchange chromatography, demonstrating that this is
more effective than a simple trial and error selection method.

4.6.4 Atmospheric chemistry. An application of reinforce-
ment learning in atmospheric chemistry is found in the work of
Chang et al.,153 in which RL is used to improve the accuracy of
particulate matter pollution forecasting. Prediction over time of
small particulate matter with a diameter of less than 2.5 mm
(PM2.5), a serious hazard to both human and environmental
health, is commonly handled by an ARIMA time series model,
but recent work has extended the ARIMAmodel to better handle
non-linearity using neural networks. The authors of this paper
go a step further by selecting the input parameter dimension
and time delay in the ARIMA model using deep Q-learning with
a single-hidden-layer feedforward NN.

4.6.5 Electrochemistry. The use of reinforcement learning
in electrochemistry has some history, but has yet to become
widespread. An early example is that of Karimi et al.,154 which
uses basic Q-learning to control the voltage in a proton-
© 2022 The Author(s). Published by the Royal Society of Chemistry
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exchange membrane fuel cell (PEMFC). Some years later, Li
et al.155 also approached PEMFC voltage control using RL, but
with a much more advanced method based on DDPG with two
neural networks.

RL has recently seen use in battery modelling. Unagar et al.156

calibrate a model for lithium-ion battery discharge by using an
RL agent to select the degradation parameters of the model. The
agent uses the Lyapunov variation of the actor-critic algorithm
and two fully connected NNs, and is shown to generate better
calibrated models than a Kalman lter method. Li et al.157 use
deep Q-learning to construct an energy management strategy
for battery electric vehicles, with the reward function con-
structed so that the agent will minimise the energy loss of the
system while ensuring its safety.

4.6.6 Crystallography. While the use of machine learning
in general has been widespread in crystallography, there has
been little discussion of reinforcement learning; a review of the
topic by Vollmar and Evans158 provides numerous examples of
other machine learning algorithms being used for real prob-
lems in crystallography, but none of RL. Somewhat relevant is
the work of Feng et al.,159 focusing on Q-learning to improve the
Rietveld renement method for determining crystalline mate-
rial structures from X-ray or neutron diffraction data. The action
space is the selection of the parameters to rene, while the
reward function is based on the change in the weighted prole
factor value. Recently, Manee et al.160 presented a method for
controlling the crystal size distribution during crystallisation
processes. This approach uses a convolutional neural network
for image processing to monitor the crystal size distribution
through time, and a deep RL agent with twin delayed DDPG
algorithm for the selection of control actions (changes to the
temperature and anti-solvent ow rates) to alter the distribution
towards a desirable one.

5 Conclusion

Reinforcement learning is a technique which is growing in
popularity across many academic elds, and chemistry is no
exception. Recent advances in deep reinforcement learning, the
development of more efficient algorithms and improved neural
network structures have driven a signicant increase in the
range of potential applications within chemistry. In this paper,
we have reviewed the work conducted so far in several broad
areas and specic problems, considering both the theoretical
approaches chosen by different authors and the practical
challenges posed by different problem settings.

The growth of RL within chemistry has been notably non-
uniform, with much more focus on some areas than others. In
particular, molecular design for drug discovery has seen an
extremely large volume of work, with many different variants of
the wider design problem being attempted independently by
different research groups using several varieties of RL.
Biochemistry problems of sequence design and protein analysis
have also been a key area of RL research in recent years. In
contrast, the use of RL in elds such as chromatography, crys-
tallography and quantum chemistry has so far been extremely
limited. It is possible that there is untapped potential for RL to
© 2022 The Author(s). Published by the Royal Society of Chemistry
aid researchers in some of these areas, as planning and
sequential decision making problems to which it is well suited
are present in these elds.

One area of concern arising from this review is the relatively
limited impact of previous RL research on practical chemistry.
For example, despite themany promising computational results
obtained in drug discovery problems, it is somewhat concerning
to note that few (if any) of the molecules discovered through
these methods have yet been synthesised. Similarly, despite the
encouraging performance of RL in reaction optimisation tasks,
there is little evidence that this has inuenced the choice of
reaction conditions in real problems. There are many reasons
why this may be the case, but it does highlight the importance
of ensuring that practical chemists – and not just those already
engaged in computational work – are in a position to take
advantage of new developments.

In practical terms, reinforcement learning has become
signicantly more accessible in recent years. As interest in the
topic has increased, so too has the volume of easily available
literature. In addition, open-source code libraries are available
in a variety of programming languages, removing a signicant
hurdle to easy implementation of RL. This, combined with its
increasingly widespread use across different disciplines,
suggests that the importance of RL as a practical technique
within chemistry will only continue to grow.
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64 R. Gómez-Bombarelli, J. N. Wei, D. Duvenaud,
J. M. Hernández-Lobato, B. Sánchez-Lengeling,
D. Sheberla, J. Aguilera-Iparraguirre, T. D. Hirzel,
R. P. Adams and A. Aspuru-Guzik, ACS Cent. Sci., 2018, 4,
268–276.

65 R.-R. Griffiths and J. M. Hernández-Lobato, Chem. Sci.,
2020, 11, 577–586.

66 A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, Ł. Kaiser and I. Polosukhin, Adv. Neural Inf.
Process. Syst., 2017, 30, 6000–6010.

67 T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue,
A. Moi, P. Cistac, T. Rault, R. Louf and M. Funtowicz,
et al., Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, 2020, pp. 38–45.

