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With machine learning being a popular topic in current computational materials science literature, creating

representations for compounds has become common place. These representations are rarely compared, as

evaluating their performance – and the performance of the algorithms that they are used with – is non-

trivial. With many materials datasets containing bias and skew caused by the research process, leave one

cluster out cross validation (LOCO-CV) has been introduced as a way of measuring the performance of

an algorithm in predicting previously unseen groups of materials. This raises the question of the impact,

and control, of the range of cluster sizes on the LOCO-CV measurement outcomes. We present

a thorough comparison between composition-based representations, and investigate how kernel

approximation functions can be used to better separate data to enhance LOCO-CV applications. We find

that domain knowledge does not improve machine learning performance in most tasks tested, with band

gap prediction being the notable exception. We also find that the radial basis function improves the

linear separability of chemical datasets in all 10 datasets tested and provides a framework for the

application of this function in the LOCO-CV process to improve the outcome of LOCO-CV

measurements regardless of machine learning algorithm, choice of metric, and choice of compound

representation. We recommend kernelised LOCO-CV as a training paradigm for those looking to

measure the extrapolatory power of an algorithm on materials data.
1 Introduction

Recent advances in materials science have seen a plethora of
research into application of machine learning (ML) algorithms.
Much of this research has focused on supervised ML methods,
such as random forests (RFs) and neural networks. More
recently, authors have laid out the best practices to help unify
and progress this eld.1–4

Data representation can play a large role in the performance
of ML algorithms; however, optimum choice of representation
is not always apparent. Inmaterials science it is oen difficult to
choose an appropriate representation due to variability in the
ML task and in the nature of the chemistry, composition and
structures of the materials studied. Additionally, some proper-
ties of a material, such its crystal structure in the case of
ty of Liverpool, Ashton Street, Liverpool,

rpool.ac.uk

Materials Design, University of Liverpool,
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mation (ESI) available. See

the Royal Society of Chemistry
crystalline materials, may not be known until its synthesis.
Accordingly, many studies derive representations from either
the ratios of elements in the chemical composition, or from
domain knowledge-based properties (referred to as features) of
these elements, or both, in a process called “featurisation”.

Given the ubiquity of featurisation methods such as those
presented here in materials applications, it is important to
evaluate the statistical advantage of specic feature sets.5

Section 2.1 overviews different featurisation techniques and
how their effectiveness has been previously reported. We
expand on this evaluation in Section 3.1, in which seven
representations are investigated across ve case studies from
the literature to explore how these representations perform in
published ML tasks. These cases thus represent practical
applications, rather than constructed tasks. Each of these
representations is also compared to a random projection of
equal size to establish the performance benet of domain
knowledge over random noise.

Evaluating the generalisability of ML models is a known
challenge across data science, and is of particular concern in
materials science, where data sets are of limited size compared
with other application areas for ML, and oen biased towards
Digital Discovery, 2022, 1, 763–778 | 763
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historically interesting materials or those closely related to
known high-performance materials for certain performance
metrics. Typically, models are evaluated on test sets separate
from their training data, through a consistent train : test split or
N-fold cross validation. However, this does not consider skew in
a dataset. In chemical datasets, families of promising materials
are oen exploredmore thoroughly than the domain as a whole,
which introduces bias and reduces the generalisability of ML
models because the data they are trained and tested on are not
sampled in a way representative of the domain of target
chemistries to be screened with these models. Investigations
into how such skew can affect ML models has seen that this
skew can result in overtting6 and that more skewed datasets
require more data points in order to train models to achieve
similar predictive performance when compared to models
trained on less skewed datasets.7

Leave one cluster out cross validation (LOCO-CV) was sug-
gested to combat this,8 using K-means clustering to exclude
similar families of materials from the training set to measure
the extrapolatory power of anML algorithm (its ability to predict
the performance of materials with chemistries qualitatively
different from the training set). The value of such an approach
can be seen in the case of predicting new classes of supercon-
ductors. One may choose to remove cuprate superconductors
from the training set, and if an ML model can then successfully
predict the existence of cuprate superconductors without prior
knowledge of them, we can conclude that model is likely to
perform better at predicting new classes of superconductors
than a model which could not predict the existence of cuprate
superconductors. LOCO-CV provides an algorithmic framework
to measure the performance of models on predicting new
classes of materials by dening these classes as clusters found
by the K-means clustering algorithm. Application and imple-
mentation of this algorithm is discussed further in Section
2.2.1.

While differences in cluster sizes in this domain are ex-
pected, it has been observed that clusters found with K-means
can differ in size by orders of magnitude,9 which can pose
a practical challenge to adoption of this method. With such
differences in cluster size, LOCO-CV measurements can repre-
sent the performance of an algorithm on a small training set
rather than the performance of an algorithm in extrapolation.
As representation plays a role in clustering, it is pertinent to
investigate the issues of representation and clustering together,
even though the representation used in clustering does not
need to be the same as that used to train the model (Fig. 3) In
Section 3.2 we investigate how representations can affect
measurements made with LOCO-CV. Kernel methods (also
known as kernel tricks, or kernel approximation methods), can
be used to non-linearly translate data into a data space that can
then be linearly separated (Fig. 2). We apply kernel methods
such as the radial basis function (RBF) to chemical datasets to
improve the linear separability of data and reduce variance
between cluster sizes and thus increase the validity of LOCO-CV
measurements (Fig. 5 and 8), thus enhancing the assessment of
performance found when using different representations as
well as assessment of model performance as a whole.
764 | Digital Discovery, 2022, 1, 763–778
LOCO-CV evaluation is affected by representation of
a compound and, conversely, choice of compound representa-
tion is affected by the methods used to evaluate these repre-
sentations. Thus, it is pertinent to investigate these two issues
simultaneously. We improve the utility of LOCO-CV measure-
ments by using kernel functions to create a more separable data
space, and use these measurements to evaluate featurisation
methods using practical supervised ML tasks found in the
literature. The key contributions and ndings of this paper are
as follows:

� Comparing the inuence of composition based feature
vectors (CBFVs) on ML model performance in practical tasks
(explained further in Section 2.1, before being carried out in
Section 3.1). We nd that CBFVs with engineered features (i.e.,
imbued with domain knowledge) do see some benet in certain
tasks, particularly band gap prediction tasks. While magpie
representations10 were seen to outperform other CBFVs in many
tasks, this nding was not universal across tasks.

� Examining the effectiveness of random projections as
featurisation methods for property prediction from chemical
composition. Random projections can be used as a baseline
against which to justify more involved featurisation methods
(explained further in Section 2.1.2 before being carried out in
Section 3.1). We nd that in many tasks, CBFVs with engineered
features do not perform substantially better than random
projections.

