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The development of machine-learned interatomic potentials requires generating sufficiently expressive
atomistic data sets. Active learning algorithms select data points on which labels, ie., energies and
forces, are calculated for inclusion in the training set. However, for batch mode active learning, i.e.,
when multiple data points are selected at once, conventional active learning algorithms can perform
poorly. Therefore, we investigate algorithms specifically designed for this setting and show that they can
outperform conventional algorithms. We investigate selection based on the informativeness, diversity,
and representativeness of the resulting training set. We propose using gradient features specific to

atomistic neural networks to evaluate the informativeness of queried samples, including several
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Accepted 11th July 2022 approximations allowing for their efficient evaluation. To avoid selecting similar structures, we presen
several methods that enforce the diversity and representativeness of the selected batch. Finally, we apply
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1 Introduction

Recently machine-learned interatomic potentials (MLIPs) have
been successfully applied to many research areas in materials
science, molecular physics, and chemistry."” The increasing
popularity of MLIPs in the community relies mainly on their
high computational efficiency, comparable to empirical force
fields, and their accuracy on par with the reference ab initio
methods. However, the availability of sufficiently expressive
data sets, which cover the relevant part of the conformational
and chemical space of interest, is a prerequisite for applying
MLIPs in real-world problems.

Typically, atomistic data sets employed in the literature
contain thousands to millions of structures. Labels, i.e., refer-
ence energies and atomic forces, have to be computed for each
of them by employing an ab initio method. The labelling is often
computationally expensive. However, atomistic data sets may
contain a vast amount of redundant information. For example,
data sets created by employing molecular dynamics (MD)
simulations generally contain many similar structures, which
reduces the performance of an MLIP.

In order to reduce the required number of ab initio calcula-
tions, MLIPs can be allowed to choose which data points to
label. In many situations, large sets of possible structures can
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they can be used to generate highly informative atomistic data sets by running any atomistic simulation.

easily be generated by MD simulations using a computationally
cheap Hamiltonian, like force fields or preliminary trained
MLIPs. An algorithm that chooses structures from such sets for
which labels are to be calculated is referred to as active learning
(AL).* Such algorithms require a measure of the model's
uncertainty, ie., a criterion to decide which structures lead to
the strongest increase in the quality of the training data set.

Various approaches have been proposed in the literature for
Gaussian process (GP)-based MLIPs employing their Bayesian
predictive variance,”® or the absolute error of their predic-
tions.' For MLIPs, which use artificial neural networks (NNs) to
map atomic feature vectors to total energies, typically query-by-
committee (QBC),"*** Monte Carlo dropout,'**® and input as
well as last-layer feature space distances are used.'*'*"*®

Further examples are the network's output variance,' ob-
tained in the framework of optimal experimental design
(OED),**?* and an approach based on the D-optimality criterion
proposed for linearly parameterized potentials,* and extended
later to non-linear regression.** Finally, many AL algorithms
that do not require estimating the model's uncertainty have
been presented in the literature.>>*

Standard AL algorithms label one data point per iteration or
choose data points independently of each other. In the
construction of MLIPs, it is computationally much more effi-
cient to provide batches of training points, for which the new
labels can be calculated in parallel.® Such batch active learning
schemes reduce the computational effort arising from frequent
re-training of the model, which is particularly beneficial for NN-
based approaches where the training is somewhat expensive.
We refer to the task of using a neural network to select multiple
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structures at the same time as batch mode deep active learning
(BMDAL).

In order to compare AL algorithms, we consider three
informal criteria that they may use to select a batch of points:*”
(1) informativeness, (2) diversity, and (3) representativeness of
the data. The informativeness criterion (1) requires the AL
algorithm to favor structures that would be informative to the
model, ie, structures that would significantly improve the
selected error measure. The informativeness could, for example,
be measured by uncertainty as in ref. 19 or by the QBC approach
as the disagreement among the ensemble members. The diver-
sity criterion (2) demands that the selected samples are not too
similar to each other. The last criterion (3) suggests that regions
of the input space with more data points are better covered by the
resulting batch. Fig. 1 compares a naive AL algorithm that fulfils
(1) to algorithms that satisfy (1) and (2) or all criteria (1)-(3).

Most of the methods recently presented in the literature do
not satisfy all the requirements presented above. Moreover,
most of them fulfil merely the informativeness criterion (1).
Therefore, these methods may perform poorly on data sets
containing, e.g., similar structures sampled during an MD
simulation. In order to resolve these issues in the batch mode
setting, here we extend existing algorithms specifically designed
for BMDAL>" to the application on interatomic NN potentials.

Specifically, we extend the BMDAL framework proposed by
ref. 29, which is explained in detail in Section 3. In this frame-
work, to define a learned similarity measure between data points,
the gradient kernel of a trained NN is considered, corresponding
to the finite-width neural tangent kernel (NTK).*> Its corre-
sponding features are the gradients of the NN output with
respect to the parameters at the respective data points. In order
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to obtain a lower-dimensional approximation, last-layer gradient
features or randomly projected gradient features are considered.
The chosen kernel can then be transformed to represent uncer-
tainties. Finally, various selection methods are presented that
use kernel-based uncertainty to select a batch of data points.

We consider a specific case of atomistic NNs in which the
output is defined as a sum over local atomic contributions. For
the feature map corresponding to the gradient kernel, we will
show that the sum over atomic contributions destroys the
product structure exploited in ref. 29 for efficient exact
computations. The random projections approximation from
ref. 29 does not directly apply to atomistic NNs either, but we
show that the linearity of individual projections in atomic
features can be used to overcome this issue. As an alternative
approximation, we consider the use of last-layer gradients,
whose extension to atomistic NNs is straightforward and has
been used recently by some of us.” In summary, we propose
random projections and last-layer gradients to efficiently
approximate the full gradient kernel.

Applying the GP posterior transformation to the last-layer
kernel yields an equivalent AL method to the one based on
OED." However, in our experimental results, the application of
random projections to the full gradient kernel leads to better
uncertainty estimates than OED-uncertainties. Finally, various
selection algorithms are introduced, ranging from the naive
selection of multiple samples with the highest informativeness
to more elaborated algorithms, which satisfy (1)-(3).2%2*33

To assess the performance of the proposed BMDAL methods,
we thoroughly benchmark the predictive accuracy of obtained
MLPs on established molecular data sets from the literature,
Le., QM93*3 and MD17.>*° Moreover, to evaluate the
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Fig. 1 Comparison of batch mode deep active learning (BMDAL) algoritnms in xe R? feature space. (Left) The informativeness of selected
structures is measured by the distance to the training points. The respective BMDAL algorithm satisfies only (1). (Middle) The data points are
greedily selected®® such that the diversity of the acquired batch is enforced. The informativeness of selected structures is measured by the
distance to the training and all previously selected points. In this example, the BMDAL algorithm satisfies (1) and (2). (Right) All requirements (1)—(3)
are satisfied, such that the acquired batch ensures the representativity of the new training data set, defined as the union of training and newly
selected data points. Here, a maximum-distance point is selected from the cluster with maximum size;® the respective cluster centers are

defined by training and previously selected points.
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performance of the respective methods on bulk materials, we
studied two solid-state systems, TiO, **** and Li-Mo-Ni-Ti
oxide (LMNTO).*>*

The software employed in this work is implemented within
the TensorFlow framework* and is published at https://
gitlab.com/zaverkin_v/gmnn, including examples of usage. For
MLIPs defined within the PyTorch framework,* the reader is
referred to the code published within ref. 29.

