Open Access Article. Published on 23 August 2022. Downloaded on 7/28/2025 7:29:54 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Digital
Discovery

#® ROYAL SOCIETY
PPN OF CHEMISTRY

View Article Online

View Journal | View Issue,

i ") Check for updates ‘

replace

Cite this: Digital Discovery, 2022, 1, 679

MOFUN: a Python package for molecular find and

Paul Boone 02 and Christopher E. Wilmer (& *ab¢

MOFUN is an open-source Python package that can find and replace molecular substructures in a larger,
potentially periodic, system. In the context of molecular simulations, find and replace is a useful

operation for adding/swapping functional groups, adding/removing solvent molecules or defect sites,

Received 17th May 2022
Accepted 9th August 2022

and many other helpful system perturbations. MOFUN can also be used to alter force field terms on

certain atoms while leaving the geometry/composition otherwise unchanged. The package is easily

DOI: 10.1039/d2dd00044;j

rsc.li/digitaldiscovery

Introduction

MOFUN is a general purpose, open-source Python package for
searching an arbitrary molecular structure for a pattern and
replacing any instances of it with a replacement pattern - i.e.,
find and replace for molecular systems. We built MOFUN,
initially, to support our own investigations of metal-organic
frameworks (MOFs), which are a class of porous materials
composed of linkers and metal centers which self-assemble
into periodic crystalline structures.' In the context of MOFs,
MOFUN was used for (1) modifying the linkers of MOFs with
various functional groups, (2) adding defects to MOFs, and (3)
parameterizing MOFs with flexible force field terms. Although
these operations can be carried out by editing the underlying
files in a text editor or by adding and removing atoms indi-
vidually in a visual editor such as Avogadro,® this is time-
consuming, error-prone and impractical when scaling to
greater numbers of structures or structures containing more
atoms. We wrote MOFUN to be an automated solution to these
problems that can operate on periodic structures with over
100k atoms.

Prior to the development of MOFUN, numerous packages
have been developed that can perform ligand replacement or
substituent replacement on smaller non-periodic mole-
cules,*” for preparing structures for quantum calculations.
Pattern replacement can also be performed on non-periodic
molecules represented as human-readable SMILES strings.®
Parts of a molecule can be searched for using a SMARTS’
pattern or even simpler (but much less precisely) by using

“Department of Chemical and Petroleum Engineering, University of Pittsburgh, 3700
O'Hara Street, Pittsburgh, Pennsylvania 15261, USA. E-mail: wilmer@pitt.edu
*Department of Electrical and Computer Engineering, University of Pittsburgh, 3700
O'Hara Street, Pittsburgh, Pennsylvania 15261, USA

“Clinical and Translational Science Institute, University of Pittsburgh, 3700 O'Hara
Street, Pittsburgh, Pennsylvania 15261, USA

© 2022 The Author(s). Published by the Royal Society of Chemistry

automated, which is particularly helpful for preparing input files for large-scale screenings. The package
is freely available on GitHub at https://github.com/WilmerLab/mofun.

a regex-based text find and replace on the SMILES string
itself.

Before MOFUN, Wilmer® developed a molecular search-
and-replace program called FunctionalizeThis! designed for
crystalline structures such as MOFs. FunctionalizeThis! did
not support finding and replacing bonds and other force field
terms, which limited its use particularly when attempting to
generate structures that can be used with flexible force fields.
More recently, a free and open-source Julia package named
PoreMatMod.jl was reported by Henle et al.” Like MOFUN, the
highly versatile package by Henle et al. can be used for auto-
mating crystal structure modifications and was at least partly
motivated to facilitate research on hypothetical MOFs. While
there is significant overlap in functionality between MOFUN
and PoreMatMod.jl, there are also a few key differences.
Whereas MOFUN searches for patterns via comparisons of
distances between atoms, PoreMatMod.jl analyzes the molec-
ular graph defined by how a structure's atoms are bonded.
Both approaches can handle many common use cases but
sometimes one approach is more suitable than the other, in
terms of what kinds of patterns can be searched for. For
example, when using distances between atoms, it is possible to
search for patterns that are not bonded, such as a molecule
physisorbed to a binding site or matching defects between two
different layers of stacked graphene. In contrast, molecular
graph searches are much better suited to searching for
substructures in a conformation-invariant manner, such as
when looking for hydrocarbon chains that can assume varied
configurations in space while their molecular graphs stay the
same. While PoreMatMod.jl can be applied to many of the
same problems as MOFUN, like FunctionalizeThis! it does not
support finding and replacing bonds or higher-order force
field terms.

In addition to simpler use cases, MOFUN was built to
support find and replace of substructures that are fully

Digital Discovery, 2022, 1, 679-688 | 679

http://crossmark.crossref.org/dialog/?doi=10.1039/d2dd00044j&domain=pdf&date_stamp=2022-10-08
http://orcid.org/0000-0001-8122-0926
http://orcid.org/0000-0002-7440-5727
https://github.com/WilmerLab/mofun
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2dd00044j
https://pubs.rsc.org/en/journals/journal/DD
https://pubs.rsc.org/en/journals/journal/DD?issueid=DD001005

Open Access Article. Published on 23 August 2022. Downloaded on 7/28/2025 7:29:54 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Digital Discovery

parameterized to use with flexible force fields for molecular
dynamics (MD) simulations (in particular, for LAMMPS"). By
releasing MOFUN as open-source and announcing it here, we
hope that other researchers will also benefit from this general-
purpose package and can use it to accelerate and expand their
research.

MOFUN is available on GitHub at https://github.com/
WilmerLab/mofun under the open-source MIT license. The
version described in this paper is version 1.0.1 (https://doi.org/
10.5281/zen0do.6950355). MOFUN can be installed from the
GitHub source code, or from PyPI using pip.