� Studying the effect of kernel approximation functions
(explained further in Section 2.3) on the application of K-means
clustering to materials data, and presenting a workow to
incorporate these methods into the LOCO-CV algorithm
(Section 3.2). We nd kernel approximation functions are
a good way to reduce the variance between sizes of clusters
found by K-means clustering on materials data. Using kernel
approximation functions in the suggested workow (kernelised
LOCO-CV) results in a more robust evaluation method than
LOCO-CV with no kernels.

� We recommend using RBF when clustering for LOCO-CV,
as clusterings found aer application of RBF are seen to be
more even in size than with no kernel method applied, and
models are trained more reliably for property prediction. This
helps to reduce the risk that performance differences on pre-
dicting an unseen cluster of data are caused by the training set
size as opposed to the intrinsic inability of a model to perform
well on that cluster of data.

� We nd the use of the radial basis function (RBF) in clus-
tering for LOCO-CV leads to more reliable and consistent model
training, compared to using LOCO-CV without any kernel
methods.

� We recommend that random projections are used as
a baseline against which to compare engineered feature vectors,
noting that commonly used CBFVs have little to no advantage
over random projections in most tasks tested here.

� We experiment with the use of random projections as
a featurisation method for clustering compositions in LOCO-
CV, and nd random projections to have no clear advantage
over other CBFVs tested here.
© 2022 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2dd00039c


Paper Digital Discovery

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

2 
Se

pt
em

be
r 

20
22

. D
ow

nl
oa

de
d 

on
 1

/9
/2

02
6 

1:
39

:3
8 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
2 Key concepts and techniques
2.1 Common representations used for machine learning in
inorganic chemistry

ML algorithms require a consistent denition of a data point
in order to analyse trends within a dataset. For example, it
would be hard to learn from a dataset in which “a data point”
may refer to a phase eld, a specic crystal structure, or
a composition. One such algorithm is RFs, which are widely
used in materials science as well as other domains.11 They are
fast to train, readily implemented,12 and see a good perfor-
mance in a plethora of tasks without hyperparameter tuning.
We use RFs for our investigations for reasons outlined above,
however good evaluation methods for xed dimensional
representations of materials are also important for the
plethora of other ML algorithms that use such representations
as basis for predictions.

Representation learning, and feature engineering are the two
main preprocessing methods to make data more interpretable
to ML algorithms. Representation learning is a fast-evolving
eld that uses deep learning in order to create representa-
tions, while feature engineering involves dening a set of
features (or descriptors) for a data point that adequately
encapsulates all information needed.13

Feature engineering has been used extensively in inorganic
chemistry and materials science. However, no set of features
has emerged as the clearly dominant representation for
a material, likely due to the variety of tasks carried out in these
domains, which may require different input representation.
Many of these representations use only composition-based
information (rather than structural), as this allows screening
of materials without need for DFT calculations or synthesis,
greatly reducing costs associated with such screenings.
Composition-based screening is less powerful than the incor-
poration of structure, as both structure and composition
control properties, but more general as structural information
is not required and is less widely available than composition (as
structure is not known until the material is realised by
synthesis, whereas compositions can be proposed without
knowing structure). Composition-based feature vectors
(CBFVs), which offer a list of compositional attributes of
a material, and a one-hot style (also called fractional) encoding
of composition,14 are widely used composition-based
representations.

Notable CBFVs including magpie, Oliynyk and JARVIS15–17

(differences between which are discussed further during
Section 3.1) were recently investigated and found to provide
benet over one-hot style representations. This benet was
measured using neural networks predicting numerous proper-
ties, however the benet became little to none as the dataset
size increased above 1000 points.5

We further the investigation into the use of CBFVs by
examining their applicability in ve case studies. Namely, we
examine performance using Oliynyk, magpie, and JARVIS,
a variant of random projection of size 200 (discussed more in
Section 2.1.2) used in a previous review on this topic,5 as well
© 2022 The Author(s). Published by the Royal Society of Chemistry
as one-hot style encodings of composition, and random
linear projection of the composition. The performance of RFs
using different representations are compared on ML tasks
found in the literature, using the relevant datasets for each
study.18–22

The representations were chosen as they are commonly
used, and as these are the non-structural representations
investigated for their efficacy in neural networks in previous
work.5 Seeing whether previous results hold for RFs should help
gauge whether these results could be used as rule of thumb for
many ML algorithms or whether these conclusions should only
be applied to neural networks similar to those used in that
study.

2.1.1 Can implementation details in CBFVs affect perfor-
mance. It is common for a CBFV to be comprised of a list of
elemental properties that are combined using several “aggre-
gation functions”, for example the weighted average, and
standard deviation of various elemental properties in
a compound (Fig. 1a). The aggregation functions of a CBFV can
vary between implementations.5,15 Using different numbers of
aggregation functions results in representations of different
lengths (Fig. 1a), which may affect ML performance depending
on the algorithm being used.

Problems associated with building statistical models using
increasingly large data representations without also increasing
the number of data points are well documented, oen being
described as the curse of dimensionality.23 Strong correlation
between different dimensions (known as co-linearity, or cross
correlation between dimensions) can also impact model
performance. For example, RFs are affected by co-linearity
between dimensions as RF's random bagging process is
unlikely to select a subset of features that include none of a set
of cross corelated features. This would make the information in
features with such cross-corelates more likely to be available to
discriminate with at any branch in a tree, compared with those
features without such cross-corelates. It is intuitive that
different aggregation functions may be cross-correlated, for
example the maximum atomic weight of an element in
a compound is likely to correlate with the average atomic weight
of an element in that compound, thus RFs may be affected by
additional aggregation functions.

Without investigation, it is unclear what effect different
aggregation functions will have on algorithm performance.
Interrogation of the repository associated with the previous
review of featurisation methods indicates use of the weighted
average, sum, range, and variance of each feature.5 This
includes the features of the fractional (one-hot style) represen-
tation, which uses only the ratios of each element in a material
in its denition. This implementation difference could affect
the performance of a model that uses these representations, so
we distinguish between the two, using “fractional” to refer to
a one-hot style encoding that includes the average, sum, range,
and variance of each element and “CompVec” (for composition
vector) to refer to an implementation of one-hot style encoding
which contains just the ratios of elements in a compound.

The nature of the fractional representation means that
a given compound would contain the same representation three
Digital Discovery, 2022, 1, 763–778 | 765
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Fig. 1 Comparison of the creation of composition based feature vectors (CBFVs) and random projections. (a) General workflow for creation of
CBFV. Application of aggregation function to each property of a material will result in a fixed sized vector for each aggregation function, these are
then concatenated together (merged sequentially) to form the final CBFV. Both the properties in the CBFV and the list of aggregation functions
can be changed to create variants of CBFVs, which may influence algorithms that use the resulting CBFV. (b) Calculation of the weighted sum of
properties of a material. This is equivalent to the matrix multiplication of the fractional representation of that material and its properties. (c)
Calculation of a random projection. Using random projection to (approximately) linearly project a representation into a different number of
dimensions (N). The originalM dimensional representation for our purposes may be a fractional representation for the chemical composition of
a material, but this technique can be used for any input data, in domains outside of chemistry.
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times, scaled by different amounts (depending on the number
of elements in the compound) in a single vector (four times if
elements in a compound are in equal ratios). This can be
exemplied by examining a simple composition such as NaCl
(Table 1).