This paper is organized as follows: first, Section 2 introduces
the Gaussian moment neural network (GM-NN),*”** employed
in this work for the construction of MLIPs. Then, in Section 3,
we derive the gradient kernel specific to atomistic NNs,
including various approximations to and the GP posterior
transformation of it, and describe numerous selection algo-
rithms designed to fulfil (1), (1) and (2), or all criteria (1)—(3).
Section 4 demonstrates the performance of the proposed
approaches on selected benchmark systems compared to
random selection and the literature methods.**** Section 5 puts
the main findings of this work into the context of computational
chemistry and atomistic modelling in general. Finally,
concluding remarks are given in Section 6.

2 Interatomic neural network
potentials

In the following, the architecture and training of interatomic
NN potentials employed in this work is reviewed. Throughout
this work, we denote an atomic structure by S = {r;, Z;}™,
where r; are the Cartesian coordinates of atom 7 and Z;e N is the
respective atomic number. Particularly, we consider the
problem of learning the mapping of an atomistic structure to
a scalar electronic energy, ie. f:S—EeR, from data

9= (gtramy Jtram) N with Ftrain = {S }Nm:] and
Y train = {EXF, {Fref "} Nin Here, Ei" and {FI{}™ are the

k=1 i=1
reference energies and atomic forces for structure £k, typically

obtained by employing ab initio methods. The atomic forces are
computed as negative gradients of the total energy.

Throughout this work, we employ the Gaussian moment
neural network (GM-NN) approach.*”*® It allows for fast
training, which is essential for training-heavy workflows such as
AL. In the following, we briefly review the architecture and
training of GM-NN models.

2.1 Gaussian moment neural network

In the community of NN modelling for computational chem-
istry, it is usual to assume that each atom interacts only with the
neighbors within the finite cutoff radius ry,ax. Thus, the total
energy of an atomistic system can be decomposed in its atomic
contributions*

Nat

= ZE,-(G,-, 0), 1)

where G; is a local atomic representation of the neighborhood of
atom 7 and encodes all necessary invariances to ensure efficient
training of an atomistic NN. Here, we employ the Gaussian
moment (GM) representation,” defined solely by the pair

© 2022 The Author(s). Published by the Royal Society of Chemistry
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distance vectors from an atom i to all neighborsj, i.e. r;=r; — 1;,
within cutoff radius ry.x Defining the radial and angular
components of pair distances as r; = |ryll, and t; = ry/ry,
features equivariant to rotations can be obtained as***

= Rzz.(ri, B)E5 ", (2)

JFEi

lL\

where i'}f’ "' =1;® - ®t; is the L-fold outer product of the
angular components and Ry 7, (r0) are nonlinear radial func-
tions with trainable parameters 8. We employ a weighted sum
of Gaussian functions as nonlinear radial functions,*® rescaled
by the cosine cutoff function.*
are recovered by computing tensor contractions of Cartesian
tensors W,;.**® When computing gradient features for
BMDAL algorithms, the trainable parameters § are ignored,
such that the respective algorithms can be applied similarly to
other interatomic NN potentials.

We employ a fully-connected feed-forward NN consisting of
two hidden layers*®

Features invariant to rotations

y; = 0.1-b
+ Lw% (0.1 b? + Lw% (0.1 b+ LWWGI») ) ,
Vi Vi Vdy
(3)
with d, = 360 being the number of input neurons, d; = d, = 512

being the number of hidden neurons, and the single output
neuron dz = 1. Moreover, we employ the neural tangent kernel
(NTK) parameterization,® i.e. 1/v/d;_; for weights W) and 0.1
for biases b"” for layer L. The weights of the fully-connected part
are initialized by picking the respective entries from a normal
distribution with zero mean and unit variance. In contrast, the
trainable bias vectors are initialized to zero. We use the Swish/
SiLU activation function®>** ¢(x) = ax/(1 + exp(—x)) multiplied
by a scalar « = 1.6765 as the activation function.

To aid the training process, the output of the NN is shifted
and re-scaled by trainable, species-dependent parameters uy
and oz as

E(G0) = c(ozy; + uz), (4)

where ¢ is defined as the root-mean-square error (RMSE) per
atom of the mean atomic energy and u; are initialized by
solving a linear regression problem.*® The trainable scale and
shift parameters of the atomic energy, ie. o, and uz, are
considered fixed for BMDAL algorithms, similar to (.

2.2 Training

The parameters ¢ of the NN, i.e., W and b as well as the trainable
parameters 3 of the local representation and the parameters that
scale and shift the output of the NN, i.e. 6, and u, are optimized
by minimizing the mean squared loss on training data

2(0|19) =

N(k)

< f
re
Z HFtk -

Nrain

> el B

k=1

2
_E(S/m Hz S/w )”2 s (5)
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where we have chosen Az = 1 a.u. and Az = 12N, a.u. A to
balance the energy and force loss contributions. The scaling is
independent of the units used, and a.u. stands for arbitrary
units. The atomic force of atom i is defined as the negative
gradient of the total energy with respect to the atomic position r;

Fi(Sk.0) = =V E(Sk.0). (6)

For the case where only reference energies are available, e.g.,
on the QM9 data set,*** i = 0 a.u. A% is employed.

The Adam optimizer® is used to minimize the combined loss
function in eqn (5). The respective parameters of the optimizer
are 8, = 0.9, 8, = 0.999, and £ = 10~ . We employ a minibatch of
32 molecules if not stated otherwise. When training on refer-
ence energies and forces, the layer-wise learning rates were set
to 0.03 for the parameters of the fully connected layers, 0.02 for
the trainable representation, as well as 0.05 and 0.001 for the
shift and scale parameters of atomic energies, respectively. The
training was performed for 1000 training epochs. When
training on reference energies only, the respective set of
learning rates is 0.005, 0.0025, 0.05, and 0.001, respectively. In
this case, the model was trained for 500 epochs. To prevent
overfitting during training, we employed the early stopping
technique.*

All models were trained within the TensorFlow framework*
on a central processing unit (CPU) node equipped with two Intel
Xeon E6252 Gold (Cascade Lake) CPUs. For all tests performed
in this work, eight models were trained in parallel on a single
CPU node, i.e. six cores were used by a process.

3 Active learning

All BMDAL approaches considered here require an estimate of
the informativeness of a queried point to the model. Here, we
are interested in BMDAL approaches which are able to select
a diverse set 2pateh = {Sk}l,;’:‘{““, with Npaeen > 1 at once from the
unlabeled pool of data %0 = {Sk}fiT'- We employ the
framework proposed by ref. 29. Thus, BMDAL methods will be
defined through base kernels representing some measure of
similarity and importance on the data, transformations of the
base kernels and selection methods using the transformed
kernels.

Here, the framework mentioned earlier® is extended to the
application of interatomic NN potentials. Therefore, a thorough
derivation of all components is required. In the following, we
introduce the positive semi-definite kernel k(S,S) : S x S—R,

defined by a finite-dimensional feature map ¢(S) : S — Rt a5

k(S.8) = ¢(S) ¢("), 7)

with S being a set of structures and dgearure being the dimen-
sionality of the feature space. For more information on kernels,
the reader is referred to ref. 54.