MOFUN: algorithm details

In this section, we will discuss the implementation of both the
find and the replace parts of the algorithm. We use the word
structure here to mean a list of atoms with elements and posi-
tions along with optional periodic boundaries that we want to
exhaustively examine for instances of a search pattern, which is
also a list of atoms with elements and positions. When we find an
instance of the search pattern in the structure (a list of atoms in
the structure whose relative positions are the same as the relative
positions in the search pattern), we call this a match. Every match
found can be replaced with a replacement pattern, which is
another list of atoms with elements and positions. While we use
the word structure here because we predominantly use MOFUN
on periodic crystal lattice structures, the software works equally
well on molecules or any other aperiodic grouping of atoms.

To find all instances of a search pattern in a structure, we first
calculate the distances between all pairs of atoms in the search
pattern. For there to be a match of the search pattern in the
structure, there must be a list of atoms in the structure that share
both the same distances (within a tolerance), and the same atom
elements. Let r,, be an N-length list of all positions in the search
pattern. Let r¢ be the list of all atom positions in the structure plus
each atom's periodic images from immediately adjacent unit
cells. Let r,,, be an N-length list containing N positions from r, that
we will examine as a trial match in the structure. We will refer to
specific positions in both r, and r,, as r;, ;and ryy, ;, Where i € [1, ...,
N] refers to the i™ element in the list.

The trial match r,, is a good match if three conditions are
met. The first condition is that the distances (or Euclidian norm
denoted by ||...||) between all pairs of atoms in the trial pattern
must match their corresponding pairs in the search pattern
within a specified tolerance o.

Vi, je [l oo N llrps = 1o ll = llrmi = rmlll < 0

If the distance between any pair of atoms differs from its
proposed matching pair by an amount greater than the tolerance,
the trial match is not a match. The tolerance can be set higher or
lower for cases when a looser or tighter match is appropriate.

The second condition is that the atom elements for the
pattern must be the same as the atom elements of the trial
match. If we let E, ; be the ith element of the pattern and E, ; be
the ith element for the trial match, then:

680 | Digital Discovery, 2022, 1, 679-688

View Article Online

Paper

Vie [1, ey N], Ep’,' = Emw,'

The third condition is that there must exist rotation and
translation operations such that when they are applied to the
search pattern, the atom positions of the search pattern match
the atom positions in the trial match. This condition is neces-
sary to handle cases of symmetry and chirality in the search
pattern. For each trial match, we calculate the translation and
rotation operations necessary to transform the search pattern to
the location of the trial match and then we exclude any matches
where the atom positions of the transformed search pattern are
not the same as those in the trial match.

To rotate the search pattern into place, we select three points
in the search pattern, two to define a direction axis, and the
third to use as an orientation point. MOFUN will pick the two
atoms in the search pattern that are farthest from each other to
define the direction axis and it will pick the atom that is farthest
from the infinite line defined by the direction axis to be the
orientation point. If the pattern only contains two atoms, or all
the atoms are colinear, then the orientation point can be
ignored. Rotating the search pattern to align with the match
pattern requires two rotation transformations that are imple-
mented using quaternions: (1) we rotate the search pattern so
that the two atoms of the direction axis are pointed in the same
direction as those same atoms in the match pattern, and (2) we
then rotate the search pattern around the directional axis so
that the orientation point is in the correct direction. Since all
the atoms should now be offset by the location of the match in
space, we can translate the search pattern by the difference in
position between any corresponding pair of atoms between the
search pattern and the match pattern. This alignment proce-
dure is fast as it is precisely defined and doesn't require an
optimization, but for structures where the match positions do
not closely match the search pattern (ie. finding a pattern
requires a tolerance 6), the resulting replacement atoms may be
aligned sub-optimally proportional to the required tolerance.

To demonstrate the problem posed by symmetry, let us
consider searching for the CH; group at the ends of an octane
molecule. We can define the CH; search pattern by arbitrarily
labeling one hydrogen as ‘A’, and then labeling the other hydro-
gens ‘B’, and ‘C’ clockwise as shown in Fig. 1A. The atom pairs (A,
B) and (A, C) are equally far apart so we arbitrarily choose (A, B) to
be the directional axis and C to be the orientation point. If we
search an octane for this pattern, we will find six possible
matches for each actual CH; in the structure (or 12 matches
total), one for each possible ordering of the hydrogens: ABC, ACB,
BAC, BCA, CAB, CBA. If we look at the matches that start with the
‘A’ hydrogen - ABC, ACB - there is a clockwise ordering of atoms
and a counter-clockwise ordering of atoms (see Fig. 1B). If the
atoms in the match pattern are ordered clockwise like the search
pattern and if we align the directional axis atoms (A, B) in the
search pattern to the same atoms in the trial match and rotate the
orientation point C into place (see Fig. 1C) then all three hydro-
gens and the carbon will be in the correct locations (see Fig. 1D).
However, if the match pattern was numbered counter-clockwise
(opposite numbering to the search pattern), and if we follow

© 2022 The Author(s). Published by the Royal Society of Chemistry

https://github.com/WilmerLab/mofun
https://github.com/WilmerLab/mofun
https://doi.org/10.5281/zenodo.6950355
https://doi.org/10.5281/zenodo.6950355
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2dd00044j

Open Access Article. Published on 23 August 2022. Downloaded on 7/28/2025 7:29:54 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

the same process to align (A, B) and rotate C into place, then the
carbon will be in the wrong position even though all three
hydrogens are correctly located. For this example, three of the six
possible trial matches have the same counter-clockwise ordering
as the search pattern and are good matches, and three trial
matches have clockwise ordering and are not matches. Similarly,
a chiral search pattern in a structure will match either enantio-
morph since the distances between all atoms are the same
regardless of which enantiomorph is found, but only an enan-
tiomorph which matches the chirality of the search pattern will
be able to be rotated into position of the match pattern.