This offers an opportunity to investigate how increasing
dimensionality (the number of dimensions) of a representation
while adding no new information affects performance. We leave
766 | Digital Discovery, 2022, 1, 763–778
the investigation of the effect of information added by different
aggregation functions on different feature sets to future work.
We experiment using both a (CompVec) one-hot style encoding
as proposed for use with ElemNet14 (with no additional aggre-
gation functions), and the one-hot style approach used previ-
ously that includes different aggregation functions (fractional),5

to see how this increase in dimensionality above will affect
experiments.
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Values that would occur in each column across different
aggregation functions for a composition fractional representation of
NaCl. This demonstrates how the inclusion of additional aggregation
functions does not add additional information for this representation.
These calculations assume a representation which allows for 118
different elements, a smaller number of represented elements would
result in the values in the variance columns being larger

Aggregation function Na Cl All other columns

Weighted average 0.5 0.5 0
Sum 1 1 0
Range 1 1 0
Variance 0.0042 0.0042 0
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While this increase in dimensionality will be seen to affect
the clusterings found with K-means clusterings, for most tasks
investigated there was not an appreciable difference between
CompVec and fractional representations. In band gap predic-
tion tasks fractional representation outperformed CompVec,
however in regression tasks relating to bulk metallic glass
formation this trend was reversed (Fig. 4).

2.1.2 Random vectors as featurisation methods. Each
elemental property (for example covalent radius) aims to bring
with it some sort of information about that element. That
property's inclusion in a feature set aims to improve an ML
algorithm's performance in a given problem. Every feature
included either means an increase to the dimensionality of
a CBFV or the exclusion of an alternative feature. Though the
importance of a feature to an ML model can be measured,24,25 it
is hard to take such measures of feature importance out of the
context of the model that is trained with it, or the dataset that
the model is derived from ref. 26.

As it is hard to distinguish the effects of dimensionality of
a representation from the effects of the information imbued in
it, Murdock et al. introduce a set of vectors, one for each
element each consisting of 200 random numbers to represent
nonsensical elemental properties. From these vectors, they
derive the CBFV RANDOM_200 to represent a lower bound for
feature performance. That is to say; rather than using features
that would be expected to give information about an element
(covalent radius, atomic number etc.), they instead assign each
element a vector of random numbers. If these random numbers
can result in a well-performing model then whether the
chemically-derived features that are commonplace in the liter-
ature are justied can be called into question. When the
aggregation function is a weighted sum (discussed further in
Section 2.1.1), this has the same effect as a matrix multiplica-
tion of the one-hot style encoding of a compounds formulae, C,
(referred to in this paper as CompVec), and a random matrix, R
which can be noted as C$R (Fig. 1b). Thus the weighted sum part
of the RANDOM_200 can be seen as a matrix multiplication of
the random vectors and the fractional encoding of the
composition.

This matrix multiplication is similar to that used in
a random projection. Random projection is a dimensionality
reduction technique that uses the observation that in high
dimensions random vectors approach orthogonality.27,28 When
© 2022 The Author(s). Published by the Royal Society of Chemistry
the columns of R are normalised to be unit vectors, C$R
becomes an approximately linear projection of C. Another way
to closely approximate normalisation of the columns of
a random matrix, such as R, is to sample the values of that

matrix from a Gaussian distribution of mean 0 and variance
1
N�

� N
�
0;

1
N

��
where N is the size of the projection. This is

mathematically justied by the Johnson–Lindenstrauss lemma,
which states that for a set of N dimensional data points there
exists a linear mapping that will embed these points into an n
dimensional data space while preserving distances between
data points within some error value, 3. This value of 3 is shown
to decrease as n increases29

RANDOM_200 samples from �(0,1) also included aggrega-
tion functions (namely sum, range, and variance),5 as discussed
in Section 2.1.1. It is unclear what impact this will have however
preliminary investigations show little difference in performance

between sampling from �(0,1) and � N
�
0;

1
N

�
.

We investigate the use of random projection as an alternative
to more widely used techniques by comparing each technique
investigated to a random projection of the same size (Fig. 4).
This should allow us to note improvements made by the quality
of features as opposed to the quantity. We include
RANDOM_200 in this investigation, noting the key difference
between this and the random projection being that the random
numbers are drawn from different distributions (as outlined
above) and that RANDOM_200 includes aggregation functions,
where a random projection does not.
2.2 Training methods for materials science

Performance metrics are usually applied to a test set of data
unseen by a model. Where data are scarcer, or computation
time is not limiting, N-fold cross validation can be used. This is
oen referred to as K-fold cross validation but we use N to avoid
confusion with K-means clustering, a more central algorithm to
this work. N-fold cross validation randomly splits data into N
equal sized random “folds”, N models are then trained, each
model trained on all but one of the folds of data, and evaluated
on the fold which is held out. Performance is then averaged. A
common criticism of supervised ML in materials science is that
datasets being worked with are inherently biased. Bias in data is
a problem more broadly in ML research. In this eld, explora-
tion of similar, promising chemistries for particular applica-
tions leads to areas of the chemical data space being more
dense with successfully synthesised (or DFT calculated) mate-
rials than others.

This leads to inated performance metrics as performance
can only be measured against other compounds that have
already been synthesised (or compounds with relevant DFT
calculations), as many such compounds in the test set will have
similar chemistry to the training set. This can lead to compar-
atively poor results when trying to extrapolate to predict prop-
erties for chemistries dissimilar to those that the algorithm has
been trained on. For example, it could be argued that the entries
Digital Discovery, 2022, 1, 763–778 | 767
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in ICSD reect a bias towards the development of both
analogues of the chemistry of minerals and chemistries lending
themselves to specic types of application performance, rather
than an isotropic exploration of chemical space constrained
only by the inorganic chemistry of the elements themselves.
Such considerations emphasise the importance of discovery
synthesis that accesses new regions of chemical space, as the
resulting materials can contribute to more robust models.
Having robust methods to measure model performance is
pertinent for materials discovery to assess likely model effec-
tiveness in extrapolating to unseen areas of the input domain.

2.2.1 Leave one cluster out cross validation (LOCO-CV). A
method to measure the extrapolatory power of an algorithm was
proposed in leave one cluster out cross validation (LOCO-CV).8

LOCO-CV alters N-fold cross validation to have each fold
contain materials in the same cluster rather than randomly
selected (equal sized) folds, in order to emulate performance on
unseen classes of materials.