Only the energy output is considered in this section, provided
directly by the model. The atomic forces are neglected as they are
defined by a negative gradient of the total energy. Additionally,
for the lastlayer gradient approximation, it has been
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demonstrated that the informativeness defined by atomic forces
is only marginally more expressive than the one obtained by the
energy-based approaches.”® Moreover, the computational
demand of atomic force-based approaches is far greater than that
of total-energy-based ones. An exception are the reference liter-
ature methods such as QBC and those based on absolute

errors.'*™**

3.1 Kernels as measures for similarity and uncertainty

In the following, we will discuss several ways to define kernels as
similarity and uncertainty measures for NN models, which will
be combined with different selection methods. We expect
trained NNs to learn better measures of similarity between
points and, therefore, lead to better uncertainty estimates for
the NN. To be able to refer to them in Section 4, we now assign
labels to them, like FEAT(LL) for the similarity measured as the
distance between last-layer gradient feature vectors. We will do
this by first considering various base kernels and then various
transformations thereof.

3.1.1 Gradient kernel. In this section, we motivate gradient
kernels and discuss various approximations and trans-
formations to reduce their runtime complexity. In the following,
we expand an NN-based model defined, e.g., in eqn (1) in its
first-order Taylor series® around the optimal parameters 6* and
obtain

E(S.0) = E(S,0%) + W'VE(S,0)|9—g+, (8)

with w = § — 6*. Now we consider the case where a new training
point S is added to the training set, with corresponding energy
labels. Then, by using the optimal parameters 6* the learning
task can be reduced to the linear regression

AE(gtrainU{S}’e) = WTd’grad('%tminU{S})a (9)

with the non-linear feature map ¢gaq(S) defined as ¢graa(S) =
VoE(S,0)|g—¢+. Here, we define AE(PrinU{S},0) as the differ-
ence  between  reference labels and  predictions
E(Ztrain U {S}, 0%).

The kernel kgrad(S,5") = $grad(S) dgraa(S’) corresponds to the
finite-width NTK,** and depends on the linearization point 6*.
In the infinite width limit, i.e. d; & o for1 =]/ =1L — 1, it can
converge to a deterministic limit.*»**” For this work, however,
it is essential that NTK governs the training of NN-based
models, at least in the first-order Taylor approximation. Thus,
it contains relevant information on the informativeness of
queried samples. Then, for example, the distances between the
respective feature vectors

A(Sa S,) = ||¢grad(S) - ¢grad (S/) Hz
= \/kgrad(S7 S) + kgrad(S,7 S,) - Zkgrad(Sy S,)

(10)

can be used to estimate the informativeness by measuring the
similarity to the training set.

We recall that a sum of atomic contributions models the
total energy of a system. Therefore, the feature map ¢graq(S) can
also be decomposed into the atomic contributions ¢gaq(Gy), i.e.
one can write

© 2022 The Author(s). Published by the Royal Society of Chemistry
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= V4E(G;,0)
i=1

Nat

¢grad(S) = Z ¢gl“dd(G ) (11)

0=0*

Formally, ¢graq(G;) can be easily computed by employing its
product structure. For this purpose, we rewrite the network in
eqn (3) as*

(1+1

I+1 W Rd’“

1+'> ( 1+1)7b(l+1)>€Rd,Hx(d/+l)7

1 T
%\ = 0.1) er“
xl (\/a[‘xl b ) b

where z¥) and x? are the pre- and post-activation vectors of layer
I. Thus, for the atomic feature map ¢gr.a(G;), one can easily
obtain the following expression
(?ZEL)
’ aw(L)

o7V
¢grad(G[) = ( ~’ )
azl('L) 0) aZEL) <(L-1
_<az(1)®x§>,,..,azm®x§. 1.

(12)

(13)

ow"

The product structure of ¢gr.q in eqn (13) will be essential in
Section 3.1.3.

3.1.2 Last-layer gradients - FEAT(LL). While the product
structure of the atomic gradient features ¢gr.q(G;) enables
somewhat efficient kernel computations in fully-connected
networks (see ref. 29), the sum in eqn (11) destroys the
product structure, precluding its direct computation for atom-
istic NNs. Thus, an approximation to ¢g,q(G;) is required. Last-
layer gradients have recently been proposed™ to that end,

$n(S) = VwwE(S.0), (14)
referred to as network's sensitivity in ref. 19. Similar features are
frequently used in the literature.'®*® In Section 4, we will refer to
the respective kernel, i.e. k(S,5") = ¢u(S) ¢u(S"), as to FEAT(LL).

3.1.3 Random projections - FEAT(RP). We have seen that
the individual gradients ¢g:,4(G;) in eqn (13) possess a product
structure, which however gets lost when considering the total
gradients ¢graq(S). That causes the memory consumption and
runtime for the full gradients ¢g:,q(S) to become intractable
unless the last-layer approximation is used. However, as
demonstrated in ref. 29, last-layer gradients can yield signifi-
cant differences in resulting accuracy compared to full gradi-
ents. To resolve this issue, we consider the random projections
(sketching) technique.®

For a general feature map ¢(G;) € R%=< and a random
matrix UeR% e with d,, being the number of random
projections, we can consider the randomly projected feature

map
$"™(Gi) = Up(Gy)eR™, (15)

where the elements of U are drawn from a normal distribution
with zero mean and unit variance. For all experiments in

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Section 4 we use d,, = 512. In ref. 29, random projections for
different types of feature maps ¢ are discussed that lead to
unbiased estimates of the kernel values. For example, for the
specific case of ¢ = (¢1,¢,)" and ¢ = ¢; ® ¢, one obtains

¢ (Gi) = ¢ (G) + ¢7°(Gi),
8(Gi) = ¢°(Gi) © ¢7°(Gy),
where ® denotes the element-wise or Hadamard product.

For the random feature map ¢gF.q(G;) one obtains by
employing the expressions in eqn (16)

(16)

B = S (U H0(G) © o (Ul g0 (6)),

=1

(17)

with ¢Out( i) = 6z / az and ¢{J(G,) = x¥. All U] and UY, are
sampled 1ndependently.
In contrast to ref. 29, we cannot directly use eqn (17), since

Nat
= Pgrad(Gi) of atomic
-1

gradient features. In order to apply the random projections
from eqn (17) to a sum of features, we note that the individual
projections (rows of eqn (17)) are linear in the features ¢graa(G;)

N (CARTACH NIRRTy

=1
—Z< woul gl (G e s (G)

1 0
—{(uheu.

where eqn (13) has been used in the last step, (-, ) denotes the
scalar product, and uOut and ugﬂ are corresponding rows of
Ugl)lt and UEQ, respectively.

Given the linearity in eqn (18), we can apply random
projections to a sum of feature maps simply by summing the
individual random projections, given that all of the individual
random projections use the same random matrices. Specifi-
cally, we obtain for the feature map of a structure S

6))'5 (U4 (G0

we need to work with a sum ¢g,4(S)

(18)

uly @upr >7 ¢grad(Gi)>7

Nat

z g oul OU[

=1 I=1

~

Erdd (1 9)

These random projections gradient features can be used
when computing the distance between two structures (simi-
larity) in the respective feature space, see eqn (10). In Section 4,
we will refer to the respective kernel, ie., k(S,S) =
Pead(S) dehaa(S"), as FEAT(RP). Alternatively, one can obtain the
variance at a queried point and the covariance between queried
points by computing the GP posterior on (S,S’).