Thus, the third condition - that the atom positions of
arotated and translated search pattern must be the same as the
atom positions of the trial match - removes the bad matches
caused by symmetric and chiral search patterns. Once we have

A) Search pattern

B A Cc

C) Align AB, and rotate C into place

c CQ

A B A C
C
D) After alignment
C A B B &

Fig.1 (A) A search pattern for the CHz group in octane with clockwise
ordering of hydrogens, (B) trial matches with clockwise and counter-
clockwise ordering of hydrogens, (C) the directional axis points AB of
the search pattern are aligned with the trial match and the orientation
point C is rotated into place for both matches, and (D) the result after
alignment for when the structure ordering matches the search pattern
ordering (all atoms match) and when the ordering is opposite (the
carbon is out of place).

© 2022 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Digital Discovery

all the possible good matches, if we still have multiple matches
for the same group of atoms caused by symmetry, then we
randomly pick one of the good matches.

At this stage, inserting the replacement atoms is now
straightforward. The replacement pattern is defined on the
same coordinate system as the search pattern, so to insert the
replacement pattern into the structure at the right position and
orientation, we take the transformations we calculated above to
transform the search pattern into place and apply them to the
replacement pattern. We insert the replacement pattern atoms
and topology into the structure, delete the matched atoms and
existing topology and our find and replace is complete.

MOFUN: optimization and
performance

Here we describe some subtleties to the implementation of
MOFUN that were necessary to optimize its performance.

First, depending on the length of the search pattern, we do
not search all the atoms in each neighboring unit cell. Search-
ing every atom in a replicated 3 x 3 x 3 expanded unit cell
could be prohibitively inefficient for larger structures, so we
limit the set of atoms searched to only those within a distance
d of one of the boundaries of the original unit cell, where d is the
length of the search pattern (see Fig. 2C).

Second, we do not generate all trial matches at once as this
would lead to running out of memory for all but the smallest
systems; instead, we build up trial matches of the search pattern
one atom at a time. The first atom in the search pattern is
matched by finding all atoms in the structure that share the
same element as the first atom in the search pattern (see Fig. 2D).
For each of these starting matching structure atoms, we create
a list of nearby structure atoms - those atoms that are within
aboxx +d,y =+ d, z+ d about the matched atom (see Fig. 2E) -
and precalculate the distances between every pair of atoms in
this list (see Fig. 2F). The calculation for identifying nearby
structure atoms is implemented as a filter on a presorted
NumPy"* array of the coordinates and is therefore executed as
highly-optimized compiled C code. The distances between all
nearby atoms are precalculated as a group using the SciPy"
library, which is again executed as highly optimized C code. To
match the second atom, we find all nearby structure atoms that
match the element of the second search atom and select only the
atoms where the distance from the second atom to the first atom
matches that of the search pattern. Continuing through the
search pattern one atom at a time, we match all nearby atoms
based on their elements, and select only those atoms where the
distances between the atom and all prior atoms match the
distances in the search pattern. At any stage, if there are no viable
matches, then we can abort looking for matches using this
starting element. If we reach the last atom in the search pattern
and have built up one or more complete matches (see Fig. 2G),
then these are added to the list of successful matches. Another
advantage of generating matches in this manner is that the
algorithm can easily be made to operate in parallel, where each
starting structure atom is run on a separate core. We have not

Digital Discovery, 2022, 1, 679-688 | 681

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2dd00044j

Open Access Article. Published on 23 August 2022. Downloaded on 7/28/2025 7:29:54 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Digital Discovery

r_:____o__-; @0cc0@0cc0@o0cco®
1 ° ° 1 ° . ° °
|Pe@0cco @00 0 _— e o . °
P ° e 1. e 1 .
! ° ° 1 ..,l..........l...
: ° ° : ° : ° ° : °
peeeteeh DTl e
| N o 1 ° 1 ° ° 1 Qe
__________ @oeclco@oecco@ocicee®
A) Structure . : . . : e

|=d,‘|

e @0000@00cc0 @000 0

B) Search pattern C) Expand unit cell with

neighboring atoms.

@000 @00cc0 @00

° ° ° °)
L] L L] L] L]
L] ;_ L] L] 1 L] L]
° | . 0 1 ° °
.Ooloo..oo...olo.. cec0o @00
° . ° ! ° °
. 1 . . I . .
. | . . 1 .

° | ° ° 1 °

Q@ o0clec0@@ecc0@@cic0 @

° | o ° 1 °

. 1 . . 1 .

. . ° .

° ° ° °

@ 000000000 0°0°00

E) For each starting atom,
isolate nearby atoms.

D) Find starting atoms
that match first element in
search pattern.

F) Precalculate
distances between
atoms.

G) Match elements and
distances to find search
pattern.

Fig. 2 Overview of algorithm as applied to (A) an idealized MOF
structure with blue metal center and (B) a four atom red and grey
linker; (C) the unit cell is expanded to include neighboring atoms, (D)
starting atoms that match the first element in the search pattern are
identified, (E) for each starting atom, nearby atoms are isolated, (F)
distances between all nearby atoms are precalculated, and (G) nearby
atoms are matched for element and pair distances.

found it necessary to implement this yet due to MOFUN's current
performance being more-than sufficient for our needs but par-
allelization is available to us if it becomes necessary.

