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ation with known experimental
and design constraints for chemistry applications†

Riley J. Hickman,‡ab Matteo Aldeghi, ‡abcd Florian Häseabce and Alán Aspuru-
Guzik*abcfgh

Optimization strategies driven by machine learning, such as Bayesian optimization, are being explored

across experimental sciences as an efficient alternative to traditional design of experiment. When

combined with automated laboratory hardware and high-performance computing, these strategies

enable next-generation platforms for autonomous experimentation. However, the practical application

of these approaches is hampered by a lack of flexible software and algorithms tailored to the unique

requirements of chemical research. One such aspect is the pervasive presence of constraints in the

experimental conditions when optimizing chemical processes or protocols, and in the chemical space

that is accessible when designing functional molecules or materials. Although many of these constraints

are known a priori, they can be interdependent, non-linear, and result in non-compact optimization

domains. In this work, we extend our experiment planning algorithms PHOENICS and GRYFFIN such that

they can handle arbitrary known constraints via an intuitive and flexible interface. We benchmark these

extended algorithms on continuous and discrete test functions with a diverse set of constraints,

demonstrating their flexibility and robustness. In addition, we illustrate their practical utility in two

simulated chemical research scenarios: the optimization of the synthesis of o-xylenyl

Buckminsterfullerene adducts under constrained flow conditions, and the design of redox active

molecules for flow batteries under synthetic accessibility constraints. The tools developed constitute

a simple, yet versatile strategy to enable model-based optimization with known experimental constraints,

contributing to its applicability as a core component of autonomous platforms for scientific discovery.
I. Introduction

The design of advanced materials and functional molecules
oen relies on combinatorial, high-throughput screening
strategies enabled by high-performance computing and auto-
mated laboratory equipment. Despite the successes of high-
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throughput experimentation in chemistry,1,2 biology,3,4 and
materials science,5 these approaches typically employ exhaus-
tive searches that scale exponentially with the size of the search
space. Data-driven strategies that can adaptively search
parameter spaces without the need for exhaustive exploration
are thus replacing traditional design of experiment approaches
in many instances. These strategies use machine-learnt surro-
gate models trained on all data generated through the experi-
mental campaign, and are updated each time new data is
collected. One such approach is Bayesian optimization which,
based on the surrogate model, denes a utility function that
prioritize experiments based on their expected informativeness
and performance.6–8 These data-driven optimization strategies
have already demonstrated superior performance in chemistry
and materials science applications, e.g., in reaction optimiza-
tion,9,10 the discovery of magnetic resonance imaging agents,11

the fabrication of organic photovoltaic materials,12,13 virtual
screening of ultra-large chemical libraries,14 and the design of
mechanical structures with additively manufactured
components.15

Machine learning-driven experiment planning strategies can
also be combined with automated laboratory hardware or high-
performance computing to create self-driving platforms capable
© 2022 The Author(s). Published by the Royal Society of Chemistry
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of achieving research goals autonomously.16–22 Prototypes of
these autonomous research platforms have already shown
promise in diverse applications, including the optimization of
chemical reaction conditions,9,10 the design of photocatalysts
for the production of hydrogen from water,23 the discovery of
battery electrolytes,24 the design of nanoporous materials with
tailored adsorption properties,25 the optimization of multi-
component polymer blend formulations for organic photovol-
taics,12 the discovery of phase-change memory materials for
photonic switching devices,26 and self-optimization of metal
nanoparticle synthesis,27 to name a few.13,28 While self-driving
platforms seem poised to deliver a next-generation approach
to scientic discovery, their practical application is hampered
by a lack of exible soware and algorithms tailored to the
unique requirements of chemical research.

To provide chemistry-tailored data-driven optimization
tools, our group has developed PHOENICS29 and GRYFFIN,30

among others.31–33 PHOENICS is a linear-scaling Bayesian opti-
mizer for continuous spaces that uses a kernel regression
surrogate model and natively supports batched optimization.
GRYFFIN is an extension of this algorithm to categorical, as well
as mixed continuous-categorical spaces. Furthermore, GRYF-
FIN is able to leverage expert knowledge in the form of
descriptors to enhance its optimization performance, which
was found particularly useful in combinatorial optimizations of
molecules and materials.30 As GRYFFIN is the more general
algorithm, and PHOENICS is included within its capabilities,
from here on we will refer only to GRYFFIN. These algorithms
have already found applications ranging from the optimization
of reaction conditions10 and synthetic protocols,27,34 to that of
manufacturing of thin lmmaterials13 and organic photovoltaic
devices.12 However, a number of extensions are still required to
make these tools suitable to the broadest range of chemistry
applications. In particular, GRYFFIN, like the majority of
Bayesian optimization tools available, does not handle known
experimental or design constraints.

There are oen many constraints on the experiment being
performed or molecule being designed. A exible data-driven
optimization tool should be able to accommodate and handle
such constraints. The type of constraints typically encountered
may be separated into those that affect the objectives of the
optimization (e.g., reaction yield, desired molecular properties),
and those that affect the optimization parameters (e.g., reaction
conditions). Those affecting the objectives usually arise in
multi-objective optimization, where one would like to optimize
a certain property while constraining another to be above/below
a desired value.31,35,36 For instance, we might want to improve
the solubility of a drug candidate, while keeping its protein-
binding affinity in the nanomolar range. Conversely, param-
eter constraints limit the range of experiments or molecules we
have access to. Depending on the source of the constraints,
these may be referred to as known or unknown. Known
constraints are those we are aware of a priori,37–40 while
unknown ones are discovered through experimentation.37–40 For
instance, a known constraint might enforce the total volume for
two liquids to not exceed the available volume in the container
in which they are mixed. While this poses a restriction on the
© 2022 The Author(s). Published by the Royal Society of Chemistry
parameter space, we are aware of it in advance and can easily
compute which regions of parameter space are infeasible. An
unknown constraint may instead be the synthetic accessibility
in a molecular optimization campaign. In this case, we might
not know in advance which areas of chemical space are easily
accessible, and have to resort to trial and error to identify
feasible and infeasible synthetic targets. While constraints of
the objectives were the subject of our previous work,31 and
unknown constraints of the parameters are the subject of on-
going work, this paper focuses on data-driven optimization
with known parameter constraints, which we will refer to simply
as known constraints from here on.