Clusterings are selected using the K-means clustering algo-
rithm,30,31 which infers K clusters without the need for target
labels. This is done by grouping data into clusters based on
their Euclidean distance to K randomly chosen “centroids”. The
centroids are then redened as the mean of all points in
a cluster and the data are regrouped based on these new
centroids. This process is repeated until the positions of
centroids (or the contents of their associated clusters) converge.
K-means is quick, robust and readily implemented.12

One concern oen raised with LOCO-CV is how its non-
deterministic nature will affect the repeatability of measure-
ments taken using this evaluation method. In the ESI (Section
S3.2†) we outline experiments performed to test how repeatable
LOCO-CV is, nding that while it is less repeatable than using
an 80 : 20 train:test split to evaluate a random forest, it is the
deviation between measurements made were not sufficient to
substantially impact the interpretation of the results seen in
this paper.

LOCO-CV as explored here uses K-means clustering with
values of K between 2 and 10 (inclusive), taking the mean of
the resulting metrics. This is the version of LOCO-CV most
thoroughly explored by the authors of LOCO-CV (though they
use the median rather than the mean). However, alternative
methods of selecting a single value of K were suggested in
that work. Namely alternatives suggested were use of X-
means,32 G-means,33 or silhouette factor threshold34 for
selection of K.

LOCO-CV does however leave representation as a hyper-
parameter to the clustering (i.e., changing the representation
will change the clusterings found with K-means clustering), and
that the stochastic nature of the K-means algorithm can make
measurements hard to reproduce without publishing the clus-
ters found. A further consideration in use of LOCO-CV is that K-
means does not guarantee the size of any clusters, nor does it
guarantee that clusters would be deemed chemically sensible
(this is discussed further in Section 2.4). It has been observed
that clusters taken onmaterials data can vary in size by multiple
orders of magnitude, which hinders the application of LOCO-
CV.9
768 | Digital Discovery, 2022, 1, 763–778
While different sizes of clusters are to be expected in this
domain (for example due to research bias in the generation of
example materials), should the sizes of the clusters found in
LOCO-CV differ by orders of magnitude then LOCO-CV's ability
to measure extrapolatory power is hampered. Intuitively if one
of ten clusters contains 90% of thematerials in the dataset, then
a measurement made with this cluster le out may give
a measurement of algorithmic performance given a small
fraction of the available training data, rather than indicating
extrapolatory power. K-means clustering by its nature can only
linearly separate clusters in a given data space. Clusters that are
more distinct from one another are more likely to be isolated
than clusters of data points that overlap with each other. There
are other clustering algorithms, such as t-distributed stochastic
neighbour embedding,35 agglomerative clustering,36 or
DBSCAN,37 that could be explored for LOCO-CV applications on
materials datasets. We measure the separability of clusters of
compounds in materials science datasets with K-means
clustering.
2.3 Kernel methods

While uneven cluster sizes do pose problems for LOCO-CV
assessment of the extrapolatory power of ML models, such
issues with K-means clustering are not solely found in materials
science. K-means clustering attempts to linearly separate clus-
ters (i.e. draw a straight line between them), some clusters
cannot be separated this way (Fig. 2). In many cases, applying
a non-linear function to every point in the dataset transforms
the data in such a way that clusters can be linearly separated.38

Functions used to preprocess data in this way are called kernel
methods (also kernel approximation methods or kernel tricks).
Prominent examples of this include RBF,38 additive c2,39 and
skewed c2.39 We look at the rst of these in more detail to
illustrate how such kernel methods affect data points. The RBF
can be dened as:

f(x) ¼ exp(�gx2)

where g is a hyperparameter which was set as 1 throughout this
study (1 is the default for this hyperparameter in the library
used). Here x˛D where D is a dataset of materials each repre-
sented by a feature set Rn where n is the dimensionality of the
feature set. Examination of this formula lends intuition to the
effects seen in its application (Fig. 2), but also highlights that
this function does distort the geometry of an input data space.
Thus, some analysis of the results of this function are inap-
propriate, such as inferring meaning from changes in distances
between specic points. Despite these potential caveats, non-
linear transformations (e.g., through application of kernels)
are frequently used with linear discrimination (such as K-means
clustering).38 In this paper we investigate the effect of kernel
methods such as RBF on materials science data, specically
studying the use of such methods to improve suitability of
LOCO-CV by addressing the problem of uneven cluster sizes
outlined in Section 2.2.1. We nd RBFs reduce the variance of
class sizes in a clustering, regardless of input featurisation and
© 2022 The Author(s). Published by the Royal Society of Chemistry
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note that this results in more reliable model training when
using these clusterings for LOCO-CV.
2.4 Performance metrics in K-means clustering

Without prior knowledge of expected clusters for each data
point, results found with K-means clustering are difficult to
interpret, though expert inspection can yield insights into what
different clusters can represent. Expert inspection of results
may be justiable with less than 10 clusters (each of which
could have thousands of materials), however, when using K
between 2 and 10 (as was originally proposed8), the LOCO-CV

algorithm presents 54 different clusters ðP10
n¼2

nÞ, making such

expert inspection infeasible. Thus metrics must be used to
quantify the success of a clustering.

Where target labels exist, metrics such as mutual informa-
tion score, homogeneity, and completeness scores can be used.
Without labels, Euclidean distance-based measures such as
sum-squared distance to cluster centroid or average distance
between each point and the other points in its cluster can be
used, however this does not intrinsically tell us how much
information is in a clustering, just how tightly packed a cluster's
members are. The average distance between each point and the
other points in its cluster is computationally prohibitive so will
not be used in this study.

Euclidean distance-based measurements such as these lack
comparability in our use case, as each dataset and each featur-
isation technique should be considered independent. Identifying
trends in thesemeasurements with different numbers of clusters
and looking at the effect of kernel methods on Euclidean
distance-based measurements are both valid uses. However, as
Euclidean space is affected by dimensionality, it is important
that conclusions into the effect of different featurisation
approaches are not drawn from such measures. While noting
these caveats, we use the mean distance of a point in a cluster to
the cluster's centroid as ameasure of how tight the clusters are in
Euclidean space, we label this metric the spread of cluster.
Fig. 2 A visualisation of how application of kernel functions can affect t
(RBF) so f(x)¼ exp(�x2). There is no clear way to linearly separate classes
with the RBF yields a data space through which a straight line can be dr

© 2022 The Author(s). Published by the Royal Society of Chemistry
As the aim of this investigation is to improve the validity of
measures taken with LOCO-CV, specically to address issues
with vastly uneven cluster sizes, we also use the standard
deviation in cluster sizes as a metric for success (the
unevenness in cluster sizes). Material science datasets may
have uneven cluster sizes due to research bias towards
exploration of promising materials, and identically sized
clusters would be unexpected for materials data, identically
sized clusters were, in practice, never observed in this study.
Using the unevenness of cluster sizes serves as a measure of
whether cluster sizes differ by many orders of magnitude,
which would affect the validity of measurements taken using
LOCO-CV. This does not imply that more even clusters are
more chemically sensible groupings of materials, just that
they may be more sensible for use with LOCO-CV, as uneven
cluster sizes bring into question measurements taken with
LOCO-CV (Section 2.2.1).