The performance of the optimized algorithm is O(N*), where N
is the number of atoms in the system, and the memory usage is
O(M?), where M is the maximum number of atoms within
a distance d of any other atom. Practically, this means that system
size and CPU speed will limit the kinds of systems that can be run.
Our early naive implementations took over 10 minutes to search
for all linkers in a 2 x 2 x 2 replicated UiO-66 unit cell - 3496
atoms, 192 linkers - and outright failed for systems bigger than
that due to running out of memory. With the optimized algo-
rithm, we can search for and replace all linkers in an 8 x 8 x 8

682 | Digital Discovery, 2022, 1, 679-688

View Article Online

Paper

replicated UiO-66 unit cell - 221 184 atoms and 12 288 linkers - in
less than 6 minutes on a single core of an Apple MacBook Pro M1
Pro laptop (see Fig. 3). This size system greatly exceeds our lab's
current needs of approximately a 4 x 4 x 4 system with 40k
atoms for use in thermal conductivity calculations; however, we
did run a larger find and replace on a 20 x 20 x 20 system - 3.5M
atoms and 192k linkers - and it completed in 15 hours. Additional
optimizations could be implemented if there is a need for a find
and replace operation at that scale.

MOFUN: usage details

Structures, search patterns, and replacement patterns can be
defined directly in Python, or loaded in from a CML file (for
typical output from Avogadro?), a P1 CIF file, a LAMMPS" data
file, or from any file format supported by the ASE** package,
such as XYZ, PDB, RES, etc. Structures and patterns must
include coordinates and elements and can optionally contain
periodic boundaries, charges and other metadata. Structures
can be defined with either a cubic or triclinic unit cell. MOFUN
supports reading and writing LAMMPS data files directly,
including the LAMMPS pair, bond, angle, dihedral, and
improper styles and all coefficients necessary for defining
a flexible force field. When using a parameterized LAMMPS data
file as a replacement pattern, MOFUN can insert the appropriate
force field terms for all interactions into the resulting structure
file. When using a CIF file format, all extra columns attached to
an atom collection as well as bond, angle, and torsion geometry
collections are supported when doing a replace. MOFUN also
supports optionally replacing only a fraction of the search
pattern matches found in a structure. A replacement fraction
can be defined so that only a given% of matched search patterns
will be replaced. One can also run a find operation without

400
® Find 8x8x8
350 1 Find + Replace
300 A
250 A o
O
o 200 7X7X7
=
|_
150 A
o
100 - 6x6x6
50 - 5x5x5 ®
4x4x4 &
- 2x2x2 @©
1 1 1 1 1
0 50K 100K 150K 200K 250K
Atoms

Fig. 3 Time required to find or find + replace all linkers in a UiO-66
unit cell replicatedto 2 x 2 x 2,4 x4 x4,5x5x%x5 6 x6 x6,7x
7x7,and 8 x 8 x 8.

© 2022 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2dd00044j

Open Access Article. Published on 23 August 2022. Downloaded on 7/28/2025 7:29:54 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

replacing anything; in this case, in addition to returning what
atoms were matched, the quaternions necessary to rotate the
search pattern into place are also returned. All features can be
used via the Python interface, and a command line tool is also
included that handles many common use cases.

One of the more advanced features of MOFUN is that it can
manage structure topology and force field parameters for flex-
ible force fields and apply them correctly when inserting
a parameterized replacement pattern into a structure. This
supports the insertion of two-body pair and bond potentials,
three-body angle potentials, and four-body dihedral and
improper potentials, as defined by LAMMPS. For each defined
potential in the replacement pattern, the atoms that make up
the potential and the potential type are inserted into structure
alongside the replacement pattern atom positions and types. If
the structure already has defined topology, then any topology
associated with the search pattern is deleted along with its
atoms prior to insertion of the replacement pattern, with one
very important exception: if any of the atoms are shared
between both the search pattern and the replace pattern (i.e. if
the atoms share the same element and position), then any force
field potentials defined on these atoms are overridden, rather
than all existing terms being deleted and replaced by what's in
the replacement pattern. This is necessary to handle parame-
terizing a structure like the one shown below in example 3, or
when using find and replace to override the force-field terms in
part of a structure while leaving the structure intact. If the
replacement pattern defines the potential parameters (i.e. via
a “* coeffs” section in the LAMMPS data file), then the potential
parameters will also be carried forward into the resulting
structure. While this only supports LAMMPS data files (and
direct code in Python) at the moment, this is primarily because
there is no standardized file format that is commonly-used to
define periodic molecular structures along with full topological
data and force-field parameters. For LAMMPS users such as
ourselves, writing to a LAMMPS data file is extremely convenient
as we can immediately simulate systems after find and replace;
for users of other simulation packages, the LAMMPS data file
should contain sufficient information to be converted into the
file formats required by other simulation packages.

View Article Online

Digital Discovery

Examples

We have chosen three examples to demonstrate MOFUN's
capabilities: (1) functionalizing the MOF UiO-66, (2) adding
defects to UiO-66, and (3) fully parameterizing UiO-66 across
periodic boundary conditions starting with an unparameterized
UiO-66 structure and parameterized metal center and linker
fragments. These examples (and others) are also available
online with all supporting files and there is expanded guidance
in the software's documentation. Since MOFUN is living soft-
ware, the syntax shown below may change and/or additional
features may be added in the future. When in doubt, please
refer to the online documentation. For each example, we
describe the process we used to prepare files and run the find/
replace; we include this level of detail so the example properly
illustrates what the task involves, but a user does not have to
follow this process exactly.

