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rosynthesis of gold nanoparticles
via spectral shape matching†

Kiran Vaddi, *a Huat Thart Chiang a and Lilo D. Pozzo *ab

Synthesizing complex nanostructures and assemblies in experiments involves careful tuning of design

factors to obtain a suitable set of reaction conditions. In this paper, we study the application of Bayesian

optimization (BO) to achieve autonomous retrosynthesis of a specific nanoparticle or nano-assembly

structure, shape, and size starting from a set of reagents selected a priori. We formulate the BO as

a shape matching problem given target spectra as a structural proxy with a goal to minimize the shape

discrepancy. The proposed framework is grounded in analyzing the spectra as belonging to function

spaces and a Riemannian metric defined on them. The metric decomposes spectral similarity into

amplitude and phase components. It provides a shape matching distance to optimize as opposed to

purely intensity similarity obtained from the commonly used mean squared error (MSE). Applying the

framework to experimental and simulated spectra, we demonstrate the advantage of shape matching

over MSE and other generic functional distance measures.
1 Introduction

The application of machine learning (ML) based methods to
scientic data has improved signicantly with both data and
tools becoming available in an easy-to-use and open-source
format. Predictions based on computational and experimental
datasets enabled the accelerated discovery of materials and
their developments. Adaptation of high-throughput experi-
mentation for laboratory synthesis and characterization of
materials played a key role in enabling screening large design
spaces to nd materials of interest. This effort is not paralleled
through the prediction of laboratory synthesis procedures
themselves with few exceptions using language processing to
predict potential synthesis routes (given the previously reported
synthesis procedures1) and computer-assisted retrosynthesis2

(to evaluate pathways for given reactant product pair). One area
of research that has attracted signicant interest to address
predictive laboratory synthesis is the use of probability-based
optimization methods for material discovery starting from
a target property provided in spectral form.

Black-box optimization such as Bayesian Optimization (BO)
is commonly used to optimize a black-box function using
a surrogate model and a utility function that is used to guide
sequential decisions about evaluation points. Application of BO
to structure optimization of nanoparticles has recently been
ersity of Washington, Seattle, WA, USA.

eering, University of Washington, Seattle,

mation (ESI) available. See

–510
studied in problems that involve optimizing a characteristic
response collected through experiments such as UV-Vis spec-
troscopy incorporated into high-throughput frameworks.3–5

Oentimes, the characteristic responses collected as a spectrum
(i.e., a signal over a discrete sample of a stimulus e.g.: wave-
length) are not suited for direct usage in BO. Researchers have
looked at dening score functions that return a scalar similarity
between a query and target spectra (e.g.: Euclidean distance,4

Cosine distance,3 etc.). However, the similarity functions are
heavily based on expert knowledge about analyzing the signal
and only consider differences on the intensity scale using
vector-space distance measures. One way to overcome the
limitations (or bottlenecks created from the need for expert
knowledge) is to optimize the shape of the spectra i.e., match
the query spectra shape to target spectra such that both the local
and global features are optimized simultaneously.

Shape matching is advantageous over Euclidean distance in
many characterization techniques of interest and provides
a natural way to evaluate similarities based on semantic and
scientic meaning. For example, in UV-Vis spectroscopy, the
shape of the spectra, which is dened by the molar attenuation
coefficient, generally gives information on the intrinsic prop-
erties of the nanoparticle such as the particle shape or size,6

while the intensity of the spectra gives information on extrinsic
properties, such as the concentration. In addition, the intensity
of the spectra can be inuenced by the particle shape and size
distribution, the dielectric properties of the solvent, and the
surface chemistry of the nanoparticles, which may introduce
further parameters for optimization.7 Because the objective of
many optimization campaigns in inorganic nanoparticle retro-
synthesis is to obtain particles of desired shapes or sizes, we
© 2022 The Author(s). Published by the Royal Society of Chemistry
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hypothesize that having a similarity metric that primarily
accounts for the structure would be advantageous in the opti-
mization. Given that complex spectra provide information
about phenomena occurring over multiple length scales, spec-
tral shape matching provides a viable option for simultaneously
matching the relevant patterns of multi-scale phenomena
without over-emphasizing variations on the y-scale.