3.1.4 Gaussian process posterior transformation - GP(LL)
and GP(RP). Now we consider Bayesian linear regression with
a feature map ¢ and weights w drawn from .4(0,I). The energy is
then modeled by

E(S.0) = w'§(S) + e, (20)

where ¢ ~.4(0,0?) is the observation noise and w"¢(S) is the
random function with covariance defined by eqn (7). After

Digital Discovery, 2022, 1, 605-620 | 609
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observing the training data % one obtains again a Gaussian
process with the well-known covariance kernel”

k(S,8'|2) = k(S,S") — k(S, Zain)

_ , 21
(k(Jtrainv Jlrain) + 0'21) 1k('gftrain7 S )7 ( )

or, equivalently, by using the definition in eqn (7) and the
Woodbury matrix identity

k(S,59) = ()" (¢(Puan) $(Zisain) + 1) $(S). (22)

Thus, one may define a GP posterior transformed feature
map as
1

¢GP(S) = a((p(gtrain)]—(p(%lrain) + GZI)7§¢(S)7 (23)

which can be used to estimate the informativeness of a queried
point by eqn (10). In Section 4, we refer to the kernel in eqn (22) or
(21) as GP(LL) and GP(RP) if last-layer or random projections
gradient features have been used, respectively. Similar to the
scaling transformation in ref. 29, we choose ¢* in a data-
dependent fashion as ¢% = tr[d)(,%rain)Td)(%tram)]/Ntraindfeamre.

As an alternative to the distance-based measure of informa-
tiveness in eqn (10), after the GP posterior transformation the
uncertainty of the network is given by the diagonal elements of
the kernel in eqn (21), i.e. 0?(E|2) = k(S, S|@), which is equiva-
lent to the results obtained in the OED framework,"® if last-layer
gradient features are used. A naive BMDAL approach would
select Npacen Samples with the highest uncertainty.*® However, the
off-diagonal elements of kernel in eqn (21) and (22) describe the
cross-correlation of structures S and §’ and can be used to obtain
BMDAL methods satisfying (1) and (2); see Section 3.2.2.

3.1.5 Diagonal kernels - AE(E), AE(F), QBC(E), QBC(F), and
RND. Some approaches discussed previously in the literature to
estimate the model's uncertainty’®™* can fit into the described
framework. For this purpose, we define diagonal kernels. For
example, for an approach in which absolute errors in predicted
total energies and atomic forces is used, one can define the
diagonal elements by

AE(S) = |E™ — E(S,0)|

Yo (24)

AFS) = 3 S IF - s

=1 j=1

respectively. Then, the respective kernels are defined as k(S,S') =
AE(S)és,s or k(S,S') = AF(S)ds,¢. In Section 4, we will refer to the
abovementioned kernels as AE(E) and AE(F), respectively.

Alternatively, for the QBC approach, we define the
disagreement between ensemble members by
Nens
77" (S) = Z IE(S) ()5,
_ (25)
Neng Nat _
7 (5) = 23N > IF(S) =B (Sl
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for total energies and atomic forces, respectively. Here, Neps is

Nens

the number of models in the ensemble, E(S) = 1/Nens >, Ei(S)

Nens =1
and F;(S) = 1/Nens Zng,v(S) are the mean of the respective
iz

property prediction. The corresponding kernels are defined by
k(S,S") = 05"%(S)0s,s OF k(S,S") = 0% °(S)ds,s These kernels will be
called QBC(E) and QBC(F), respectively. Throughout this work,
we employed an ensemble of three models. For all numerical
results in Section 4, we report the average errors over the indi-
vidual models in the ensemble.

Finally, one can model random selection by a diagonal
kernel with (S,S") = usdss with ug drawn ii.d. from, e.g,
a uniform distribution. We refer to this random kernel as RND.

3.2 Selection methods

Given an appropriate measure of informativeness, one has to
define particular selection methods. Here, we describe various
selection methods. Some of them satisfy only the informative-
ness criterion (1). Others ensure the diversity of the acquired
batch (2) and the representativeness of the updated training set
(3)- An efficient algorithmic realization of the selection methods
discussed in this section has been used for our implementation
but is not discussed here; for more details, see Appendix D of
ref. 29.

3.2.1 Naive active learning - MaxDiac. The simplest BMDAL
algorithm selects Npaen = 1 query points by the diagonal of
a kernel in eqn (7) or (22). Specifically, given the already selected
structures Zpacch We select the next point by

S = arg max k(S,S),

S€ X pool / Pbatch

(26)

until Np,een Structures are selected. Combined with the GP(LL)
kernel, we obtain the method previously derived within the OED
framework.” The selection method in eqn (26) (or MaxDiac in
the following) can be combined with all kernels described in
Section 3.1.5 resembling most of the literature methods.****
However, MaxDiaG satisfies only the informativeness criterion
(1) and do not enforce batch diversity or the representativeness
criteria. Therefore, it may select similar structures which would
deteriorate performance of an MLIP.

3.2.2 Greedy determinant maximization - MaxDer. An
improvement over MaxDiag selection method in Section 3.2.1
can be achieved by using the cross-correlation or covariance
between structures as defined in eqn (22). The corresponding
method selects structures to maximize the determinant in
a greedy fashion, i.e., one structure per iteration,

S = arg max detlk(Zpacn Y{S}, Zoarecn U{S}P)].

Se Zpool / Pbatch

(27)

The above expression is equivalent to the BatchBALD
approach proposed for classification problems,* if applied to
a GP model.”® A naive implementation of eqn (27) would require
computing each determinant separately. In this work, we
employ the greedy algorithm proposed by ref. 59 and described

© 2022 The Author(s). Published by the Royal Society of Chemistry
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in ref. 29, which uses the partial pivoted matrix-free Cholesky
decomposition.” We call the corresponding selection method
MaxDer, which corresponds to MaxDer-P in ref. 29. MaxDer
satisfies (1) and (2) but does not take the distribution of the pool
data (3) into account.

In ref. 29, it was assumed that the training and pool labels
are corrupted with Gaussian noise. In this work, the labels are
generated by ab initio methods and are assumed to be noise-
free. Therefore, compared to ref. 29, we skip the label noise in
eqn (27), ie., we maximize det[k(Zpateh U{S}, Zvaten U{S} 2)]
instead of det[k(2pbatch U{S}, Zbatch U{S}|Z) + ¢°1]. This modi-
fication additionally ensures that the same input cannot be
queried multiple times in the same batch. On the other hand, it
also means that MaxDer can select at most diearure batch
elements in a BMDAL step, since the determinant in eqn (27)
becomes zero afterwards. In contrast, the distance-based
methods defined below can select a batch of arbitrary size.