Example 1: functionalizing linkers in UiO-66

The first example is how to use find and replace to functionalize
a structure. We will take the MOF UiO-66 (Fig. 4A) and func-
tionalize all linkers with hydroxyl groups (Fig. 4B). We will need
a structure file for UiO-66 and files for a standard UiO-66 linker
and a linker functionalized with the hydroxyl. To create the UiO-
66 linker file, we used Vesta' to pick one linker in the structure,
deleted all other atoms, then exported to a file format that
Avogadro® can read. We opened the file in Avogadro and saved
as CML. The replacement pattern needs to lie in the same
coordinate system as the search pattern. The easiest way to do
this is to start with the search pattern and simply not move any
of the atoms unless you intend to move them with the
replacement operation. We took the search pattern CML,
replaced one of the hydrogens on the linker with an oxygen
atom, and added the attached hydrogen to make the hydroxyl.
We used Avogadro's “Fix Selected Atoms” feature to prevent all
the atoms from moving except for the newly added ones, then
ran optimize structure to let the OH group find a more appro-
priate position. If you do not fix all the atoms except for the
hydroxyls, many of the atoms will move when you optimize and

from mofun import Atoms,

= Atoms. load ("uio66.cif")
uio66_linker

structure

uio66_linker_oh

structure_oh =
structure_oh.save ("uio66- oh.Impdat")

replace_pattern_in_structure

= Atoms. load ("uio66- linker.cml|")
= Atoms. load ("uio66- linker- oh.cml")

replace_pattern_in_structure (structure,

uio66_linker , uio66_linker_oh)

From the command line:

mofun uio66.cif uio66-oh.cif

--find uio66-linker.cml

--replace uio66-linker- oh.cml

© 2022 The Author(s). Published by the Royal Society of Chemistry

Digital Discovery, 2022, 1, 679-688 | 683

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2dd00044j

Open Access Article. Published on 23 August 2022. Downloaded on 7/28/2025 7:29:54 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

View Article Online

Digital Discovery Paper
Search pattern OH replacement Defect replacement pattern
pattern
;xJ b4)4 U/*
O /" \\\
D qp S
Q Qe [
D qp qp q
L% O O
P Y £ £ A M £

A) Search structure

Fig. 4

B) Functionalization with OH

C) Add defect

(A) Search pattern and search structure (a “slice” of UiO-66), (B) example 1 resulting structure after find and replace using a replacement

pattern with an added OH functional group, and (C) example 2 resulting structure after find and replace using a replacement pattern of
a defective linker (two capping formate groups), as applied to 25% of the linkers.

the atoms of your replacement pattern will not correspond to
the same atoms in the search pattern. Once all the files are
prepared, you can run MOFUN either using the Python interface
or the command line interface. For Python:

When we are functionalizing a MOF using find and replace,
we are typically replacing a pattern that has fewer atoms with
a pattern that has more, and the larger the functional group is
in the replacement pattern, the more likely that functional
groups from different linkers will overlap. This may not be
a problem, for example, when adding hydroxyl groups to the
linker in UiO-66, but if one were to add more bulky functional
groups overlap would likely occur. The replacement operation
inserts the functional group exactly as specified, and the
resulting structure may need to be relaxed using molecular
dynamics for the functional group to find a more reasonable
configuration. When we are adding bulky functional groups to
a structure, we create a replacement pattern where the func-
tional groups are tightly placed near the linker, as much parallel
to the linker as possible, to limit any overlapping with func-
tional groups on other linkers. While this tight configuration
may be high in energy, since we then relax the structure using
a flexible force field, the functional groups can relax into a lower
energy configuration.

684 | Digital Discovery, 2022, 1, 679-688

Example 2: adding defects to UiO-66

While we often assume a MOF is perfectly formed when we
evaluate it computationally, it is well known that synthesized
MOFs have a variety of defects, typically missing linkers or
missing metal centers or both."*™” Missing linker defect rates of
5-20% is normal, depending on what MOF is being synthesized
and the experimental synthesis method used. With MOFUN, we
can search for a linker and replace it with a defect site, typically
just a pair of capping groups - such as two formates - on the
metal centers the linker was formerly connected to. Since
MOFUN supports replacing a specified fraction of all instances
of a pattern found in a structure, we can create structures with
varying defect densities.

For this example, we will introduce defects into UiO-66 by
randomly removing 25% of the linkers from the structure. We
will first replicate the structure to a 2 x 2 x 2 so it fulfills
minimum image conventions, which needs to be done before
adding defects so that the defects aren't repeated in the
structure. We can reuse the structure and search pattern files
from example 1, but we will need to create a replacement
pattern from the search pattern where the biphenyl ring is
removed and replaced with formate caps where the linker
would attach to the metal center (see Fig. 4C). This

© 2022 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2dd00044j

Open Access Article. Published on 23 August 2022. Downloaded on 7/28/2025 7:29:54 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

View Article Online

Digital Discovery

To generate a structure with 25% defects, in Python:

from mofun import Atoms,
structure = Atoms. load ("uio66.cif").
uio66_linker
uio66_linker_defective

defective =
uio66_linker_defective ,

defective . to_ase ().

replace_pattern_in_structure

replicate ((2, 2, 2))
= Atoms. load ("uio66- linker.cml")
= Atoms. load ("uio66- linker- defective.cml|")

replace_pattern_in_structure (structure,
replace_fraction =0.25)

write ("uio66- defective.cif")

uio66_linker,

From the command-line:

mofun uio66.cif uio66-defective.cif
--replicate 2 2 2 --replace- fraction=0.25

-f uio66-linker.cml -r

uio66- linker- defective.cml

replacement pattern can be created in a similar manner to that
described in example 1.

Example 3: parameterizing UiO-66 with flexible force field
terms

For some simulations of gas adsorption in MOFs, it is common
to assume the positions of the structure's atoms are fixed and
only the adsorbate gases move.'®* However, we do not always
want to assume this (e.g. for thermal conductivity calculations,
which require the atoms to move for heat to transfer), and many
flexible force-fields have been developed that enable structures

2-body | Pattern 1 Pattern 2
\ b1 b2 b3 N N
\
Pattern 2
3-body 1 Pattern 1
W\
NS a4 AY
\
Pattern 2
4-body | pattern 1
\
\ \
\

Fig. 5 When parameterizing a structure using two parameterized
patterns, for all two-body bond terms by, ..., b, to be replicated, the
patterns must share an atom, for all three-body angle terms ay, ..., an
to be replicated the patterns must share two atoms, and for all four-
body dihedral terms dj, ..., d, to be replicated the patterns must share
three atoms.