Generally, known constraints arise due to physical or hardware
restrictions, safety concerns, or user preference. An example of
a physically imposed constraint is the fact that the temperature of
a reaction cannot exceed the boiling temperature of its solvent. As
such, onemay want temperature to be varied in the interval 10 < T
< 100 �C for experiments using water, and in 10 < T < 66 �C for
experiments using tetrahydrofuran. The fact that the sum of
volumes of different solutions cannot exceed that of the container
they aremixed in is an example of a hardware-imposed constraint.
In synthetic chemistry, specic combinations of reagents and
conditions might need to be avoided for safety reasons instead.
Finally, constraints could also be placed by the researchers to
reect prior knowledge about the performance of a certain
protocol. For example, a researcher might know in advance that
specic combinations of solvent, substrate, and catalyst will
return poor yields. These examples are not natively handled by
GRYFFIN and the majority of data-driven optimization tools
currently available. In fact, given any number of continuous or
categorical parameters, their full Cartesian product is assumed to
be accessible by the optimization algorithm. Returning to the
example where solvents have different boiling temperatures, this
means that if the optimization range for the variable T is set to 10–
100 �C, this range will be applied to all solvents considered. In
practice, known constraints are oen interdependent, non-linear,
and can result in non-compact optimization domains.

In this work, we extend the capabilities of GRYFFIN to
optimization over parameter domains with known constraints.
First, we provide a formal introduction to the known constraint
problem and detail how GRYFFIN was extended to be able to
exibly handle such scenarios. Then, we benchmark our new
constrained version of GRYFFIN on a range of analytical func-
tions subject to a diverse set of constraints. Finally, we
demonstrate our method on two chemistry applications: the
optimization of the synthesis of o-xylenyl Buckminsterfullerene
adducts under constrained ow conditions, and the design of
redox active molecules for ow batteries under synthetic
accessibility constraints. Across all tests, we compare GRYF-
FIN's performance to that of other optimization strategies, such
as random search and genetic algorithms, which can also
handle complex constraints.

II. Methods

An optimization task involves the identication of parameters,
x, that yield the most desirable outcome for an objective f(x). In
Digital Discovery, 2022, 1, 732–744 | 733
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a chemistry context, these parameters may be experimental
conditions or different R groups in a molecule, while the
objectives may be the yield of a reaction or absorbance at
a specic wavelength. Formally, for a minimization problem,
the solution of the optimization is the set of parameters that
minimizes the objective f(x),

x* ¼ arg min
x˛X

f ðxÞ;

where X is the optimization domain, or parameter space; i.e.,
the space of all experimental conditions that could have been
explored during the optimization. In a Bayesian optimization
setting, the objective function f is considered to be unknown,
but can be empirically evaluated at specic values of x. Evalu-
ating f(x) is assumed to be expensive and/or time consuming,
and its measurement subject to noise. We also assume that we
have no access to gradient information about f.

In a constrained optimization problem, one is interested in
solutions within a subset of the optimization domain, C3X .
This may be because f can be evaluated only for this subset, or
because of user preference. In the QRAK taxonomy of Digabel
and Wild,41 the former scenario would be that of known,
nonquantiable, unrelaxable, a priori constraints, or 4:NUAK
constraints; the latter scenario would fall into the domain of
relaxable constraints. In this work, we focus on unrelaxable
constraints, even though the approach would be applicable also
to the relaxable case.

A constraint function c(x) determines which parameters x are
feasible and thus in C, and which are not. Contrary to unknown
constraints, known constraints are those for which we have
access to c(x) a priori, that is, we are aware of them before per-
forming the optimization. Importantly, we can evaluate the
functions c(x) and f(x) independently of one another. The
solution of this constrained optimization problem may be
written formally as

x* ¼ arg min
x˛X

f ðxÞ;
s:t: cðxÞ1feasible:

The physical meaning of c(x) is case dependent and domain
specic. In chemistry, known constraints may reect safety
concerns, physical limits imposed by laboratory equipment, or
simply researcher preference. The types of known constraints
we focus on in this work are hard, unrelaxable constraints. They
restrict X irrefutably and no measurement outside of C is
permitted. However, the use of so constraints is also possible
and has been explored. While so constraints bias the optimi-
zation algorithm away from regions thought to yield undesir-
able outcomes, they ultimately still allow the full exploration of
X . In the relaxable scenario, imposing so constraints can be
a strategy to collect useful information outside of the desirable
region C. So constraints have also been used as means to
introduce inductive biases into an optimization campaign
based on prior knowledge.42,43

The goal of this work is to equip GRYFFIN with the ability to
satisfy arbitrary constraints, as described by a user-dened
constraint function c(x). This can be achieved by constraining
734 | Digital Discovery, 2022, 1, 732–744
the optimization of the acquisition function a.44 a(x) denes the
utility (or risk) of evaluating the parameters x, and the parame-
ters proposed by the algorithm are those that optimize a(x). Thus,
constrained optimization of the acquisition function also
constrains the overall optimization problem accordingly.
However, contrary to objective function f, the acquisition func-
tion a is easy to optimize, as its analytical form is known and can
be evaluated cheaply. In the next sections we describe GRYFFIN's
acquisition function and the approaches we implemented for its
constrained optimization. Yet, note that any other constrained
optimization algorithm handling nonlinear, nonconvex, and
possibly discontinuous constraint functions could also be used.
A. Acquisition optimization in GRYFFIN

GRYFFIN's acquisition function, which is to be minimized, is
dened as

aðxÞ ¼
Pn

k¼1

fkpkðxÞ þ lpuniformðxÞ
Pn

k¼1

pkðxÞ þ puniformðxÞ
; (1)

where pk(x) are the kernels of the kernel regression model used
as the surrogate, fk are the measured objective function values,
and l is a user-dened parameter that determines the
exploration-exploitation behavior of the algorithm. The index k
refers to each past observation, for a total number of observa-
tions n.