In this paper, we study BO in combination with shape
matching on function spaces and the underlying Riemannian
manifold structure. We provide a generic framework that
considers spectral data as points on function spaces and use
differential geometry-based approaches to dene similarity
measures. These similarity measures are then compared with
other, more commonly used approaches, such as Euclidean
distance, or peak positions of UV-Vis spectra. The rest of the
paper is arranged as follows: we rst introduce and review
various mathematical frameworks such as Bayesian optimiza-
tion, function spaces, and Riemannian metrics used in this
paper before applying them to a case study of simulated
Gaussian spectra and a high-throughput gold nanorod
synthesis experiment. We then conclude and provide directions
for future usage and applications of interest.
2 Methods

This section provides details about variousmachine learning and
mathematical methods we use to build our framework (see
Fig. 1). We rst introduce the Bayesian optimization framework
in Section 2.1 and highlight its various important components in
the context of the spectra-based structure optimization studied in
this paper. We then introduce the core idea of the paper in
Section 2.3 that represents spectral data as belonging to function
space and various manifold and Riemannian metric structures
one can use for that representation. Making use of the function
space representation, we provide a practical solution to using BO
for shape matching in Section 2.2 and derive the required Rie-
mannian metric in Section 2.4. The advantages of using a Rie-
mannian metric are then demonstrated in Section 2.5.
Fig. 1 A schematic representation of the BO framework is used in this
work. The general manifold of function spaces is denoted M and
a geodesic distance defined on it is denoted dM . The real-valued target
black-box function and the acquisition functions are drawn with a y-
scale representing their value. The rest of the notation follows Section
2.1.

© 2022 The Author(s). Published by the Royal Society of Chemistry
2.1 Bayesian optimization

Bayesian optimization (BO) is an iterative algorithm of nding
the maximum of a function h whose closed-form expression is
unknown.8 Such functions oen arise in experimental sciences
where the exact mechanism (i.e. a closed-form expression)
governing a particular response is unknown thus a forward
model does not exist. BO provides a methodology to t a prob-
abilistic model as a surrogate between the inputs (e.g.: compo-
sitional variates) and the outputs (e.g.: similarity of query and
target spectra) while simultaneously trying to nd the
maximum of h using x* ¼ argmaxxh(x). If we denote the set of
inputs (i.e. search space or design space) as X , the function h
takes a x˛X and returns an output we try to maximize. When
the output is a scalar value i.e. h: X/ℝ, one common
approach to select batch of samples X to query next is to rst
dene a measure of improvement (to the maximum value of h)
using an acquisition function L ðXÞ (see eqn (1)) and select points
that maximize it. In a Bayesian approach, value of querying X is
determined by a utility ‘ðyÞ of unknown outcomes y using
posterior belief pðyjX;DÞ given observed data D.9 Given a utility
in ‘ðyÞ, the acquisition value for points X is dened as expec-
tation over sample draws (or evaluations) y � pðyjX;DÞ given
a probabilistic surrogate model for h � pðhjDÞ.