© 2022 The Author(s). Published by the Royal Society of Chemistry

20~

to flex and move.?** Despite these force-fields already existing,
it can be challenging and time consuming to apply these force-
fields to new structures: one needs to define atom types for every
atom in the system, all topology required by the force field, and
all force field parameters across the entire system, which may be
tens of thousands of atoms and topology terms. This is
a significant amount of work to do manually. There have been
attempts to automate this,* but it is hard to automate this
process effectively and still allow for the parameter assignment
process to be easily modified so that a researcher can validate
and fix any parameter assignment issues when the automated
system doesn't assign reasonable parameters. Even if one starts
with a fully and correctly parameterized structure, expanding
the structure to a larger number of unit cells can also be non-
trivial, because bonds that cross periodic boundaries need to
be “remapped” across the new periodic boundaries of the
larger, expanded unit cell in order to run a LAMMPS simulation.
One tactic to overcome these challenges for structures that
can be deconstructed into distinct parts is to assign force-field
parameters to the constituent parts of the structure and then
use find and replace to apply the force field to the entire
structure. In this example, we apply this technique to MOFs: we
assign parameters to a MOF's metal center and linker and then
replace all unparameterized metal centers and linkers in the full
structure with their corresponding parameterized versions.
The patterns for the parameterized linker and the parame-
terized metal center will need to overlap; every desired force-field
term will need to be included fully in at least one of the patterns
so some atoms and force-field terms will be defined in both files.
For 2-body terms, only the atom that connects the metal center to
the linker needs to be shared between the patterns. For 3-body
(angle) or 4-body (dihedral/improper) terms there will need to be
two or three atoms of overlap, respectively (see Fig. 5). Linker and
metal center files can be prepared similarly to example 1 above
and parameterized manually, or possibly in an automated
manner using the rough UFF parameterizer included in MOFUN

Digital Discovery, 2022, 1, 679-688 | 685

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2dd00044j

Open Access Article. Published on 23 August 2022. Downloaded on 7/28/2025 7:29:54 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Digital Discovery

View Article Online

Paper

from mofun import Atoms, replace_pattern_in_structure

= Atoms. load ("uio66.cif")
uio66_linker

structure
= Atoms. load ("uio66- linker- Zr.cml")
uiob66_linker_params = Atoms. load("uio66- linker- Zr- parameterized.Impdat")
uio66_mc = Atoms. load ("uio66- metal- center.cml")

uio66_mc_params = Atoms. load ("uio66- metal- center- parameterized.Impdat")

param1 = replace_pattern_in_structure (structure, uio66_mc, uio66_mc_params)
param2 = replace_pattern_in_structure (parami1, uio66_linker , uio66_linker_params)
param2. save ("uio66- parameterized.Impdat")

From the command-line:

mofun uio66.cif uio66- paraml.Impdat --find uio66- metal- center.cml \

--replace uio66- metal- center- parameterized.Impdat

mofun uio66- param1.Impdat uio66- parameterized.Impdat --find uio66-linker- Zr.cml

--replace uio66-linker- Zr- parameterized.Impdat

\

(information on the UFF parameterizer is beyond the scope of
this paper, but can be found in the documentation online), or
with other packages.*® For Python:

Conclusion

MOFUN is an open-source Python package for generalized
molecular find and replace. In our own lab, this is enabling us to
quickly screen MOFs with various functional groups at different
defect percentages, and easily apply force field parameters to
structures. MOFUN is a great tool for automation, but there are
some limitations. Since MOFUN identifies patterns using relative
positions, a search pattern may not match all expected instances
of the pattern in the structure if the positions vary in the structure,
for example for longer alkane chains. While MOFUN fully
supports force-fields defined in LAMMPS, there is no inherent
format support for other molecular packages, except for output-
ting CIF files containing topology and force-field parameters.
When doing a replacement operation, MOFUN places the
replacement atoms exactly as specified and does not check if this
placement overlaps with other atoms in the system, so using
MOFUN requires the researcher to setup the find and replace
operation in a reasonable manner and potentially relax the system
after the replace operation. At present, MOFUN is primarily
optimized for smaller systems (<40k atoms), though still works
(albeit, more slowly) for larger systems. By making this code
available to other labs, we hope that this will enable other labs to
perform more ambitious screening and simulation studies.

686 | Digital Discovery, 2022, 1, 679-688

Data availability

The code for MOFUN can be found at https://github.com/
WilmerLab/mofun. The version of the code employed for this
study is version v1.0.1 (https://doi.org/10.5281/
zeno0do.6950355).

Conflicts of interest

There are no conflicts of interest to declare.

Acknowledgements

P. B. and C. E. W. gratefully acknowledge support from the
National Science Foundation (NSF award OAC-1931436) and the
U.S Department of Energy NETL (UCFER_5-UPitt-S1-22). This
research was also supported in part by the University of Pitts-
burgh Center for Research Computing through the resources
provided.

Notes and references

1 H. Li, M. Eddaoudi, M. O'Keeffe and O. M. Yaghi, Design and
Synthesis of an Exceptionally Stable and Highly Porous
Metal-Organic Framework, Nature, 1999, 402(6759), 276-
279, DOI: 10.1038/46248.

2 M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeersch,
E. Zurek and G. R. Hutchison, Avogadro: An Advanced
Semantic Chemical Editor, Visualization, and Analysis

© 2022 The Author(s). Published by the Royal Society of Chemistry

https://github.com/WilmerLab/mofun
https://github.com/WilmerLab/mofun
https://doi.org/10.5281/zenodo.6950355
https://doi.org/10.5281/zenodo.6950355
https://doi.org/10.1038/46248
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2dd00044j

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

Open Access Article. Published on 23 August 2022. Downloaded on 7/28/2025 7:29:54 PM.