The ease of clustering is expected to vary between datasets.
Accordingly, to appropriately to compare standard deviation in
cluster sizes, we perform max–min normalisation across
different featurisation techniques and numbers of clusters in
the same dataset. Consequently, for each dataset, the most
uneven cluster size measurement found is 1 and the least
uneven cluster size measurement is 0. We use these normalised
values when comparing cluster size unevenness between
datasets.
3 Results
3.1 Effect of representation on predictive ability of random
forest: case studies

We examine ve case study publications' datasets to compare
the representations used in them with a non-structural CBFV
examined in previous work,5 and with the composition vector
(CompVec) suggested for use with ElemNet.14 Case studies have
been selected to incorporate the prediction of a variety of
material properties, research groups, and notable works that
he data in an example dataset. Here we show the radial basis function
before application of RBF; however, non linear translation of each point
awn to separate the classes.

Digital Discovery, 2022, 1, 763–778 | 769
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reect the state-of-the-art. We use the original datasets to
replicate studies, but use 80 : 20 train:test splits.

We use a consistent 80 : 20 train:test split across all data sets
to enable us to draw conclusions about which representations
work better generally. This should help us to establish whether
previous ndings (i.e. that domain knowledge is more bene-
cial in smaller datasets and that benet diminishes as dataset
size increases over 1000),5 hold true for RFs. LOCO-CV
measurements for these experiments are available in the ESI,†
and the clusterings found for LOCO-CV are available in the
associated git repository.40

Representations compared are:
� Oliynyk.16 Originally designed for prediction of Heusler

structured intermetallics,16 the Oliynyk feature set as imple-
mented in previous work includes 44 features.5 For each of
these, the weighted mean, sum, range, and variance of that
feature amongst the constituent elements of the compound are
taken. Features include atomic weight, metal, metalloid or non
metallic properties, periodic table based properties (Period,
Fig. 3 A flow chart of the kernelised LOCO-CV process in a property pre
Note that the representation used for clustering is independent of that us
integrated into existing property prediction workflows without changes

770 | Digital Discovery, 2022, 1, 763–778
group, atomic number), various measures of radii (atomic,
Miracle, covalent), electronegativity, valency features (such as
the number of s, p, d, and f valence electrons), and thermal
features (such as boiling point and specic heat capacity).

� JARVIS:17 JARVIS combines structural descriptors with
chemical descriptors to create “classical force-eld inspired
descriptors” (CFID). Structural descriptors include bond angle
distributions neighbouring atomic sites, dihedral atom distri-
butions, and radial distributions, among others. Chemical
descriptors used include atomic mass, and mean charge
distributions. Original work generated CFIDs for tens of thou-
sands of DFT-calculated crystal structures,17 and subsequent
work adapted CFIDs for individual elements to be used in
CBFVs for arbitrary compositions without known structures (i.e.
Fig. 1a).5

� magpie:15 While the Materials-Agnostic Platform for
Informatics and Exploration (MAGPIE) is the name of a library
associated with Ward et al.'s work, it this has become synony-
mous with the 115 features used in the paper and, as such, we
diction task. The novel kernel application is highlighted in a bold frame.
ed for training the models. Consequently, kernel methods can be easily
to how models are trained.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Performance of composition-based feature vectors (CBFVs) on
predictive tasks compared to random projections. Random projec-
tions exhibit similar performance to CBFVs for most tasks. This is not
true for band gap prediction tasks, where CBFVs with domain
knowledge demonstrate marked improvement.
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will use magpie refer to the feature set. These features include 6
stoichiometric attributes which are different normalisation
methods (LP norms) of the elements present. These capture
information of the ratios of the elements in a material without
taking into account what the elements are, 115 elemental based
attributes are used, which are derived from the minimum,
maximum, range, standard deviation, mode (property of the
most prevalent element) and weighted average of 23 elemental
properties including atomic number, Mendeleev number,
atomic weight among others. Remaining features are derived
from valence orbital occupation, and ionic compound attri-
butes (which are based on differences between electronegativity
between constituent elements in a compound).

� RANDOM_200:5 a random vector featurisation used by
Murdock et al. to represent a lower bound for performance.

� Fractional:5 An implementation of a one-hot style encoding
of composition which includes average, sum, range, and vari-
ance of each element.

� CompVec a one-hot style encoding of composition as used
in ElemNet14 (containing only the proportions of each element
in a composition). Differences between this and fractional are
further discussed in Section 2.1.

We compare each of these representations to a random
projection of equal size. This allows us to control for the size of
a representation when investigating the advantage of the
domain knowledge built into a CBFV. Several of the ve case
studies investigated contain multiple applications of ML within
a single publication. The tasks which were recreated in this
comparison (and their relevant case study references) are as
follows:

� Tc: using a regressor to predict the superconducting critical
temperature (Tc) of a material (12 666 data points in training
set).18

� Tc > 10 K: classifying if the Tc of a material is greater than 10
K (12 666 data points in training set).18

� Tcj(Tc > 10 K): regressing to nd Tc given Tc > 10 K (4833
data points in training set).18

� HH stability: predicting the stability of half-Heuslers (8948
data points in training set).19

� Egap(oxides): predicting the band gap of oxides found in the
Computational Materials Repository database (599 data points
in training set).21

� Glass Forming Ability (GFA): predicting the ability of a bulk
metallic glass alloy (BMG) to exist in an amorphous state (5051
data points in training set).20

� Dmax: predicting the critical casting diameter of a BMG
(4724 data points in training set).20

� DTx: the supercooled liquid range of a BMG (495 data
points in training set).20

� Egap(DFT): predicting the band gap of materials calculated
using DFT (35 653 data points in training set).22 This dataset
combines data from the materials project and Duke University's
AFLOW.41,42

� Egap(exptl): predicting the band gap of materials measured
experimentally (1986 data points in training set).43 This was
used in experiments as to the effect of transfer learning from
DFT to experimental band gap prediction.22
© 2022 The Author(s). Published by the Royal Society of Chemistry
� Egap(DFT)WEgap(exptl): predicting the band gap of a dataset
consisting of both DFT calculated and experimentally measured
band gaps (37 639 data points in training set).22

We report measured performance in regression tasks was
using r2 correlation and classication task performance is
measured using accuracy. Thus percentage improvement over
random projections can be considered to be:

100

 
Mðy; ŷÞ
M
�
y; ŷp

�� 1

!