For continuous parameters, GRYFFIN uses Gaussian kernels
with prior precision s sampled from a Gamma distribution, s �
G(a,b), with prior hyperparameters a ¼ 12n2 and b ¼ 1. For
categorical and discrete parameters, it uses Gumbel-Somax45,46

kernels with a prior temperature parameter of 0.5 + 10n−1.
These prior parameters are, however, updated by a Bayesian
neural network in light of the observed data.29 As the prior
precision of the kernels increases with the number of observa-
tions, the surrogate model is encouraged to t the observations
more accurately as more data is acquired.

Acquisition function optimization in GRYFFIN generally
follows a two-step strategy in which a global search is followed
by local renement. Effectively, it is a simple multi-start strategy
that is memoryless and easily parallelizable. First, sets of input
parameters xi are sampled uniformly from the optimization
domain. By default, the number of samples is set to be directly
proportional to the dimensionality of the optimization domain.
Then, continuous parameters are optimized with a gradient
method for a pre-dened number of iterations. While early
versions of GRYFFIN employed second order methods such as
L-BFGS, the default gradient-based approach is now Adam.47

Adam is a rst-order, gradient-based optimization algorithm
with momentum, which computes adaptive learning rates for
each parameter by considering the rst and second moments of
the gradient. It thus naturally adjusts step size, and it is
invariant to rescaling of gradients. Adam has found broad
application for the optimization of neural network weights
thanks to its robust performance. Categorical and discrete
parameters are optimized instead following a hill-climbing
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Illustration of unconstrained (top row) and constrained (bottom
row) acquisition function optimization using strategies based on the
Adam optimizer and a genetic algorithm. Initial, random samples are
shown as black crosses. Grey crosses represent the updated param-
eter locations for these initial samples, while white crosses show the
final locations after ten optimization iterations. The purple star indi-
cates the global optima of the unconstrained acquisition function,
which lies in the infeasible region in the constrained example.
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approach (which we refer to as Hill), in which each initial
sample xi is modied uniformly at random, one dimension at
a time, and each move is accepted only if it improves a(xi).

In addition to gradient-based optimization of the acquisition
function, in this work we have implemented gradient-free
optimization via a genetic algorithm. The population of
parameters is rstly selected uniformly at random, as described
above. Then, each xi in the population is evolved via crossover,
mutation and selection operations, with elitism applied. This
approach handles continuous, discrete, and categorical
parameters by applying different mutations and cross-over
operations depending on the type. A more detailed explana-
tion of the genetic algorithm used for acquisition optimization
is provided in ESI Sec. S.1.B.† This approach is implemented in
Python and makes use of the DEAP library.48,49

Fig. 1 provides a visual example of how these two approaches
optimize the acquisition function of GRYFFIN. While Adam
optimizes each random sample xi (black crosses) via small steps
towards better a(xi) values (grey to white crosses), the genetic
approach does so via larger stochastic jumps in parameter
space.

B. Constrained acquisition optimization with Adam or Hill

To constrain the optimization of the acquisition function
according to a user-dened constraint function c(x), we rst
sample a set of feasible parameters xi with rejection sampling.
© 2022 The Author(s). Published by the Royal Society of Chemistry
That is, we sample x � X uniformly from the optimization
domain and we retain only samples that satisfy the constraint
function c(x). Sampling is performed until the desired number of
feasible samples is drawn. Local optimization of parameters is
then performed with Adam, as described above, but it is termi-
nated as soon as an update results in c(xi) 1 infeasible (Fig. 1).
For categorical and discrete parameters, Hill is used rather than
Adam, but the constraint protocol is equivalent. In this case, aer
rejection sampling, anymove in parameter space is accepted only
if it improves a(xi) and subject to xi˛C. Because of this early
termination, each initial sample can be optimized locally for
a different number of iterations. Strategies that do not terminate
the optimization but adapt the update rule may preserve the
number of allocated iterations across all initial samples.

C. Constrained acquisition optimization with a genetic
algorithm

The population of the genetic optimization procedure is
initialized with rejection sampling as described above for
gradient approaches. However, to keep the optimized parame-
ters within the feasible region, a subroutine is used to project
infeasible offsprings onto the feasibility boundary using binary
search (ESI Sec. S.1.B†). In addition to guaranteeing that the
optimized parameters satisfy the constraint function, this
approach also ensures sampling of parameters close to the
feasibility boundary (Fig. 1 and ESI Fig. S1†).

Despite having implemented constraints in GRYFFIN inde-
pendently, when preparing this manuscript we realized that
known constraints in DRAGONFLY50 have been implemented
following a very similar strategy. However, rather than projec-
ting infeasible offspring solution on the feasibility boundary,
DRAGONFLY relies solely on rejection sampling.

A practical advantage of the genetic optimization strategy is
its favourable computational scaling compared to its gradient-
based counterpart. We conducted benchmarks in which the
time needed by GRYFFIN to optimize the acquisition function
was measured for different numbers of past observations and
parameter space dimensions (ESI Sec. S.1.C†). In fact, acquisi-
tion optimization is the most costly task in most Bayesian
optimization algorithms, including GRYFFIN. The genetic
strategy provided a speedup of approximately 5� over Adam
when the number of observations was varied, and of approxi-
mately 2.5� when the dimensionality of the optimization
domain was varied. The better time complexity of the zeroth-
order approach is primarily due to derivatives of a(x) not
having to be computed. In fact, our Adam implementation
currently computes derivatives numerically. Future work will
focus on deriving the analytical gradients for GRYFFIN's
acquisition function, or taking advantage of automatic differ-
entiation schemes, such that this gap might reduce or disap-
pear in future versions of the code.