(cc)

Paper

3

5

8

9

10

11

12

13

Platform, J. Cheminf., 2012, 4(1), 17, DOI: 10.1186/1758-2946-
4-17.

J.-G. Sobez and M. Reiher, Molassembler: Molecular Graph
Construction, Modification, and Conformer Generation for
Inorganic and Organic Molecules, J. Chem. Inf. Model.,
2020, 60(8), 3884-3900, DOI: 10.1021/acs.jcim.0c00503.

E. I Ioannidis, T. Z. H. Gani and H.]J. Kulik, MolSimplify: A
Toolkit for Automating Discovery in Inorganic Chemistry, J.
Comput. Chem., 2016, 37(22), 2106-2117, DOI: 10.1002/
jec.24437.

V. M. Ingman, A. J. Schaefer, L. R. Andreola and
S. E. Wheeler, QChASM: Quantum Chemistry Automation
and Structure Manipulation, Wiley Interdiscip. Rev.:
Comput. Mol Sci., 2021, 11(4), e1510, DOI: 10.1002/
wems.1510.

D. Weininger, SMILES, a Chemical Language and
Information System. 1. Introduction to Methodology and
Encoding Rules, J. Chem. Inf. Comput. Sci., 1988, 28(1), 31-
36, DOI: 10.1021/c¢i00057a005.

Daylight Theory: SMARTS - A Language for Describing
Molecular Patterns, https://www.daylight.com/dayhtml/doc/
theory/theory.smarts.html, accessed, 2022-07-31.

Y.-S. Bae,]J. Liu, C. E. Wilmer, H. Sun, A. N. Dickey,
M. B. Kim, A. I Benin, R. R. Willis, D. Barpaga,
M. D. LeVan and R. Q. Snurr, The Effect of Pyridine
Modification of Ni-DOBDC on CO, Capture under Humid
Conditions, Chem. Commun., 2014, 50(25), 3296-3298, DOLI:
10.1039/C3CC44954H.

E. A. Henle, N. Gantzler, P. K. Thallapally, X. Z. Fern and
C. M. Simon, PoreMatMod.Jl: Julia Package for in Silico
Postsynthetic Modification of Crystal Structure Models, J.
Chem. Inf. Model., 2022, 62(3), 423-432, DOIL 10.1021/
acs.jcim.1c01219.

S. Plimpton, Fast Parallel Algorithms for Short-Range
Molecular Dynamics, J. Comput. Phys., 1995, 117(1), 1-19.
C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers,
P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg,
N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van
Kerkwijk, M. Brett, A. Haldane, J. F. del Rio, M. Wiebe,
P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy,
W. Weckesser, H. Abbasi, C. Gohlke and T. E. Oliphant,
Array Programming with NumPy, Nature, 2020, 585(7825),
357-362, DOI: 10.1038/5s41586-020-2649-2.

P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland,
T. Reddy, D. Cournapeau, E. Burovski, P. Peterson,
W. Weckesser, J. Bright, S. J. van der Walt, M. Brett,
J. Wilson, K. J. Millman, N. Mayorov, A. R.]J. Nelson,
E. Jones, R. Kern, E. Larson, C.]J. Carey, I. Polat, Y. Feng,
E. W. Moore,]J. VanderPlas, D. Laxalde, J. Perktold,
R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris,
A. M. Archibald, A. H. Ribeiro, F. Pedregosa and P. van
Mulbregt, SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python, Nat. Methods, 2020, 17(3), 261-272,
DOI: 10.1038/s41592-019-0686-2.

A. H. Larsen,]J.]J. Mortensen, J. Blomqvist, I. E. Castelli,
R. Christensen, M. Dulak, J. Friis, M. N. Groves,
B. Hammer, C. Hargus, E. D. Hermes, P. C. Jennings,

© 2022 The Author(s). Published by the Royal Society of Chemistry

14

15

16

17

18

19

20

21

22

23

24

View Article Online

Digital Discovery

P. B. Jensen, J. Kermode, J. R. Kitchin, E. L. Kolsbjerg,
J. Kubal, K. Kaasbjerg, S. Lysgaard, J. B. Maronsson,
T. Maxson, T. Olsen, L. Pastewka, A. Peterson,
C. Rostgaard, J. Schigtz, O. Schiitt, M. Strange,
K. S. Thygesen, T. Vegge, L. Vilhelmsen, M. Walter, Z. Zeng
and K. W. Jacobsen, The Atomic Simulation
Environment—a Python Library for Working with Atoms, J.
Phys.: Condens. Matter, 2017, 29(27), 273002, DOI: 10.1088/
1361-648X/aa680e.

K. Momma and F. Izumi, VESTA: A Three-Dimensional
Visualization System for Electronic and Structural Analysis,
J. Appl. Crystallogr., 2008, 41(3), 653-658, DOL 10.1107/
$0021889808012016.

H. Wu, Y. S. Chua, V. Krungleviciute, M. Tyagi, P. Chen,
T. Yildirim and W. Zhou, Unusual and Highly Tunable
Missing-Linker Defects in Zirconium Metal-Organic
Framework UiO-66 and Their Important Effects on Gas
Adsorption, J. Am. Chem. Soc., 2013, 135(28), 10525-10532,
DOL: 10.1021/ja404514r.

0. V. Gutov, M. G. Hevia, E. C. Escudero-Adan and A. Shafir,
Metal-Organic Framework (MOF) Defects under Control:
Insights into the Missing Linker Sites and Their
Implication in the Reactivity of Zirconium-Based
Frameworks, Inorg. Chem., 2015, 54(17), 8396-8400, DOL:
10.1021/acs.inorgchem.5b01053.