3.2.3 Greedy distance maximization - MaxDist. Another
possibility to ensure a diverse acquired batch is greedily
selecting structures with a maximum distance to all previously
selected points and training points. The respective selection
method reads

S = arg max min

Py a9
S€ Fpoot [ PpateyS & ¥ 1rain U Pt

A(S,S), (28)

with the distance measure defined in eqn (10) but employing
the selected kernel. Originally, the approach defined by eqn
(28) was proposed for classification tasks.”® Some examples of
the usage of distances in the feature space are known also for
MLIPs,'® but they are restricted to measuring the distance to
all training points as shown in Fig. 1 (left). Here, we are
dealing with a greedy distance optimization as in Fig. 1
(middle), instead. We call the corresponding selection
methods as MaxDist, which corresponds to MaxDist-TP in ref.
29. Similar to MaxDer, MaxDisrt satisfies (1) and (2) but does not
take the distribution of the pool data (3) into account.

3.2.4 Largest cluster maximum distance - LCMD. Finally,
we describe the largest cluster maximum distance selection
method (or LCMD in the following), which satisfies all
requirements (1)—(3).” The LCMD method used in this work
corresponds to LCMD-TP in ref. 29. Formally, LCMD can be split
into three computational steps. First, for each structure
S€ Zpool/ Xbarch We define the associated center as

¢(S)= arg min A(S,S),

I "
§'€ Zirain U Zbaich

(29)

with the distance measure as defined by eqn (10). Then, for each
center S'€ irain U Zparen the cluster size is defined as the sum
over squared distances from the cluster center to all points in
the cluster

by

S€ Zpool /-%anchil’(s)zs

s(8') = A(S,S'),

7

(30)

© 2022 The Author(s). Published by the Royal Society of Chemistry
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i.e., for all points S for which ¢(S) = §' holds. Finally, among all
points from the cluster with maximum size, the most distant
point from the respective cluster center is selected

S = arg max A(S, ¢(S)).

Se _%-pool/_%bumh;s(c(s)):maxS/S(S,)

(31)

We should note that the LCMD approach can be disadvan-
tageous compared to MaxDist and MaxDer if the pool data is not
representative for the test data or if the maximum error is
important.*

4 Results

In the following, methods and algorithms presented in this
work are applied to learning interatomic potentials, specifically
to GM-NN models;*** see Section 2. We employ four bench-
mark data sets. The MD17 data set’’*° covers the sampling of
the conformational space, while QM9 **-*¢ covers the sampling
of the chemical space. Moreover, we investigate the applicability
of the proposed approaches on bulk materials by employing the
TiO, *»** and LMNTO data sets.****

We have employed 15 BMDAL algorithms obtained by
combining selection and kernel methods discussed in Section
3. These are:

RND, AE(E), AE(F), QBC(E),
QBC(F), GP(LL), GP(RP)

MAaAXDIAG +

MaxDer + { GP(LL), GP(RP)

GP(LL), GP(RP), FEAT(LL),
FEAT(RP)

MaxDisT +

LCMD + { FEAT(LL), FEAT(RP)

The chosen combinations of selection methods and kernels
are motivated as follows: MaxDiag + RND performs random
selection and is used as a baseline. The MaxDiac + QBC and
MaxDug + GP methods correspond to conventional AL
methods.’**** The MaxDuc + AE methods show what is
possible with AL when labels on the pool set are available. The
combinations MaxDer + GP, MaxDist + FEAT, and LCMD + FEAT
are motivated by ref. 29. We include MaxDist + GP as an addi-
tional experiment.

In total, we ran 292 BMDAL experiments that were repeated
five times with different seeds for NN initialization and splitting
data into training, validation, pool, and test data sets. In total,
69 154 models have been trained. However, as it is infeasible to
visualize all the results in this section, only the most illustrative
results are presented. For more details (including the numerical
values for the selected experiments), the reader is referred to
the ESL{

4.1 Sampling conformational space

Probably the most appropriate benchmark data for BMDAL
presented in the literature is the MD17 data set,>*® which
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contains 150 000 to almost 1 000 000 conformations of each of
eight small organic molecules. The data set includes structures,
energies, and atomic forces of the respective conformations.
Here, we decided to use only the aspirin molecule data, while
similar results are expected for the other molecules contained
in MD17. As a cutoff radius we selected a value of rya = 4.0 A%
The respective data was sampled from ab initio molecular
dynamics (AIMD) simulations. Given many conformations, we
expect most of them to be similar. Thus, methods that ignore
diversity (2) may lead to worse performance of actively learned
GM-NN potentials than those trained on randomly selected
samples.

The aspirin data set contains structures, energies, and
atomic forces of 211 762 conformations; 150 000 were reserved
as pool data. Depending on the specific BMDAL scenario, we
began by training the GM-NN model on 10 or 100 samples
drawn randomly from the data set. Additionally, we reserve 2000
structures for validation, which are used for early stopping. We
hold back the remaining 59 752 and 59 662 conformations for
testing the GM-NN models, respectively. In each BMDAL step,
the training data set is increased by a batch size of Npaeenh = {2, 5,
10} Or Npaeen = {10, 25, 50, 100} structures, until a maximum size
of 100 and 1000 has been reached, respectively. For brevity we
refer to the respective BMDAL experiments as (10, 100; {2, 5,
10})mp17 and (100, 1000; {10, 25, 50, 100})yp17- Here, the results
for the former are discussed in more detail. For the results on
(100, 1000; {10, 25, 50, 100})ypi7 the reader is referred to
the ESL}

Fig. 2 shows the dependence of the mean absolute errors
(MAE), root-mean-square errors (RMSE), and maximum errors
(MAXE) on the acquired batch size Npaccn for atomic forces. The
respective plots for total energies can be found in the ESLT
From Fig. 2 one can observe that GM-NN models trained via
BMDAL algorithms that ignore (2), i.e., MaxDc + QBC(F),
MaxDiag + AE(F), MaxDug + GP(LL), perform worse than those
trained on randomly selected data, MaxDiag + RND. Moreover,
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their MAE, RMSE, and MAXE increase with increasing size of
the acquired batch. By contrast, the BMDAL methods that
enforce diversity (2), ie., MaxDer + GP(LL) and MaxDist +
FEAT(LL), or diversity (2) and representativeness (3), i.e., LCMD
+ FEAT(LL), improve the performance of GM-NN models
compared to random selection.

Fig. 3 demonstrates the learning curves for the selected
BMDAL methods. All results are presented for the maximal
acquired batch size of Npuen, = 10. From Fig. 3, we can see that
the BMDAL methods that satisfy at least (1) and (2) outperform
random selection over the course of BMDAL. The MaxDiG-
based methods lead to results worse than those obtained for
models trained on randomly selected data. We found for LCMD
+ FEAT(LL), the best performing BMDAL method in terms of
MAE and RMSE, 1.22, 1.75, and 3.83 kcal mol™* A~! for force
MAE, RMSE, and MAXE, respectively. By contrast, for random
selection we obtained 1.26, 1.83, and 4.12 kcal mol™* A7,
respectively. MaxDist + FEAT(LL) and MaxDer + GP(LL) appear to
outperform LCMD + FEAT(LL) in terms of MAXE with 3.43 and
3.00 keal mol~* A, respectively. All results are given for Niain
= 100 training samples. While the achieved MAE in atomic
forces still exceeds the desired accuracy of 1 kcal mol ™ A™*, this
can be resolved by selecting slightly more data points, as
demonstrated in Fig. 5 in the ESL