D. User interface

With user-friendliness and exibility in mind, we extended
GRYFFIN's Python interface such that it can take a user-dened
constraint function among its inputs. As an example, the
Digital Discovery, 2022, 1, 732–744 | 735
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following code snippet shows an instantiation of GRYFFIN
where the sum of two volumes is constrained.

This example could be that of a minimization over two
parameters, x¼ (x1,x2)˛ [0,1]2, subject to the constraint that the
sum of x1 and x2 does not exceed some upper bound b,

x* ¼ arg min f ðxÞ:
s:t: x1 þ x2 # b
E. Current limitations

We note two limitations of our approach to known constraints.
First, in continuous spaces, the current implementation
handles only inequality constraints. Equality constraints, such
as x1 + x2 ¼ b, effectively change the dimensionality of the
optimization problem and can be tackled via a re-denition of
the optimization domain or analytical transforms. For instance,
for the two-dimensional example above, the constraint can be
satised simply by optimizing over x1, while setting x2 ¼ b − x1.

Second, because of the rejection sampling procedure used
(Sec. II.B), the cost of acquisition optimization is inversely
proportional to the fraction of the optimization domain that is
feasible. The smaller the feasible volume fraction is, the more
samples need to be drawn uniformly at random before reaching
the predened number of samples to be collected for acquisi-
tion optimization. It thus follows that the feasible region, as
determined by the user-dened constraint function, should not
be exceedingly small (e.g., less than 1% of the optimization
domain), as in that case GRYFFIN's acquisition optimization
would become inefficient. In practice we nd that when only
a tiny fraction of the overall optimization domain is considered
feasible, it is because of a sub-optimal denition of the opti-
mization domain, which can be solved by re-framing the
problem. A related issue may arise if the constraints dene
disconnected feasible regions with vastly different volumes. In
this scenario, given uniform sampling, little or no samples may
be drawn from the smaller region. However, this too is an edge
case that is unlikely to arise in practical applications, as the
denition of completely separate optimization regions with
vastly different scales tends to imply a scenario where multiple
separate optimizations would be a more suitable solution.
736 | Digital Discovery, 2022, 1, 732–744
Future work will focus on overcoming these two challenges.
For instance, deep learning techniques like invertible neural
networks51 may be used to learn a mapping from the uncon-
strained to the constrained domain, such that the optimization
algorithm would be free to operate on the hypercube while the
proposed experimental conditions would satisfy the
constraints.
III. Results and discussion

In this section we test the ability of GRYFFIN to handle arbitrary
known constraints. First, we show how GRYFFIN can efficiently
optimize continuous and discrete (ordered) benchmark func-
tions with a diverse set of constraints. Then, we demonstrate the
practical utility of handling known constraints on two relevant
chemistry examples: the optimization of the synthesis of o-
xylenyl Buckminsterfullerene adducts under constrained ow
conditions, and the design of redox active molecules for ow
batteries under synthetic accessibility constraints.

In addition to testing GRYFFIN—with both gradient and
evolutionary based-acquisition optimization strategies, referred to
as Gryffin (Adam/Hill) and Gryffin (Genetic), respectively—we also
test three other constrained optimization strategies amenable to
experiment planning. Specically, we use random search
(Random), a genetic algorithm (Genetic), and Bayesian optimiza-
tion with a Gaussian process surrogate model (Dragony). Genetic
is the same algorithm developed for constrained acquisition
function optimization, but it is here employed directly to optimize
the objective function (Sec. II.C). Dragony uses the DRAGONFLY
package50 for optimization. Similar to GRYFFIN, DRAGONFLY
allows for the specication of arbitrarily complex constraints via
a Python function, which is not the case for most other Bayesian
optimization packages. Dragony was not employed in the two
chemistry examples, due to an implementation incompatibility
with using both constraints and the multi-objective optimization
strategy required by the applications.
A. Analytical benchmarks

Here, we use eight analytical functions (four continuous and
four discrete) to test the ability of GRYFFIN to perform sample-
efficient optimization while satisfying a diverse set of user-
dened constraints. More specically, we consider the
following four two-dimensional continuous surfaces, as imple-
mented in the OLYMPUS package:52 Branin, Schwefel, Dejong,
and Discrete Ackley (Fig. 2). While Branin has three degenerate
global minima, we apply constraints such that only one
minimum is present in the feasible region. In Schwefel, a highly
unstructured constraint function is used, where the global
minimum is close to the boundary of the infeasible region. In
Dejong, we use a set of constraints that result in a non-compact
optimization domain where the global minimum cannot be
reached, and there is an innite number of feasible minima
along the feasibility boundary. Discrete Ackley is a discretized
version of the Ackley function, and is an example of an
extremely rugged surface. The four, two-dimensional discrete
surfaces considered are: Slope, Sphere, Michalewicz, and Camel
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Constrained optimization benchmarks on analytical functions with continuous parameters. The upper row shows contour plots of the
surfaces with constrained regions darkly shaded. Gray crosses show sample observation locations using theGryffin (Genetic) strategy and purple
stars denote the location(s) of unconstrained global optima. The bottom row show optimization traces for each strategy. Shaded regions around
the solid trace represent 95% confidence intervals.
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(Fig. 3). Each variable in these discrete surfaces is comprised of
integer numbers from 0 to 20, for a design space of 441 options
in total.
Fig. 3 Constrained optimization benchmarks on analytical functions wit
discrete optimization domain. Shaded regions indicate infeasible regio
optima are indicated by purple stars. Gray crosses show parameters loca
(Genetic) before the optimum being identified. The bottom row shows, a
the number of evaluations needed to identify the global optimum for ea