L ðX;DÞ ¼ Ly½‘ðyÞ� ¼
ð
‘ðyÞpðyjX;DÞdy (1)

As an example, expected improvement10 computes utility
using eqn (2) measuring the improvement given a threshold
a as:

‘ðyÞ ¼ Lz½maxðReLUðmþ Lz� aÞÞ� (2)

where we used a parametric Gaussian process (GP) N ðm;SÞ with
mean m and covariance S ¼ LLu as the surrogate for h.‡ The
parameter z is introduced to make the (stochastic)gradient-
based optimization of L for batch selection tractable using
the reparameterization trick i.e. y ¼ m + Lz (see ref. 9 for more
information).
2.2 Utility function for optimization of spectra

In this work, we are interested in solving the optimization
problem where at each x, we observe spectra such as the
absorption measurement from UV-Vis over a specic wave-
length range. We would like to optimize for a xt˛X that results
in a particular shape of the spectra dened as the target. Thus,
the acquisition functions L ðXÞ dened for the scalar functions
above are not applicable. For example, it is unclear how to
dene improvement of h(x) when h: X/M where M is the
space of functions (see Section 2.3). To overcome this, we dene
h(x) ¼ g(f(x)) i.e. h ¼ g◦f where f: X/M and g: M/ℝ. f is
a black-box function that takes an input x and returns a spec-
trum as a point in the space of functions such as M . Function g
is dened as a measure of similarity between a target spectra ft
¼ f(l; xt) at the unknown target location xt and spectra at
‡ ReLU is a rectied linear unit non-linearity.
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a query location xq as fq¼ f(l; xq). One choice for g is to dene it
in closed form using the distance function or simply compute
distance in its ambient space ℝn:

dℝn

�
fq; ft

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i

�
fqðliÞ � ftðliÞ

�2s
(3)

as most commonly done in the literature.3 More specically,
given a target spectrum as ft(l), we can dene gðf Þ ¼ dM ðf ; ftÞ
using the distances on space of functions M . The utility ‘ðyÞ can
now be dened as a measure of improvement in the geodesic
distance between the model's best estimate and the target
spectra.
2.3 Spectra as points in function spaces

In chemistry and material sciences, spectral data (e.g.: spec-
troscopy, X-ray diffraction, small-angle X-ray scattering, etc.) are
ubiquitous and provide a faster way to characterize the samples
oen at multiple length scales. As an example, in optical spec-
troscopy, the wavelength of incident light with known intensity
is varied and the scattered intensity from the sample is collected
as the output. Mathematically, a spectrum can be described as
an evaluation of a function at discrete stimuli to the sample.11

The notion of function spaces allows us to perform standard
data analysis and gradient computation of spectral data using
differential geometric methods. For example, to collect a UV-Vis
spectrum, the wavelength of the incident light is varied in
a region of interest, and the optical extinction efficiency of the
sample aer the light of a particular wavelength passes through
it is reported. The collected spectrum can now be considered as
discrete evaluations of the function f(l) where l is the wave-
length. For data analysis purposes, each spectrum can be
considered as belonging to a space of functions denoted as
M ¼ ff : ½0; 1�1ℝg dened on a domain mapped to the unit
interval. A differential geometric perspective on functions can
now be used to consider functions as points on differentiable
manifolds. A manifold for the purposes of this paper is a set of
points with a notion of a neighborhood for any given point and
is locally similar to the Euclidean space with at geometry.§ To
compute distances on manifolds, we make use of the manifold
tangent space T M , the space of tangent vectors at all points on
the manifold. By denition, the tangent space is a vector space
and can be equipped with an inner product called Riemannian
metric h$, $i that can be used to measure lengths and angles
between the tangent vectors. Specically, the set M is a Hilbert
manifold i.e. a vector space{ with norm k.k related to the inner

product by k:k ¼ ffiffiffiffiffiffiffiffiffiffiffih$; $ip
. The Riemannian metric structure

allows us to dene a distance between two points on manifolds
as path lengths connecting them. Given a parametric path

bðsÞ: ½0; 1�1M , the instantaneous velocity of the path
vb

vs
is

a tangent vector in T M . The length of the path b is given by
§ This notion is more generic than the commonly known low-dimensional
manifold concept in the (applied)machine learning community.

{ Because given f1; f2˛M ; a1f1 þ a2f2˛M , where a1; a2˛ℝ.