Besides the last BMDAL step, we analyze MAE, RMSE, and
MAXE averaged over the learning curve in order to investigate
the general learning behavior. Here, MaxDist + FEAT(LL) with
1.90, 2.78, and 4.86 kcal mol~* A%, respectively, appears to be
the best performing BMDAL strategy. MaxDer + GP(LL) slightly
outperforms LCMD + FEAT(LL), especially in terms of MAXE
with 5.02 and 5.33 kcal mol* A™, respectively. For comparison,
we find for random selection 1.96, 2.89, and 6.04 keal mol " * A~*
in predicted atomic forces. We observe that AL approaches are
especially beneficial for MAXE and less so for MAE. This is in
line with our previous observations.***®
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Fig. 2 Dependence of the mean absolute errors (MAE), root-mean-square errors (RMSE), and maximum errors (MAXE) of atomic forces on the
acquired batch size Npaich. All errors are evaluated for the last BMDAL step on the aspirin molecule data from MD17.7-%° Shaded areas denote the

standard error on the mean evaluated over five independent runs.
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Fig. 3 Learning curves for the aspirin molecule data from MD17.37-%° The mean absolute errors (MAE), root-mean-square errors (RMSE), and
maximum errors (MAXE) of atomic forces are plotted against the training set size acquired during BMDAL. The training errors before the first
BMDAL step are identical for most methods since they use the same random seed. This does not apply to QBC, where more models are trained.

Results obtained for larger data set sizes can be found in the ESIL.}

Concerning the computational demand, random selection is
certainly advantageous compared to any BMDAL method since
it does not require any additional computational steps. Thus, to
motivate the presented BMDAL methods, we compare them to
the QBC approach. For MaxDiac + QBC(F) we obtained 280 s for
evaluating the respective features. The evaluation of gradient
features requires less time by a factor of 3 to 4, even neglecting
the fact that it only required to train a single model. Another
important criterion is the time used to select the batch of
structures. While MaxDiac + QBC(F) selects the batch in 0.00-
0.03 s, MaxDer + GP(LL) and LCMD + FEAT(LL) require 0.89 and
4.65 s, respectively. Thus, the proposed BMDAL methods, i.e.,
those based on gradient features and selection methods which
enforce (2) or (2) and (3), are still much more time-efficient than
literature methods.’** We should note that MaxDiac + AE(F)
would require much more time since it would require per-
forming ab initio calculations for all structures in the pool. All
times are obtained when running eight processes in parallel on
two Intel Xeon E6252 Gold (Cascade Lake) CPUs.

Now we compare the last-layer with random projections of
gradient kernels. For this purpose, we plot MAE, RMSE, and
MAXE for the last BMDAL step against the acquired batch size
Npatch, Similar to Fig. 2. Fig. 4 demonstrates that in most cases,
BMDAL methods which estimate the informativeness of struc-
tures by the random projections gradient kernel outperform
those which use the last-layer gradient one, similar to ref. 29.
Additionally, we observed an improved correlation of the
uncertainty with the actual error: the linear correlation or
Pearson correlation coefficient (PCC) for MaxDer + GP(RP) and
MaxDer + GP(LL) are 0.47 and 0.23, respectively. We note that
computing random projections gradient features are computa-
tionally more demanding than the last-layer ones. However, the
difference is only about a factor of 1.31. For MaxDer + GP(LL) the
feature matrix was computed during 66.54 s, while for MaxDEer +
GP(RP) it required 87.37 s. All times are obtained when running

© 2022 The Author(s). Published by the Royal Society of Chemistry

eight processes in parallel on two Intel Xeon E6252 Gold
(Cascade Lake) CPUs.

4.2 Sampling chemical space

The QM9 data set*° contains several properties of molecules
in equilibrium, i.e., all forces vanish. Here, we are interested in
predicting atomization energies. In total, the QM9 data set
consists of 133 885 neutral, closed-shell organic molecules with
up to 9 heavy atoms (C, O, N, F) and a varying number of
hydrogen (H) atoms. As 3054 molecules from the original QM9
data set failed a consistency test,* we used only the remaining
130 831 structures in the following. For the QM9 data set, we
used a cutoff radius of 7. = 3.0 A9 The application of
BMDAL methods to QM9 can be seen as an application to the
sampling of the chemical space.

For all BMDAL experiments, we reserve 100 000 molecules
for the unlabeled pool. Depending on the specific BMDAL
scenario, the GM-NN model is initialized by training on 1000 or
5000 samples drawn randomly from the data set. Additionally,
we reserve 2000 structures for validation. We hold back the
remaining 27 831 and 23 831 molecules for testing the GM-NN
models, respectively. In each BMDAL step, the training data set
is increased by a batch size of Npaen, = {50, 100, 250} OF Npaeen =
250 molecules, until a maximum size of 10 000 or 25 000 has
been reached, respectively. For brevity we refer to the respective
BMDAL experiments as (1000, 10 000; {50, 100, 250})omo and
(5000, 25 000; 250)qme. Here, the results for the former are
discussed in more detail. For the results on (5000, 25 000;
250)qmo the reader is referred to the ESI.{

Fig. 5 shows the dependence of MAE, RMSE, and MAXE of
the atomization energies on the acquired batch size Npech-
From Fig. 5 one can observe that only LCMD + FEAT(LL) and
MaxDiag + AE(E) could improve on the MAE compared to
random selection. considerable

However, we see a
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Fig. 4 Comparison of the last-layer and random projections gradient feature maps on the aspirin molecule data from MD17.3-%° The mean
absolute errors (MAE), root-mean-square errors (RMSE), and maximum errors (MAXE) of atomic forces are plotted against the acquired batch size
Npatch. Shaded areas denote the standard error on the mean evaluated over five independent runs.

improvement for all methods for RMSE and MAXE, although no
improvement over literature MaxDiac + QBC(E) methods could
be achieved. MaxDiag + GP(LL) provides similar results to those
of MaxDer + GP(LL). MaxDiac + AE(E) provides the best results in
terms of MAE and RMSE. This observation can be explained by
the high diversity of molecules in the QM9 data set. In
summary, all considered BMDAL approaches are relatively
successful on this kind of data.

Fig. 6 presents the learning curves for the QM9 data set ob-
tained for the maximum acquired batch size of Npaeen = 250.
From Fig. 6 one can observe that only LCMD + FEAT(LL) and
MaxDiac + AE(E) can improve on the MAE compared to random
selection. Moreover, LCMD + FEAT(LL) considerably outper-
forms MaxDiag + AE(E) for Nypain < 2048. We note that MaxDiag +

AE(E) requires computing labels on the pool data and is not
tractable in a practical setting. From Fig. 6 one can see that all
proposed AL methods improve on RMSE and MAXE compared
to random selection, similar to the results by ref. 19. For LCMD
+ FEAT(LL) and Ni.in = 10 000, we obtained MAE, RMSE, and
MAXE of 0.62, 1.01, and 40.67 kcal mol ", respectively. By
contrast, for random selection we found 0.64, 1.25, and
62.77 kecal mol?, respectively.