© 2022 The Author(s). Published by the Royal Society of Chemistry
Results of constrained optimization experiments on contin-
uous surfaces are shown in Fig. 2. These results were obtained
by performing 100 repeated optimizations for each of the ve
h discrete, ordered parameters. The upper row shows heatmaps of the
ns, where constraints have been applied. The locations of the global
tions that have been probed in a sample optimization run using Gryffin
s superimposed box-and-whisker and swarm plots, the distributions of
ch optimization strategy (numerical values can be found in Table S1†).
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strategies considered, while allowing a maximum of 100
objective function evaluations. Optimization performance is
assessed using the distance between the best function value
found at each iteration of the optimization campaign and the
global optimum, a metric known as regret, r. The regret aer k
optimization iterations is

rk ¼ jf(x*) − f(x+k )j. (2)

x+k are the parameters associated with best objective value
observed in the optimization campaign aer k iterations,
sometimes referred to as the incumbent point, i.e., for a
minimization problem xþk ¼ arg min

x˛Dk

f ðxÞ, where Dk is the

current dataset of observations. x* are the parameters associ-
ated with the global optimum of the function within the whole
optimization domain. If the optimum lies in the infeasible
region, a regret of zero is not attainable. Sample-efficient algo-
rithms should nd parameters that return better (in this case
lower) function values with fewer objective evaluations.

All optimization strategies tested obeyed the known
constraints (Fig. 2, top row). We observe that the combination of
analytical function and user-dened constraint have great
inuence on the relative optimization performance of the
considered strategies. On all functions, the performance of
GRYFFIN was insensitive to the acquisition optimization
strategy, with Gryffin (Adam) and Gryffin (Genetic) performing
equally well. This observation also held true on higher-
dimensional surfaces (ESI Fig. S4†). On smooth functions,
such as Branin and Dejong, Dragony displayed strong perfor-
mance, given that its Gaussian process surrogate model
approximates these functions extremely well. In addition,
DRAGONFLY appears to propose parameter points that are
closer to previous observations than GRYFFIN does, showcasing
a more exploitative character, which in this case is benecial to
achieve marginal gains in performance when in very close
proximity to the optimum (see ESI Sec. S.2.C for additional
details†). Although their performance is slightly worse than
Dragony, Gryffin strategies still displayed improved perfor-
mance over Random and Genetic on Branin, and comparable
performance to Dragony on Dejong. Gryffin strategies showed
improved performance compared to Dragony on Schwefel and
Discrete Ackley. These observations are consistent with previous
work29 where it was observed that, due to the different surrogate
models used, GRYFFIN returned better performance on func-
tions with discontinuous character, while Gaussian process-
based approaches better performed on smooth surfaces. On
Schwefel, our Genetic strategy also showed improved perfor-
mance over that of Random and Dragony, comparable with that
of Gryffin. It is interesting to note how Dragony performed
particularly poorly on this function. This is due to Schwefel
being a periodic function, while the prior used by Dragony is
the Matérn kernel. When using a periodic kernel with suitable
inductive biases, the Gaussian process model better ts the
surface, locating the global minimum (ESI Fig. S5†). Finally,
note that in Fig. 2 differences between strategies are exagger-
ated by the use of a logarithmic scale, used to highlight
738 | Digital Discovery, 2022, 1, 732–744
statistically signicant differences. We also report the same
results using a linear scale, which de-emphasizes signicant yet
marginal differences in regret values (e.g. between Dragony
and Gryffin on the Branin function) in ESI Fig. S3.†

Results of constrained optimization experiments on discrete
synthetic surfaces are shown in Fig. 3. These results are also
based on 100 repeated optimizations, each initialized with
a different random seed. Optimizations were allowed to
continue until the global optimum was found. As a measure of
performance, the number of objective function evaluations
required to identify the optimum was used. As such, a more
efficient algorithm should identify the optimum with fewer
evaluations on average.

Here too, all strategies tested correctly obeyed each
constraint function (Fig. 3, top row), and Bayesian optimization
algorithms (Gryffin and Dragony) outperformed Random and
Genetic on all four benchmarks (Fig. 3, bottom row). Random
needed to evaluate about half of the feasible space before
identifying the optimum. Genetic required signicantly fewer
evaluations, generally between a half and a third of those
required by Random. On discrete surfaces, the approaches
based on GRYFFIN and DRAGONFLY returned equal perfor-
mance overall, with no considerable differences (Table S1†). As
it was observed for continuous surfaces, the performance of
Gryffin (Adam) and Gryffin (Genetic) was equivalent.

In settings where the constraints are the result of limitations
in experimental capabilities, one may want to evaluate whether
the global optimum could be located in the infeasible region,
with the goal of deciding whether to expand such capabilities.
While this task is best suited to a supervised learning frame-
work, in which multiple ML models could be evaluated for their
predictive ability, the data collected by the optimization algo-
rithm is what enables such models. It is therefore interesting to
notice how GRYFFIN tends to collect data that is likely infor-
mative for this task. In fact, the combination of GRYFFIN's
acquisition function and its constrained optimization results in
a data-collection strategy that tends to probe the boundaries of
the feasibility region, with a higher density of points in prox-
imity of possible minima. Examples of this behavior may be
seen in Fig. 2 for the Branin and Dejong functions, which have
their global optima located in the infeasible (constrained)
region. In these cases, GRYFFIN sampled a higher density of
points on the feasibility boundary close to these optima. These
data points would be useful when building a ML model that
tries to extrapolate into the infeasible region.
B. Process-constrained optimization of o-xylenyl C60 adducts
synthesis

Compared to their inorganic counterparts, organic solar cells
have the advantage of being exible, lightweight and easily
fabricated.53,54 Bulk heterojunction polymer-fullerene cells are an
example of such devices, in which the photoactive layer is
composed of a blend of polymeric donor material and fullerene
derivative acceptor molecules.55 The fullerene acceptor is oen-
times functionalized to tune its optoelectronic properties. In
particular, mono and bis o-xylenyl adducts of
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Buckminsterfullerene are acceptormolecules which have received
much attention in this regard. On the other hand, higher-order
adducts are avoided as they have a detrimental impact on the
power conversion efficiencies of the resulting device.56 Therefore,
synthetic protocols that provide accurate control over the degree
of C60 functionalization are of primary interests for the
manufacturing of these organic photovoltaic devices.