Where y is the target label for a prediction, ŷ is the label pre-
dicted by a model that uses a given representation, ŷp is a label
predicted by a model that uses a random projection of equal
size to the given representation, and M is accuracy for classi-
cation tasks and r2 for regression tasks. Measurements found
using other values ofM can be found in the ESI.† To investigate
repeatability of these results, a large subset of these experi-
ments have been repeated 5 times and the standard deviations
of these results calculated. This can be found in the ESI.†

Overall, recreation of these tasks shows that, broadly,
changes in CBFV made little difference to performance when
compared to a random projection of the same size (Fig. 4).
Featurisation methods inspired by domain knowledge do show
advantages in some datasets. These advantages seem to be task-
specic as opposed to based on dataset size, specically band
gap-based tasks seem to see benet from knowledge-based
features, however most other tasks do not see noticeable
improvement from this feature engineering (Fig. 4). This could
be because vast amounts of band gap data can be acquired
through DFT calculations41 and as such band gap prediction is
a widely available benchmark that researchers could use when
testing a newly proposed CBFV.44

Intuition may suggest introducing more dimensions that do
not contain any additional information would result in worse
Digital Discovery, 2022, 1, 763–778 | 771
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algorithmic performance. However, despite having 68% more
dimensions, RANDOM_200 performs within 5% of the frac-
tional representation. On large enough data sets (�3000 < n) the
random representation does not perform appreciably differ-
ently to the magpie representation. Notably on tasks outside of
band gap prediction there is little advantage to domain based
representations over a random projection.

We encourage the use of random projection as an alternative
to CBFV, and propose its use as a comparative measure against
CBFV. If a feature set cannot appreciably outperform a random
projection of the same size or smaller, then, while there may
still be benets to analysis of the feature importance of such
a feature set, that feature set does not enrich the representation
of a material when it comes to algorithmic performance.
3.2 Improving the linear separability of chemical data
spaces for more applicable measurements of extrapolatory
power

We investigated which of the representations of a compound
outlined in Section 3.1 will lead K-means clustering to identify
more evenly sized clusters in different datasets. Datasets
investigated were those used in Section 3.1 as well as the inor-
ganic crystal structures database (ICSD) as a whole.

In classical computer science problems, non-linear kernels
have been applied to datasets on which a linear discriminator
(such as K-means, or support vector machines) exhibits poor
performance. As described in 2.3, applying a non-linear trans-
formation (e.g., a kernel function) to every data point in a data
set can transform data such that it is more amenable to linear
discrimination (Fig. 2). We applied the radial basis, additive c̃2,
and skewed c ̃2 functions to the investigated representations to
see if these non-linear translations will reduce cluster size
unevenness found by K-means clustering. Reduced cluster size
unevenness found with K-means would improve the applica-
bility of LOCO-CV measurements, addressing one of the prob-
lems highlighted in Section 2.2.

As additive c̃2, and skewed c̃2 functions are only well dened
for positive inputs, data was scaled between 0 and 1 using min–
max normalisation before these methods were applied. As RBF
(and K-means without kernels) can be affected by disparity of
scale between axes, different normalisation methods were
investigated, with the data normalisation which most oen
resulted in the lowest cluster size unevenness being used for the
results below (no normalisation was used with RBF and min–
max scaling to between �1 and 1 was used when no kernel
method was being applied). Further details of this can be seen
in Section S1 of the ESI.†

All three kernel functions investigated resulted in more
evenly sized clusters than no kernel function being applied at
all, with RBF, on average, resulting in the largest reduction in
standard deviation between cluster size (Fig. 5). Additionally, we
note that application of any of these kernel methods generally
resulted in a reduction in distance between points in a cluster
and their centroids (spread of cluster), indicating more tightly
packed clusters (Fig. 6b). On average application of skewed c̃2

saw the greatest reduction in spread of cluster. As this
772 | Digital Discovery, 2022, 1, 763–778
investigation looks to create more even cluster sizes for use with
LOCO-CV we focus on impacts of RBF, as, of the kernel methods
tested, it resulted in the greatest impact on this metric as
dened by the largest reduction in standard deviation of cluster
size.

Before application of a kernel function, we note that cluster
sizes are more even in domain knowledge-based representa-
tions as measured by the standard deviation in cluster sizes.
CompVec representation resulted in a larger standard deviation
between cluster sizes (i.e., less evenly sized clusters) than all
other representations investigated, likely due to the sparse
nature of this representation, with the magpie representation
resulting in the most even cluster sizes (Fig. 7a). The two one-
hot based representations, fractional and CompVec, generally
did not result in as even cluster sizes as other representations.
Application of CompVec resulted in performance substantially
worse than that of fractional despite them being very similar
nature, only differing in use of aggregation functions (as dis-
cussed in Section 2.1).

RBF universally resulted in more even clusters. The smallest
change (as a percentage of the standard deviation in cluster size
before application of RBF), was seen in fractional and CompVec
representations (two of the representations which resulted in
the worst performance in this metric) (Fig. 6a). However,
outside these two representations, the proportional impact of
RBF on this measure did not correlate to the performance of
a CBFV in this measure prior to application of RBF.

Without use of kernel functions, there is a clear correlation
between the size of a representation and the spread of the clus-
ters found using that representation, with the exception of
CompVec, which saw the tightest clusters (Fig. 7b). This trend is
no longer seen aer application of RBF. Application of RBF to
a CBFV before K-means clustering reduced the spread of clusters
found (Fig. 6b and 7b). The relative size of the change seen aer
application of RBF correlated with the spread of clusters found
when no kernel method was used. The higher the spread of
clusters found using a CBFV without a kernel method, the larger
the change seen when clustering using that CBFV and a RBF.

Use of kernel methods in featurisation results in more even
cluster sizes when using that featurisation for K-means clus-
tering. As featurisation used for clustering in LOCO-CV is inde-
pendent of that used for learning, incorporating these kernel
methods into LOCO-CV is simple and applicable regardless of
machine learning algorithm, chosen metric, and initial repre-
sentation (Fig. 3). Thus we recommend use of kernel methods
when using K-means clustering for LOCO-CV to address the issue
of uneven cluster sizes (as discussed in Section 2.2). Addressing
this issue results in models being more reliably successful at
learning trends in data using LOCO-CV (Fig. 8).
3.3 Clustering random projections with and without kernel
methods

Having established that random projections perform similarly
to engineered feature vectors inmany task (Section 3.1) and that
kernel methods can be used to reduce cluster size variance in K-
means clustering on materials datasets (Section 3.2),
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Demonstration of the effect of kernel methods on clustering of compositions in the ICSD. (a) Changes in standard deviation of cluster size
found by K-means clustering of ICSD (k ¼ 5) with application of kernel methods. Most of the time, application of kernel methods reduces the
variation between cluster sizes. This effect is most pronounced with the basis function (RBF) kernel. (b) Variation in cluster spread for K-means
clustering of ICSD (k ¼ 5). Application of kernel methods reduces the spread in Euclidean space within a cluster. This effect is most pronounced
with skewed c2 and RBF. (c) To visualise these results, PCA was used to generate the first three principal components of all compositions in the
ICSD featurised using a CompVec. Colours correspond to clusters found by K-means (k¼ 5) clustering on this representation. Inspection of these
clusters reveals highly anisotropic clusters with no meaningful boundaries in the data to unambiguously separate clusters. (d) The first three
principal components found when examining an RBF translation of the ICSD (featurised using CompVec), points are coloured according to
clusters found by K-means (k¼ 5) applied to the kernelised data. The application of an RBF (as defined in Section 2.3) to every composition vector
in the ICSD (before clustering) leads to clusters that are more isotropic with more clearly resolved boundaries between clusters.