Interestingly, for (5000, 25 000; 250)qmo NO improvement in
terms of MAXE could be observed, different from ref. 19, while
RMSE is reduced considerably by employing BMDAL. The
observed behavior may be attributed to the improvements
introduced to the GM-NN approach in ref. 48 or to the fact that
ref. 19 used the remaining pool data as the test data, which is
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Fig. 5 Dependence of the mean absolute errors (MAE), root-mean-square errors (RMSE), and maximum errors (MAXE) of the atomization
energies on the acquired batch size Npacn. All errors are evaluated for the last BMDAL step on the QM9 data set.**=¢ Shaded areas denote the

standard error on the mean evaluated over five independent runs.
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Fig.6 Learning curves for the QM9 data set.>*-*¢ The mean absolute errors (MAE), root-mean-square errors (RMSE), and maximum errors (MAXE)
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for better visibility, while the lines use all steps. The training errors before the first BMDAL step are identical for most methods since they use the
same random seed. This does not apply to QBC, where more models are trained.

more realistic if BMDAL is run in an on-the-fly fashion. For
LCMD + FEAT(LL) and Ngain = 25 000 we obtained 0.40, 0.71,
and 35.85 kcal mol ™" for MAE, RMSE, and MAXE, respectively.
We obtained 0.43, 0.92, and 38.61 kcal mol™' for random
selection, respectively.

The selection time is another important criterion when
deciding which particular BMDAL method should be used. For
example, while the QBC features requires about 46 s for the
calculation, the naive selection algorithm in Section 3.2.1 needs
only a few milliseconds. By contrast, the last-layer features in
LCMD + FEAT(LL) required 27.35 s for the evaluation. However,
the corresponding selection method is much more demanding
and needs 180.74 s. The total time required by the MaxDer +

GP(LL) strategy equals 40.46 s, which makes it advantageous
compared to LCMD + FEAT(LL). All times are obtained when
running eight processes in parallel on two Intel Xeon E6252
Gold (Cascade Lake) CPUs.

Finally, we compare the last-layer and random projections
gradient kernels employed for the uncertainty estimation. Fig. 7
indicates that random projections gradient kernel may lead to
a slight improvement over the last-layer gradient kernel. At the
same time, only minor differences in computational demand have
been observed; computing the feature matrix takes 27.35 s and
38.32 s for LCMD + FEAT(LL) and LCMD + FEAT(RP), respectively.
A slight improvement in measured PCC could be observed; 0.22
and 0.26 for MaxDer + GP(LL) and MaxDer + GP(RP), respectively.
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Fig. 7 Comparison of the last-layer and random projections gradient feature maps on the QM9 data set.3#-3¢ The mean absolute errors (MAE),
root-mean-square errors (RMSE), and maximum errors (MAXE) of the atomization energies are plotted against the acquired batch size Npaich-
Shaded areas denote the standard error on the mean evaluated over five independent runs.
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4.3 Bulk materials

Now we apply the proposed BMDAL methods to two bulk
systems: TiO, **** and Li-Mo-Ni-Ti oxide (LMNTO).**** The
former contains Cartesian coordinates, energies, and atomic
forces of distorted rutile, anatase, and brookite structures.
Moreover, the configurations sampled from short AIMD simu-
lations and supercell structures with oxygen vacancies are
included. In total, the TiO, data set contains 7815 structures
ranging in size from 6 to 95 atoms per unit cell. The LMNTO
data set contains 2616 Cartesian coordinates, energies, and
atomic forces extracted from a 50 ps long AIMD simulation at
400 K. Each structure in the LMNTO data set consists of 56
atoms (LigMo,Ni,Ti;O3,). For both data sets we used a cutoff
radius of . = 6.5 A%

View Article Online

Paper

For the TiO, data set, we reserved 6000 structures for the pool
data. Depending on the specific scenario, the initial training set
contained 10 or 500 structures. Additionally, we reserve 200
structures for validation. We hold back the remaining 1605 and
1115 structures for testing the GM-NN models obtained during
BMDAL runs. In each BMDAL step, the training data set is
increased by a batch size of Npaeeh = {2, 5, 10} O Npaen = {50, 100,
250} molecules, until a maximum size of 100 or 2500 has been
reached, respectively. For the LMNTO data set, we reserved 100,
200, and 2000 structures for the training, validation, and pool
data. The remaining 316 structures were used to test the resulting
GM-NN models. For brevity we refer to the respective BMDAL
experiments as (10, 250; {2, 5, 10})rio,, (500, 2500; {50, 100,
250})1i0,, and (100, 1000; {25, 50, 100});vnro, Tespectively. Here,
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Fig. 8 Dependence of the mean absolute errors (MAE), root-mean-square errors (RMSE), and maximum errors (MAXE) of atomic forces on the
acquired batch size Npatch. All errors are evaluated for the last BMDAL step on the TiO, data set.**#? Shaded areas denote the standard error on the
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the results for (10, 250; {2, 5, 10})rio, and (100, 1000; {25, 50,
100} mnro are discussed in more detail. For the results on (500,
25005 {50, 100, 250})1i0, the reader is referred to the ESLt

Fig. 8 and 9 show the dependence of MAE, RMSE, and MAXE
in atomic forces on the acquired batch size Npuich on the TiO,
and LMNTO data sets. The respective plots for total energies can
be found in the ESI.t From Fig. 8 one can observe that for RMSE
and MAXE, the application of any BMDAL method leads to
a considerable improvement over random selection. This
observation is consistent with the fact that unlike MD17, where
all data was obtained by running AIMD, the TiO, data set
contains many diverse structures. For MAE, the dependence on
the batch size can be observed for methods that do not satisfy the

View Article Online
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diversity criterion (2). MaxDer + GP(LL), MaxDist + FEAT(LL), and
LCMD + FEAT(LL) improve on MAE and the results are inde-
pendent of the acquired batch size. Similar results for MAE and
RMSE are obtained for the LMNTO data set; see Fig. 9. However,
no improvement could be achieved for MAXE as the data set
most probably does not contain any strongly distorted structures.
We decided to skip LMNTO in the following discussion.

Fig. 10 shows learning curves obtained for the TiO, data set and
an acquired batch size of Ny, = 10. We can observe a consider-
able improvement of BMDAL methods which enforce at least (2)
over naive or random selection. The GM-NN models trained by
BMDAL methods required only about half of the structures to reach
the same RMSE value as MaxDiag-based approaches. For example,
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Fig. 10 Learning curves for the TiO, data set.**? The mean absolute errors (MAE), root-mean-square errors (RMSE), and maximum errors (MAXE)
of atomic forces are plotted against the training set size acquired during BMDAL. The markers show only a subset of all BMDAL steps for better
visibility, while the lines use all steps. The training errors before the first BMDAL step are identical for most methods since they use the same
random seed. This does not apply to QBC, where more models are trained.
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for MaxDer + GP(LL) we obtained an RMSE of 17.43 kcal mol * A™*
for Nyin = 30, while an RMSE of 17.71 keal mol™* A~ for Nyain =
60 was found for MaxDug + GP(LL). For MAXE in atomic forces the
difference between the respective methods is considerable for
smaller training set sizes, but decreases as the training set size
increases. In ref. 29, it has been observed that the improvement of
BMDAL over random selection is typically larger on data sets where
the quotient RMSE/MAE is large on the initial training set. This
phenomenon is also apparent on the TiO, data set, where our
results exhibit a large quotient RMSE/MAE and a large benefit of
BMDAL over random selection.