In this example application of constrained Bayesian optimi-
zation, we consider the reaction of C60 with an excess of sultine,
the cyclic ester of a hydroxy sulnic acid, to form rst, second,
and third order o-xylenyl adducts of Buckminsterfullerene
(Fig. 4a). This application is based on previous work by Walker
et al.,35 who reported the optimization of this reaction with an
automated, single-phase capillary-based ow reactor. Because
this reaction is cascadic, a mixture of products is always present,
with the relative amounts of each species depending primarily on
reaction kinetics. The overall goal of the optimization is thus to
tune reaction conditions such that the yield of rst- and second-
order adducts is maximized and reaches at least 90%, while the
cost of reagents is minimized. We estimated reagents cost by
considering the retail price listed by a chemical supplier (ESI Sec.
S.3.B†). In effect, we derive a simple estimate of per-minute
operation cost of the ow reactor, which is to be minimized as
the second optimization objective.

The controllable reaction conditions are the temperature (T),
the ow rate of C60 (FC), and the ow rate of sultine (FS), which
determine the chemical composition of the reaction mixture
and are regulated by syringe pumps (Fig. 4b). T is allowed to be
set anywhere between 100 and 150 �C, and ow rates can be
varied between 0 and 200 mL min−1. However, the values of the
ow rates are constrained. First, the total ow rate cannot
exceed 310 mL min−1, or be below 10 mL min−1. Second, FS
cannot be more than twice FC, and vice versa FC cannot be more
than twice FS. More formally, the inequality constraints can be
dened as 10 < FC + FS < 310 mL min−1, FC < 2FS and FS < 2FC.

The relative concentrations of each adduct—[X1], [X2], and
[X3] for the mono, bis, and tris adduct, respectively—are
measured via online high-performance liquid chromatography
(HPLC) and absorption spectroscopy. Following from the above
discussion, we would like to maximize the yield of [X1] and [X2],
which are the adducts with desirable optoelectronic properties.
However, we would also like to reduce the overall cost of the raw
materials. These multiple goals are captured via the use of
CHIMERA as a hierarchical scalarizing function for multi-
objective optimization.31 Specically, we set the rst objective
as themaximization of [X1] + [X2], with aminimum target goal of
0.9, and the minimization of reagents cost as the secondary
goal. Effectively, this setup corresponds to the minimization of
cost under the constraint that [X1] + [X2] $ 0.9.

To perform numerous repeated optimizations with different
algorithms, as well as collect associated statistics, we con-
structed a deep learning model to simulate the above-described
experiment. In particular, we trained a Bayesian neural network
based on the data provided by Walker et al.,35 which learns to
map reaction conditions to a distribution of experimental
outcomes (ESI Sec. S.3.A†). The measurement is thus stochastic,
as expected experimentally. This emulator takes T, FC, and FS as
© 2022 The Author(s). Published by the Royal Society of Chemistry
input, and returns mole fractions of the un- (X0), singly- (X1),
doubly- (X2), and triply-functionalized (X3) C60. The model dis-
played excellent interpolation performance across the parameter
space for each adduct type (Pearson coefficient of 0.93–0.96 on
the test sets). This enabled us to perform many repeated opti-
mizations thanks to rapid and accurate simulated experiments.

Results of the constrained optimization experiments are
shown in Fig. 4c. Optimization traces show the objective values
associated with the best scalarized merit value. The constrained
GRYFFIN strategies obeyed all ow rate constraints dened. All
strategies rapidly identied reaction conditions producing high
yields. Upon satisfying the rst objective, CHIMERA guided the
optimization algorithms towards lowering the cost of the reaction.
GRYFFIN achieved cheaper protocols faster than the other strat-
egies tested. In ESI Sec. S.3.B† we examine the best reactions
conditions identied by each optimization strategy aer 100
experiments. We nd that for the majority of cases, strategies
decreased the C60 ow rate (the more expensive reagent) to
minimize the cost of the experiment, while simultaneously
decreasing the sultine ow rate to maintain a stoichiometric ratio
close to one and preserve the high ($0.9 combined mole fraction)
yield of X0 and X1 adducts. In principle, the yield is allowed to
degrade with an accompanying decrease (improvement) in cost.
However, we did not see the trade-off between yield and cost being
required within the experimental budget of 100 experiments. In
this case study we used GPYOPT, as opposed to DRAGONFLY, as
a representative of an established Bayesian optimization algo-
rithm, because its implementation was compatible with the
requirements of this specic scenario. That is, the presence of
known constraints and the use of an external scalarizing function
for multi-objective optimization. Use of CHIMERA as an external
scalarizing function requires updating the entire optimization
history at each iteration. Thus, the optimization library must be
used via an ask-tell interface. Although DRAGONFLY does have
such an interface, to the best of our knowledge it does not yet
support constrained and multi-objective optimizations with
external scalarizing functions. In this instance, GPYOPT with ex-
pected improvement as the acquisition function performed
similarly to Genetic and Random on average.