68 L. Chen, K. Lu, A. Rajeswaran, K. Lee, A. Grover, M. Laskin,
P. Abbeel, A. Srinivas and I. Mordatch, Adv. Neural Inf.
Process. Syst., 2021, 34, 15084–15097.

69 M. Janner, Q. Li and S. Levine, Adv. Neural Inf. Process. Syst.,
2021, 34, 1273–1286.

70 I. Torjesen, Pharm. J., 2015, Online, URI: 20068196.
71 V. Mandlik, P. R. Bejugam and S. Singh, in Articial Neural

Network for Drug Design, Delivery and Disposition, Elsevier,
2016, pp. 123–139.

72 G. Schneider and D. E. Clark, Angew. Chem., Int. Ed., 2019,
58, 10792–10803.

73 V. D. Mouchlis, A. Afantitis, A. Serra, M. Fratello,
A. G. Papadiamantis, V. Aidinis, I. Lynch, D. Greco and
G. Melagraki, Int. J. Mol. Sci., 2021, 22, 1676.

74 G. L. Guimares, B. Sánchez-Lengeling, P. L. C. Farias and
A. Aspuru-Guzik, Objective-Reinforced Generative
© 2022 The Author(s). Published by the Royal Society of Chemistry
Adversarial Networks (ORGAN) for Sequence Generation
Models, arXiv preprint arXiv:1705.10843, 2017.

75 B. Sánchez-Lengeling, C. Outeiral, G. Guimaraes and
A. Aspuru-Guzik, Optimizing Distributions Over Molecular
Space. An Objective-Reinforced Generative Adversarial
Network for Inverse-design Chemistry (ORGANIC), 2017,
https://chemrxiv.org/articles/ORGANIC_1_pdf/5309668.

76 H. Ikebata, K. Hongo, T. Isomura, R. Maezono and
R. Yoshida, J. Comput. Aided Mol. Des., 2017, 31, 379–391.

77 E. Putin, A. Asadulaev, Y. Ivanenkov, V. Aladinskiy,
B. Sanchez-Lengeling, A. Aspuru-Guzik and
A. Zhavoronkov, J. Chem. Inf. Model., 2018, 58, 1194–1204.

78 M. Olivecrona, T. Blaschke, O. Engkvist and H. Chen, J.
Cheminformatics, 2017, 9, 1–14.

79 T. Blaschke, O. Engkvist, J. Bajorath and H. Chen, J.
Cheminformatics, 2020, 12, 1–17.

80 M. Popova, O. Isayev and A. Tropsha, Sci. Adv., 2018, 4,
eaap7885.

81 A. Yoshimori, E. Kawasaki, C. Kanai and T. Tasaka, Chem.
Pharm. Bull., 2020, 68, 227–233.

82 G. Wolber and T. Langer, J. Chem. Inf. Model., 2005, 45, 160–
169.

83 D. Neil, M. H. S. Segler, L. Guasch, M. Ahmed, D. Plumbley,
M. Sellwood and N. Brown, ICLR, 2018.

84 T. Pereira, M. Abbasi, B. Ribeiro and J. P. Arrais, J.
Cheminformatics, 2021, 13, 1–17.

85 J. Born, M. Manica, A. Oskooei, J. Cadow, G. Markert and
M. R. Mart́ınez, iScience, 2021, 24, 102269.

86 S. R. Krishnan, N. Bung, G. Bulusu and A. Roy, J. Chem. Inf.
Model., 2021, 61, 621–630.

87 M. H. S. Segler, T. Kogej, C. Tyrchan and M. P. Waller, ACS
Cent. Sci., 2018, 4, 120–131.

88 T. G. Karimpanal and R. Bouffanais, Adapt. Behav., 2019, 27,
111–126.

89 S. Gamrian and Y. Goldberg, International Conference on
Machine Learning, 2019, pp. 2063–2072.

90 B. Agyemang, W.-P. Wu, D. Addo, M. Y. Kpiebaareh,
E. Nanor and C. Roland Haruna, Brief. Bioinform., 2021,
22, bbaa364.

91 L. A. Thiede, M. Krenn, A. Nigam and A. Aspuru-Guzik,
Curiosity in exploring chemical space: intrinsic rewards
for deep molecular reinforcement learning, arXiv preprint
arXiv:2012.11293, 2020.

92 J. You, B. Liu, Z. Ying, V. S. Pande and J. Leskovec, NeurIPS,
2018.

93 Y. Khemchandani, S. O'Hagan, S. Samanta, N. Swainston,
T. J. Roberts, D. Bollegala and D. B. Kell, J.
Cheminformatics, 2020, 12, 1–17.

94 K. Yang, K. Swanson, W. Jin, C. Coley, P. Eiden, H. Gao,
A. Guzman-Perez, T. Hopper, B. Kelley, M. Mathea,
A. Palmer, V. Settels, T. Jaakkola, K. Jensen and
R. Barzilay, J. Chem. Inf. Model., 2019, 59, 3370–3388.

95 S. R. Atance, J. V. Diez, O. Engkvist, S. Olsson and
R. Mercado, De novo drug design using reinforcement
learning with graph-based deep generative models,
ChemRxiv preprint, 2021.
Digital Discovery, 2022, 1, 551–567 | 565

https://chemrxiv.org/articles/ORGANIC_1_pdf/5309668
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2dd00047d


Digital Discovery Review

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 3

0 
A

ug
us

t 2
02

2.
 D

ow
nl

oa
de

d 
on

 1
1/

21
/2

02
5 

7:
49

:2
3 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
96 Z. Zhou, S. Kearnes, L. Li, R. N. Zare and P. Riley, Sci. Rep.,
2019, 9, 1–10.
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