Compared to the QBC-based AL approaches, which require
training and evaluating multiple models, the proposed BMDAL
approaches are computationally more efficient. For MaxDiaG +
QBC(F) the total time, including the features and selection, was
found to be 37.43 s. In contrast, we have found 7.62 s and 7.87 s
for MaxDer + GP(LL) and LCMD + FEAT(LL), respectively.

Finally, Fig. 11 compares the last-layer and random-
projections gradient kernels in terms of MAE, RMSE, and
MAXE dependence on the maximum acquisition batch size.
Here, random projections gradient features are slightly worse
than the last-layer gradient approximation, different from the
previous sections. Additionally, we have not observed any
improvement in terms of PCCs. For example, for N.,i, = 250, we
obtained a PCC of 0.66 and 0.65 for the last-layer and random
projections gradient features. The computational demand for
computing random projections gradient features is slightly
higher than last-layer gradients.

5 Discussion

One of the central goals of this work is to develop and motivate
the application of BMDAL algorithms for the problems of
modelling chemical processes. The expressiveness of the
proposed uncertainty measure can be estimated simply from its
correlation with the actual error. We have seen in Section 4 that
it is on par with or better than other state-of-the-art approaches
like QBC, also in terms of the accuracy of the resulting models.
However, the time required to select a batch has also to be put
in the context of computational chemistry.

We have observed that all BMDAL algorithms that are pre-
sented in this work and that satisfy (2) and (3), i.e., go beyond
the naive selection, require a few seconds to a few minutes in
order to select a batch of 10 to 250 structures. Thus, some
computational overhead is introduced by imposing the diversity
(2) and possibly the representativeness (3) criteria compared to
the naive selection. Nevertheless, for the calculation of labels,
ie, total energies and atomic forces, typically density-
functional-theory-based methods are employed, requiring
a few minutes for the respective calculation. Moreover, more
accurate quantum chemical methods may take several hours.
Selection of new structures in batches, in contrast, allows for
the efficient parallelization of first-principles calculations and,
thus, may lead to a considerable speed-up of the AL cycle.

We see that all BMDAL methods may lead to more data-
efficient models, i.e., fewer labels have to be computed, saving
computational time. For the TiO, data set*** and random
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selection, we obtained an RMSE of 24.68 kcal mol™* A™! in
predicted forces when training on 250 randomly chosen struc-
tures. In contrast, for the MaxDiag + GP(LL) we obtained an
RMSE of 21.51 keal mol™* A™* and 6.16 kcal mol™* A~ in pre-
dicted forces when training on 40 and 250 actively selected
structures, respectively. Thus, on this data set the BMDAL
approaches require six times fewer data to reach the same
accuracy as random selection, or alternatively reach four times
better accuracy when using the same number of data points.

Moreover, when employing the BMDAL algorithms that
enforce (2), we reduce the number of required samples by a factor
of two compared to naive selection. As an example, we obtained
an RMSE of 17.43 keal mol™* A~ for Nyin = 30 and the MaxDer +
GP(LL) method. For MaxDue + GP(LL), an RMSE of
17.71 keal mol " A1 in predicted forces for Nywain = 60 was found.
Thus, selecting a diverse batch is essential for the speed-up
mentioned above as it avoids first-principles calculations on
similar structures. The effect is more pronounced for data sets
that contain many similar structures, e.g., the MD17 data set.>”™*
Thus, we expect that enforcing (2) while generating highly infor-
mative data sets in an on-the-fly fashion may be advantageous.

The importance of the representativeness criterion (3) in the
particular setting of atomistic modelling, however, needs to be
studied in more detail. We have mentioned in Section 3 that
imposing (3) may be disadvantageous if the pool data set is not
representative of the test data. In computational chemistry, the
modelling of chemical processes is typically a demanding task
where it is difficult to estimate the importance of specific
regions of the conformational and chemical spaces. Thus, it is
not always possible to identify what the model should be good
for, i.e., it is not possible to define the test data. The methods
which enforce diversity (2) often outperform those with (2) and
(3) criteria imposed in terms of MAXE. Therefore, they may be
advantageous in the specific setting of atomistic modelling.

6 Conclusions

In this work, we extended the BMDAL framework by ref. 29 to
a specific case of active learning for interatomic NN potentials.
Particularly, the gradient kernel or NTK** has been defined for
atomistic NNs, and several approximations allowing for its
efficient evaluation have been presented, specifically the last-
layer and random projections gradient kernels. Employing the
respective kernels, we defined the informativity of queried
structures as a distance in the respective feature space. Alter-
natively, we computed the GP posterior on the last-layer and
random projections gradient kernels, which provides an
uncertainty estimate as well as the cross-correlation or covari-
ance between queried structures.

Particular attention has been drawn to selection methods
that satisfy the (1) informativeness, (2) diversity, and (3) repre-
sentativeness of the acquired batch of structures.”” We have
discussed that most of the methods frequently used in the
literature satisfy only (1). We compare various greedy selection
algorithms, which can be seen as an equivalent of optimizing
the respective acquisition function and which enforce (2) or
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http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2dd00034b

Open Access Article. Published on 12 July 2022. Downloaded on 11/21/2025 3:56:19 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

even (3) of the selected batch. For an illustrative example of the
difference between various methods, see Fig. 1.

We tested the proposed BMDAL approaches on various
benchmark data sets, which cover sampling conformational and
chemical spaces of molecular and periodic bulk systems. The
advantage of our BMDAL methods, i.e., those based on gradient
features and selection methods which enforce (2) or (2) and (3),
over the literature methods'*** could be observed on the example
of the aspirin molecule from the MD17 data set,*”*** as it contains
a large number of similar configurations. While literature
methods could hardly improve on MAE, RMSE, and MAXE with
respect to random selection, our methods specifically designed
for BMDAL provided models with improved performance.
Moreover, we observed deteriorating performance of the litera-
ture methods, such as the ones based on QBC and absolute
errors, with increasing batch size. By contrast, we observed
almost no batch-size dependence for our BMDAL methods.

Sampling the chemical space, i.e. the QM9 data set,***® with
our BMDAL methods, we could achieve considerable improve-
ment in the data efficiency when employing the LCMD selection
method.”® However, we did not achieve considerable improve-
ments over the literature methods when evaluating the errors
for the final model. Similar observations could be made on the
TiO, *»** and LMNTO data sets.**"**

For most data sets, we have seen that the computational over-
head of the proposed methods is comparable or much smaller than
that of QBC and, particularly, of absolute-error-based approaches.
We also want to emphasize that the runtimes are quite small in
general compared to the runtime of ab initio methods. While
applying random projections to the gradient kernel only marginally
increases the computational cost with respect to the last-layer
approximation, it often leads to more accurate and data-efficient
models than the latter. The random projections gradient features
lead to better correlations of the estimated uncertainties with the
actual error than the last-layer gradient features.

In summary, the proposed BMDAL approaches are expected
to be a valuable extension of existing AL methodologies as they
allow for selecting multiple data points for labeling at once.
Particularly, they can be used to accelerate the construction of
highly informative atomistic data sets on the fly, e.g., by running
any atomistic simulation.

Data availability

Additional experimental results are presented in the ESI.{ The
code for the active learning and evaluation of Gaussian moment
neural network models can be found at https://gitlab.com/
zaverkin_v/gmnn.
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