As a nal note, we point out that in this application the
reaction conditions were assumed to be constant throughout
each experiment. However, other setups may involve time-
varying parameters. When this is done in a controlled
fashion, additional parameters can be used to describe a time-
dependent protocol. For instance, a linear temperature gradient
can be described by three variables: initial temperature, a time
interval, and the rate of temperature change over time. If
changes in the controllable parameters are undesirable conse-
quences of shortcomings of the protocol or equipment (e.g.,
limited temperature control ability), these may be accounted for
by considering the input parameter as uncertain.32
C. Design of redox-active materials for ow batteries with
synthetic accessibility constraints

Long-duration, stationary energy storage devices are needed to
handle the rapid growth in intermittent energy sources.58
Digital Discovery, 2022, 1, 732–744 | 739
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Fig. 4 Experimental setup and results of the process-constrained synthesis of o-xylenyl C60 adducts. (a) Synthesis of o-xylenyl C60 adducts. 1,4-
dihydro-2,3-benzoxathiin 3-oxide (sultine) is converted to o-quinidimethane (oQDM) in situ, which then reacts with C60 by Diels–Alder
cycloaddition to form the o-xylenyl adducts. (b) Schematic of the single-phase capillary-based flow reactor (as reported byWalker et al.35), along
with the optimization parameters, constraints, and objectives. The C60 and sultine flow rates are modulated by syringe pumps, and the reaction
temperature is controlled by a solid state heater. Online HPLC and absorption spectroscopy is used for analysis. (c) Results of the constrained
optimization experiments. Plots show the mean and 95% confidence interval of the best objective values found after varying numbers of
experiments, for each optimization algorithm studied. The background color indicates the desirability of the objective values, with grey being
less, and white more desirable. For the first objective (left-hand side), the grey region below the value of 0.9 indicates values for the objective that
do not satisfy the optimization goal that was set.
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Toward this goal, redox ow batteries offer a potentially prom-
ising solution.59–63 Second-generation non-aqueous redox ow
batteries are based on organic solvent as opposed to water,
which enables a much larger electrochemical window and
higher energy density, the potential to increase the working
temperature window, as well as the use of cheap, earth abun-
dant redox-active materials.64 Nevertheless, the multiobjective
design of redox-active materials poses a signicant challenge in
materials science. Recently, the anolyte redox material 2,1,3-
benzothiadiazole was shown to have low redox potential, high
stability and promising electrochemical cycling perfor-
mance.65–67 Furthermore, derivatization of benzothiadiazole
enabled self-reporting of battery health by uorescence
emission.68

In this application we demonstrate our constrained optimi-
zation approach for the multi-objective design of retro-
synthetically accessible redoxmer molecules. We utilize a previ-
ously reported dataset that comprises 1408 benzothiadiazole
derivatives (Fig. 5a) for which the reduction potential Ered,
solvation free energy Gsolv, and maximum absorption wave-
length labs were computed with DFT.69 This example applica-
tion thus simulates a DFT-based computational screen70–72 that
Fig. 5 Optimization setup and results for the design of redox-active m
substituents considered. The entire design space consists of 1408 cand
applied to the optimization. The RAscore57 was used to score synthesizab
all 1408 candidates. We constrain the optimization to those candidates w
Results of the constrained optimization experiments. Grey shaded regio
Traces depict the objective values corresponding to the best achieved
intervals.

© 2022 The Author(s). Published by the Royal Society of Chemistry
aims to identify redoxmer candidates with self-reporting
features and a high probability of synthetic accessibility.

To impose synthetic accessibility constraints we used
RAscore,57 a recently-reported synthetic accessibility score based
on the computer-aided synthesis planner AiZythFinder.73

RAscore predicts the probability of AiZythFinder being able to
identify a synthetic route for a target organic molecule. While
other measures of synthetic accessibility are available,34,74–76

RAscore was chosen for its performance and intuitive interpre-
tation. In our experiments, we constrained the optimization to
candidates with RAscore > 0.9 (Fig. 5b, additional details in ESI
Sec. S.4.B†). This synthetic accessibility constraint reduces the
design space of feasible candidates to a total of 959 molecules.

We aimed at optimizing three objectives concurrently: the
absorption wavelength labs, the reduction potential Ered, and
the solvation free energy Gsolv of the candidates (Fig. 5c).
Specically, we aimed at identifying molecules that would (i)
absorb in the 350–400 nm range, (ii) improve upon the reduc-
tion potential of the base scaffold (2.04 V against a Li/Li+

reference electrode; ESI Sec. S.4.A†), and (iii) provide the lowest
possible solvation free energy, here used as a proxy for solu-
bility. The hierarchical scalarizing function CHIMERA31 was
aterials. (a) Markush structure of the benzothiadiazole scaffold and all
idates (2 R1 � 8 R2 � 8 R3 � 11 R4 options). (b) Synthetic constraints
ility. The histogram shows the distribution of synthesizability scores for
ith an RAscore > 0.9. (c) Objectives of the molecular optimization. (d)
ns indicate objective values failing to achieve the desired objectives.
merit at each iteration, where error bars represent 95% confidence

Digital Discovery, 2022, 1, 732–744 | 741
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used to guide the optimization algorithms toward achieving
these desired properties.

Results of the constrained optimization experiments are
displayed in Fig. 5d. Each optimization strategy was given
a budget of 100 molecules to be tested; the experiments were
repeated 100 times and initialized with different random seeds.
Optimization traces show the values of Dlabs, Ered, and Gsolv

associated with the best molecule identied among those
tested. In these tests, the dynamic version of GRYFFIN was
used.30 This approach can take advantage of physicochemical
descriptors in the search for optimal molecules. In this case,
GRYFFIN was provided with several descriptors for each R
group in the molecule: number of heavy atoms, number of
hetero atoms, molecular weight, geometric diameter, polar
surface area, polarizability, fraction of sp3 carbons (ESI Sec.
S.4.C†).77

Constrained GRYFFIN avoided redoxmer candidates pre-
dicted to be retro-synthetically inaccessible. All optimization
strategies rapidly identied candidates with labs between 350
and 400 nm, and whose Ered is lower than that of the starting
scaffold. However, GRYFFIN strategies managed to identify
candidates with lower Gsolv faster than Random and Genetic.
Consistent with previous tests, we did not observe a statistically
different performance between Gryffin (Hill) and Gryffin
(Genetic). Overall, Gryffin (Hill) and Gryffin (Genetic) identied
molecules with better labs, Ered, and Gsolv properties than
Random or Genetic aer probing 100 molecules. Furthermore,
within this budget, GRYFFIN identied molecules with better
properties more efficiently than the competing strategies tested.
Without the aid of physicochemical descriptors, GRYFFIN's
performance deteriorated, as expected,30 yet it was still superior
than that of Random and Genetic (ESI Fig. S11†).