Fig. 6 Effect of radial basis function (RBF) on standard deviation of cluster sizes (cluster size unevenness) and spread of cluster sizes. This is
performed using K-means clustering with different values of k. (a) RBF leads to more evenly sized clusters for all featurisationmethods and nearly
all values of k (b) RBF leads tomore compact clusters (i.e., smaller average Euclidean distance between points within a cluster) for all featurisation
methods and all values of k.

© 2022 The Author(s). Published by the Royal Society of Chemistry Digital Discovery, 2022, 1, 763–778 | 773
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Fig. 7 Mean cluster size unevenness and spread of clusters found by K-means when clustering different representations of datasets.
Measurements are normalised to between one and zero on a per dataset basis, as different datasets would be expected to cluster with different
amounts of ease. The normalised values are then averaged across different datasets for each representation and value of k. (a) Clusters are
generally more even in domain knowledge based representations as measured by the standard deviation in cluster sizes. (b) Without application
of kernel function, spread of clusters as measured by the average distance between a point in a cluster and its centroid correlates to the size of
the representation with the exception of CompVec which has the tightest clusters. Application of radial basis function makes this trend
insignificant.

Fig. 8 Performance of random forests in regression tasks to compare evaluation regimens, measured using r2. These random forests are
evaluated with LOCO-CV (labelled with the CBFV used for K-means clustering), as well as a traditional 80 : 20 train:test split (labelled “Not
LOCO-CV”). Importantly, in LOCO-CV, the representation used for K-means clustering is independent of that used for training. Accordingly, all
models are trained using CompVec CBFV to remove training representation as a confounding variable. (a) Without the application of RBFs, the
same random forest model which performs well in traditional 80 : 20 split training regimen often fails to learn trends in the data when evaluating
with LOCO-CV, leading to low values of r2. (b) Application of RBF to CBFVs before K-means clustering for LOCO-CV results in fewer models
failing to learn trends in the data, leading to higher values of r2.
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experiments were carried out to measure the cluster size vari-
ance of random projections of compositions both with and
without application of kernel methods.

Without application of kernel functions, when each CBFV
was compared to a random projection of equal size (Fig. 9a),
using random projections of composition vectors did, more
774 | Digital Discovery, 2022, 1, 763–778
oen than not, result in more evenly sized clusters than
CompVec, but less evenly sized clusters than all other CBFVs
investigated. However, no representation (either random
projection or CBFV) universally resulted in more even clusters.
Comparing the best performing size of random projections (88
dimensions) with other CBFVs without any kernel methods did
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 9 (a) Reduction in cluster size unevenness (standard deviation in cluster size) of different CBFVs when compared to equal sized random
projections of composition vectors across different datasets with no kernel applied. While random projection consistently outperformed
CompVec, all other CBFVs formmore even clusters than an equally sized random projection. (b) Average cluster size unevenness found using K-
means clustering on datasets featurised using random projections of various sizes. Cluster size variances are normalised between 1 and 0 for
each dataset (as different datasets would be expected to cluster with different amounts of ease), and then averaged for each size of random
projection and each kernel. RBF and skewed c2 is seen to reduce cluster size unevenness, with the projections of approximately 100 dimensions
performing better than larger projections.
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narrow the differences in cluster size unevenness (Fig. S3b†),
however other CBFVs still outperformed random projections in
several datasets.

Radial basis, additive c2, and skewed c2 functions were
applied to these projections before clustering using K-means.
The resulting clusters were compared to those found without
any kernel methods, showing that RBF and skewed c2 did
reduce cluster size unevenness (Fig. 9b). However, these results
still do not create a consistent pattern of either outperforming
or underperforming the cluster size unevenness found by
applying RBF to CBFVs (Fig. S3a†). As no representation
universally results in more even clusters, a variety of CBFVs and
random projections should be investigated when choosing the
best representation for clustering a dataset. Application of
kernel methods such as RBF are advantageous in this context
regardless of representation.
4 Discussion

Recreation of studies discussed in Section 3.1 shows that,
broadly speaking, featurisation methods used in research are
not necessarily advantageous over random projections, espe-
cially for tasks that are not related to band gaps. Machine
learning led research in materials science oen aims to high-
light the success of a machine learning model either in
a materials discovery pipeline, as a proof of concept that
a model can learn from a given dataset, or a proof of concept
that a property can be predicted. As such, the exact imple-
mentation of a CBFV and its effectiveness when compared to
© 2022 The Author(s). Published by the Royal Society of Chemistry
other CBFVs are oen not included in the main text of a paper.
Comparison studies thus facilitate evaluation of the impact of
the CBFVs on ML performance.

With modern libraries such as matminer,10 creating new
featurisation methods and changing existing ones is straight-
forward. The engineered featurisation methods show no
advantage over more widely used, or simpler alternatives, in the
tasks considered here.

Both ndings here and in previous work suggest that for
sufficiently large and balanced datasets, domain knowledge in
CBFVs yields only small advantage.5 Promising results in
representation learning could further reduce these advan-
tages,45 which means the question as to whether these small
advantages of feature engineered CBFVs justify the difficulty in
comparison between the models using them is an open one.

Choice of representation for a supervised ML algorithm may
be inuenced by the extent to which the goal of the algorithm is
to maximise predictive accuracy for a property (e.g., to screen
potential candidates for synthesis), and the extent to which the
goal is to gain insight into the causes of that property. Linked to
this consideration is the question of whether domain knowl-
edge features are being used as proxy for the composition, or
whether the composition is a proxy for the properties of
a material which are quantied by the domain knowledge
features.