N. Al-Janabi, X. Fan and F. R. Siperstein, Assessment of
MOF's Quality: Quantifying Defect Content in Crystalline
Porous Materials, J. Phys. Chem. Lett., 2016, 7(8), 1490-
1494, DOI: 10.1021/acs.jpclett.6b00297.

J. Rouquerol, F. Rouquerol, P. Llewellyn, G. Maurin and
K. S. W. Sing, Adsorption by Powders and Porous Solids:
Principles, Methodology and Applications, Academic Press,
Amsterdam, 2nd edn, 2013.

K. B. Sezginel, P. A. Asinger, H. Babaei and C. E. Wilmer,
Thermal Transport in Interpenetrated Metal-Organic
Frameworks, Chem. Mater., 2018, 30(7), 2281-2286, DOL:
10.1021/acs.chemmater.7b05015.

S. L. Mayo, B. D. Olafson and W. A. Goddard, DREIDING: A
Generic Force Field for Molecular Simulations, J. Phys.
Chem., 1990, 94(26), 8897-8909, DOIL: 10.1021/j100389a010.
A. K. Rappé, C. J. Casewit, K. S. Colwell, W. A. Goddard III
and W. M. Skiff, UFF, a Full Periodic Table Force Field for
Molecular =~ Mechanics and Molecular Dynamics
Simulations, J. Am. Chem. Soc., 1992, 114(25), 10024-10035.
H. Sun, COMPASS: An Ab Initio Force-Field Optimized for
Condensed-Phase Applications Overview with Details on
Alkane and Benzene Compounds, J. Phys. Chem. B, 1998,
102(38), 7338-7364.

M. A. Addicoat, N. Vankova, I. F. Akter and T. Heine,
Extension of the Universal Force Field to Metal-Organic
Frameworks, J. Chem. Theory Comput., 2014, 10(2), 880-
891, DOI: 10.1021/ct400952t.

W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz,
D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell and
P. A. Kollman, A Second Generation Force Field for the
Simulation of Proteins, Nucleic Acids, and Organic

Digital Discovery, 2022, 1, 679-688 | 687

https://doi.org/10.1186/1758-2946-4-17
https://doi.org/10.1186/1758-2946-4-17
https://doi.org/10.1021/acs.jcim.0c00503
https://doi.org/10.1002/jcc.24437
https://doi.org/10.1002/jcc.24437
https://doi.org/10.1002/wcms.1510
https://doi.org/10.1002/wcms.1510
https://doi.org/10.1021/ci00057a005
https://www.daylight.com/dayhtml/doc/theory/theory.smarts.html
https://www.daylight.com/dayhtml/doc/theory/theory.smarts.html
https://doi.org/10.1039/C3CC44954H
https://doi.org/10.1021/acs.jcim.1c01219
https://doi.org/10.1021/acs.jcim.1c01219
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1088/1361-648X/aa680e
https://doi.org/10.1088/1361-648X/aa680e
https://doi.org/10.1107/S0021889808012016
https://doi.org/10.1107/S0021889808012016
https://doi.org/10.1021/ja404514r
https://doi.org/10.1021/acs.inorgchem.5b01053
https://doi.org/10.1021/acs.jpclett.6b00297
https://doi.org/10.1021/acs.chemmater.7b05015
https://doi.org/10.1021/j100389a010
https://doi.org/10.1021/ct400952t
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2dd00044j

Open Access Article. Published on 23 August 2022. Downloaded on 7/28/2025 7:29:54 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Digital Discovery

Molecules, J. Am. Chem. Soc., 1995, 117(19), 5179-5197, DOL:
10.1021/ja00124a002.

25 A. D. MacKerell, D. Bashford, M. Bellott, R. L. Dunbrack,
J. D. Evanseck, M. J. Field, S. Fischer,]J. Gao, H. Guo,
S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera,
F. T. K. Lau, C. Mattos, S. Michnick, T. Ngo, D. T. Nguyen,
B. Prodhom, W. E. Reiher, B. Roux, M. Schlenkrich,
J. C. Smith, R. Stote, J. Straub, M. Watanabe,

688 | Digital Discovery, 2022, 1, 679-688

View Article Online

Paper

J. Wiorkiewicz-Kuczera, D. Yin and M. Karplus, All-Atom
Empirical Potential for Molecular Modeling and Dynamics
Studies of Proteins, J. Phys. Chem. B, 1998, 102(18), 3586-
3616, DOL: 10.1021/jp973084f.

26 P. G. Boyd, S. M. Moosavi, M. Witman and B. Smit, Force-
Field Prediction of Materials Properties in Metal-Organic
Frameworks, J. Phys. Chem. Lett., 2017, 8(2), 357-363, DOL:
10.1021/acs.jpclett.6b02532.

© 2022 The Author(s). Published by the Royal Society of Chemistry

https://doi.org/10.1021/ja00124a002
https://doi.org/10.1021/jp973084f
https://doi.org/10.1021/acs.jpclett.6b02532
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2dd00044j

	MOFUN: a Python package for molecular find and replace
	MOFUN: a Python package for molecular find and replace
	MOFUN: a Python package for molecular find and replace
	MOFUN: a Python package for molecular find and replace
	MOFUN: a Python package for molecular find and replace
	MOFUN: a Python package for molecular find and replace
	MOFUN: a Python package for molecular find and replace
	MOFUN: a Python package for molecular find and replace
	MOFUN: a Python package for molecular find and replace

	MOFUN: a Python package for molecular find and replace
	MOFUN: a Python package for molecular find and replace
	MOFUN: a Python package for molecular find and replace
	MOFUN: a Python package for molecular find and replace