IV. Conclusion

In this work, we extended the capabilities of GRYFFIN to handle
a priori known, hard constraints on the parameter domain,
a pragmatic requirement for the development of autonomous
research platforms in chemistry. Known constraints constitute
an important class of restrictions placed on optimization
domains, and may reect physical constraints or limitations in
laboratory equipment capabilities. In addition, known
constraints may provide a straightforward avenue to inject prior
knowledge or intuition into a chemistry optimization task.

In GRYFFIN, we allow the user to dene arbitrary known
constraints via a exible and intuitive Python interface. The
constraints are then satised by constraining the optimization
of its acquisition function.

In all our benchmarks, GRYFFIN obeyed the (sometimes
complex) constraints dened, showed superior performance to
more traditional search strategies based on random search and
evolutionary algorithms, and was competitive to state-of-the-art
Bayesian optimization approaches.

Finally, we demonstrated the practical utility of handling
known constraints with GRYFFIN in two research scenarios
relevant to chemistry. In the rst, we demonstrated how to
perform an efficient optimization for the synthesis of o-xylenyl
742 | Digital Discovery, 2022, 1, 732–744
adducts of Buckminsterfullerene while subjecting the experi-
mental protocol to process constraints. In the second, we
showed how known constraints may be used to incorporate
synthetic accessibility considerations in the design of redox
active materials for non-aqueous ow batteries.

It is our hope that simple, exible, and scalable soware
tools for model-based optimization over constrained parameter
spaces will enhance the applicability of data-driven optimiza-
tion in chemistry and material science, and will contribute to
the operationalization of self-driving laboratories.

Data availability

An open-source implementation of GRYFFIN with known
constraints is available on GitHub at https://github.com/
aspuru-guzik-group/gryffin, under an Apache 2.0 license. The
data and scripts used to run the experiments and produce the
plots in this paper are also available on GitHub at https://
github.com/aspuru-guzik-group/gryffin-known-constraints.
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12 S. Langner, F. Häse, J. D. Perea, T. Stubhan, J. Hauch,
L. M. Roch, T. Heumueller, A. Aspuru-Guzik and
C. J. Brabec, Adv. Mater., 2020, 32, 1907801.

13 B. P. MacLeod, F. G. L. Parlane, T. D. Morrissey, F. Häse,
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33 R. J. Hickman, F. Häse, L. M. Roch and A. Aspuru-Guzik,
2021, arXiv, 2103.03391.

34 M. Seifrid, R. J. Hickman, A. Aguilar-Granda, C. Lavigne,
J. Vestfrid, T. C. Wu, T. Gaudin, E. J. Hopkins and
A. Aspuru-Guzik, ACS Cent. Sci., 2022, 8, 122–131.

35 B. E. Walker, J. H. Bannock, A. M. Nightingale and
J. C. deMello, React. Chem. Eng., 2017, 2, 785–798.

36 M. A. Gelbart, J. Snoek and R. P. Adams, Proceedings of the
Thirtieth Conference on Uncertainty in Articial Intelligence,
Arlington, Virginia, USA, 2014, pp. 250–259.

37 R. B. Gramacy and H. K. H. Lee, 2010, arXiv:1004.4027 [stat].
38 M. A. Gelbart, J. Snoek and R. P. Adams, 2014,

arXiv:1403.5607 [cs, stat].
39 S. Ariafar, J. Coll-Font, D. Brooks and J. Dy, J. Mach. Learn.

Res., 2019, 20, 1–26.
40 C. Antonio, J. Glob. Optim., 2021, 79, 281–303.
41 S. L. Digabel and S. M. Wild, 2015, arXiv, 1505.07881.
42 S. Sun, A. Tiihonen, F. Oviedo, Z. Liu, J. Thapa, Y. Zhao,

N. T. P. Hartono, A. Goyal, T. Heumueller, C. Batali,
A. Encinas, J. J. Yoo, R. Li, Z. Ren, I. M. Peters,
C. J. Brabec, M. G. Bawendi, V. Stevanovic, J. Fisher III and
T. Buonassisi, Matter, 2021, 4, 1305–1322.

43 Z. Liu, N. Rolston, A. C. Flick, T. Colburn, Z. Ren,
R. H. Dauskardt and T. Buonassisi, 2021, arXiv:2110.01387
[physics].

44 B. Shahriari, K. Swersky, Z. Wang, R. P. Adams and N. de
Freitas, Proc. IEEE, 2016, 104, 148–175.
Digital Discovery, 2022, 1, 732–744 | 743

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2dd00028h


Digital Discovery Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

4 
Se

pt
em

be
r 

20
22

. D
ow

nl
oa

de
d 

on
 1

1/
24

/2
02

5 
4:

15
:3

6 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
45 E. Jang, S. Gu and B. Poole, 5th International Conference on
Learning Representations, ICLR 2017, Toulon, France, April
24–26, 2017, Conference Track Proceedings, 2017.

46 Y. W. T. Chris J. Maddison and A. Mnih, 5th International
Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24–26, 2017, Conference Track Proceedings, 2017.

47 D. P. Kingma and J. Ba, arXiv:1412.6980 [cs], 2017.
48 F.-A. Fortin, F.-M. De Rainville, M.-A. Gardner, M. Parizeau
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