For example, a model trained to predict whether a super-
conductor has a Tc greater than 30 K could be trained on a CBFV
and nd that the number of d electrons is an important indi-
cator for this property. A similar model could be trained using
Digital Discovery, 2022, 1, 763–778 | 775
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a CompVec representation and nd that containing Cu is an
important indicator for this property. Whether the number of
d electrons is serving as proxy for the presence of Cu in
a material or the presence of Cu in a material is a serving as
proxy for the number of d electrons is a matter of perspective.
Bearing this difference in perspective in mind may help guide
towards use of a representation which is best suited for the
workow in which a machine learning algorithm is being used.
If we use ML to gain insight into the causes of properties and
phenomena, then examining the importance of different
domain knowledge areas in a CBFV for an algorithm will allow
us to do that. This would suggest that the task becomes amatter
of nding the best set of properties for an element to adequately
explain how it interacts with the chemistries of a compound. At
this point experimenting with various combinations of
elemental properties becomes appealing. However, to justify
this approach adequate analysis of which properties are
important is needed.

When choosing a representation to maximise predictive
accuracy, domain knowledge seems to provide some advantage
for some tasks examined here (particularly band gap prediction
tasks). However we do not think this evidence, nor that found in
previous work,5 is sufficient to reject featurisation methods
without domain knowledge such as fractional encoding of
composition or random projections, for more complex or
parameter dependant algorithms. When using a CBFV, random
projection offers a helpful baseline for performance as it is
simple to implement and works fairly well. Their single hyper-
parameter is the size of the projection, which allows one to draw
conclusions as to the usefulness of a CBFV under investigation
without introducing the size of a representation as a contrib-
uting factor for its performance.

Extrapolatory power is particularly pertinent in the materials
discovery eld, thus previous work presented LOCO-CV as a way
to estimate the extrapolatory power of a supervised machine
learning algorithm.8 LOCO-CV (along with many other linear
algorithms such as principal component analysis), relies on
linear separability in the data. We show that, regardless of
representation being used, kernels such as RBF are advanta-
geous in reducing cluster size unevenness, and so should be
strongly considered where such linear algorithms are applied.
This reduction in cluster size unevenness tackles previously
discussed caveats to LOCO-CV and results in more reliable
model training (Fig. 8).

We examine the use of random projections to featurise
chemical compositions to be used with kernelised LOCO-CV. As
for other CBFVs examined, random projections used in
conjunction with kernel methods produce more even clusters
than without kernel methods. However, no representation
(either CBFV or random projection) consistently resulted in
more even clusters than all other representations. While most
of the time CBFVs found more even clusters than random
projections (with the exception of CompVec), these ndings
were not universal across datasets tested. Kernel methods
applied to random projections resulted in cluster sizes being
even enough so as to be useable in the LOCO-CV algorithm
776 | Digital Discovery, 2022, 1, 763–778
without negatively impacting conclusions drawn from
measurements taken using this method.

Random projections and kernelised LOCO-CV can be used
together to create a generalised workow for evaluating the
extrapolatory power of a supervised machine learning algo-
rithm, which can be used regardless of input representation to
the machine learning algorithm in question. This can be
combined with using a random projection as input represen-
tation to the machine learning algorithm to see a baseline
measure of extrapolatory power which prospective CBFVs can be
compared against to measure their usefulness.

5 Conclusion

We demonstrate random projections are a generic and powerful
way to featurise compositions for material property prediction.
This is motivated by fundamental principles discussed in the
Johnson–Lendenstrauss lemma;29 randomly projecting
a composition vector can be used to move such vectors into
a different dimensional space while preserving relationships
between points in a dataset (within some error). These random
projections have only a single hyperparameter (the size of the
projection), which allows us to isolate the relationships between
the dimensionality of a representation, and the predictive
performance of algorithms trained using that representation.
Random projections can be used as a baseline representation to
examine what benet is added by domain knowledge imbued
into CBFVs.

We investigate how common CBFVs could be used in ten
property prediction tasks from literature, in order to establish
what advantage domain knowledge offers in constructing such
vectors. With the notable exception of band gap prediction
tasks, CBFVs engineered to incorporate domain knowledge do
not substantially outperform an equal sized random projection
for most prediction tasks investigated here. If the purpose of an
ML model is to maximise predictive performance, the choice of
using one of many complex representations (e.g., CBFVs) should
be justied by demonstrating an advantage over a random
projection of the same size.

We present kernelised LOCO-CV to overcome issues with
imbalanced cluster sizes that oen occur when performing
linear clustering on material sciences datasets. The application
of kernel methods, such as the RBF examined here, to data
before K-means clustering leads to more even cluster sizes
across many different datasets and input representations.
Further, using these kernel-modied clusters in LOCO-CV led to
more reliable model training in the models examined here.
Applying kernels in LOCO-CV is independent of representations
used by a supervised machine learning algorithm, so we
strongly suggest that researchers looking to deploy LOCO-CV
use the kernelised version presented here. Both random
projections and kernelised LOCO-CV can be implemented
independently or together.

We trained over 70 random forest models across ten property
predictions tasks found in the materials science literature to
show that random projections are a reliable baseline to use
when evaluating a CBFV. We have also evaluated over 36 000 K-
© 2022 The Author(s). Published by the Royal Society of Chemistry
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means clustering applications, on the datasets used in these
tasks as well as on the ICSD, and have shown that applying
kernel functions to these data before K-means clustering results
in more evenly sized clusters, and more reliable model training
when these clusters are used in LOCO-CV. Our ndings provide
a basis for materials scientists in selecting and evaluating
representations and laying out evaluation workows.
6 Methods

Above experiments were implemented in Python using RF, K-
means clustering and kernel method algorithms from the sci-
kit learn library.12 Hyperparameters of all sci-kit learn algo-
rithms were set to default as of version 2.4.1, with the exception
of the value of k for K-means clustering which was varied
between 2 and 10 as needed for the LOCO-CV algorithm. While
data standardisation was sometimes done before application of
K-means clustering (as detailed in the ESI Section S1†), data
standardisation was not done before application use of RFs as
by their nature RFs consider dimensions independently making
such standardisation redundant.

Graphs were plotted with the MatPlotLib library46 with the
exception of Fig. 8 which was also uses the Seaborn library.47

Featurisation was done using the utilities provided with the
github associated with Murdock et al.,5 with the exception of
CompVec which was implemented from scratch, and case study
specic featurisations, which were obtained in ESI† for the
relevant case study. All implementations, are made available
through the associated git repository as are data used in this
study.40
Data availability

1. Code and data (or scripts to download data) associated with
Section 3 of this paper can be found at https://github.com/
lrcfmd/KernelisedLOCO-CV.

2. Section 3.1 was carried out using data publicly available
from the following sources:

(i). https://github.com/vstanev1/Supercon.
(ii). https://pubs.acs.org/doi/suppl/10.1021/

acs.jpcb.7b05296/suppl_le/jp7b05296_si_001.zip.
(iii). https://github.com/WMD-group/Solar_oxides_data.
(iv). https://app.globus.org/le-manager?

origin_id¼82f1b5c6-6e9b-11e5-ba47-
22000b92c6ec&origin_path¼/published/publication_1106/.

(v). https://link.springer.com/article/10.1007/s40192-020-
00178-0#Sec12 (as ESI†).
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