504 | Digital Discovery, 2022, 1, 502–510
integrating the lengths of instantaneous velocity vectors over
the parametric path using:

lenðbÞ ¼
ð1
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
vb

vs
;

vb

vs

�s
ds (4)

The shortest path on any given manifold between two points
is called a geodesic and the corresponding path length as
geodesic distance dM . A generic form of geodesic distance is
thus an optimization problem itself (eqn (5)) but for particular
manifolds and choice of a metric, there are closed-form
expressions.

dM ðf1; f2Þ ¼ min
b

lenðbÞ bð0Þ ¼ f1; bð1Þ ¼ f2 (5)

Many choices for the inner product exist with the most
commonly used L

2-inner product given by eqn (6) and the
resulting function space is called a L

2-space. For any two
functions f1; f2˛L2 we rst map its domain to an unit interval
[0, 1] and compute inner product using eqn (6).

hf1; f2iL2 ¼
ð1
0

f1ðlÞf2ðlÞdl (6)

The tangent space T
L
2 is the entire L

2-space thus allows us
to dene geodesics in a closed form given by a straight line sf1 +
(1 � s)f2 and the geodesic distance is a simple vector norm:

d
L
2ðf1; f2Þ ¼ kf1 � f2kL2 (7)

Note that the distance in eqn (7) is different from the
commonly used mean-squared error (MSE) between two func-
tions as it involves the integration of functions over the domain.
More importantly, MSE is simply a similarity measure between
the intensities (or y-scale of one-dimensional function) while
eqn (7) provides a geodesic distance between the functions. For
more details on the differential geometry of functions, readers
are referred to ref. 12 and 13.
2.4 A Riemannian metric for functions shape matching

Although the L2-inner product provides a Riemannian structure
to the function spaces, it is very generic and not useful in
practice. This is best explained by an example. Consider, the
function space of Gaussian'sk with mean m and variance s2

evaluated at l given by:

f ðl; m; sÞ ¼ 1

s
ffiffiffiffiffiffi
2p

p exp

 
� 1

2

ðl� mÞ2
s2

!
(8)

and four points on the corresponding function spaceM given by
f0 ¼ f (3, 0.5), f1 ¼ f (�2, 0.5), f2 ¼ f (�3, 0.5), f3 ¼ f (�2, 0.8)
depicted as a solid-blue curve, solid-black curve, dotted-black
curve and dot-dashed-black curve respectively in Fig. 2.
k Gaussian's are selected both for its simplicity and relevance to poly-dispersity
related effects on spectral characterizations of nanoparticles.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Example functions from eqn (8). The functions drawn in dotted
and solid black lines are at an equal distance from the function drawn
in solid-blue line when compared using an MSE distance and the L

2

metric but not through the amplitude–phase distance. Similarly, the
dash-dot black curve is rightly classified as further than the solid black
curve from the solid blue curves using amplitude–phase distance but
not others Table 1.
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When measured using an MSE similarity both the solid and
dotted black curves in Fig. 2 are equidistant at 3.34 units from
the solid blue curve. This is expected as the MSE only considers
the variation along the y-scale thus unable to distinguish
between the two functions that are distinct only along the x-axis
(i.e. f2 can be obtained by linearly shiing the f1 along the x-axis)
where its y-scale variation w.r.to f0 is invariant. This behavior
also occurs with the L

2 metric (equidistant at 0.34 units) as the
value of f0 is zero where the variation of x-axis between f1 and f2
occur. To account for this, we consider another Riemannian
metric dened on function spaces by rst decoupling the total
variation/distance between functions as amplitude (i.e. variation
along the y-axis) and phase (i.e. variation along the x-axis).

The amplitude and phase variations are dened by consid-
ering a warping function g of the domain that continuously
maps any given function f1 to f2 without changing the relative
amplitudes. More precisely, g: [0, 1] 1 [0, 1] is a boundary
preserving diffeomorphism (i.e. a smooth function with an
inverse) with g(0)¼ 0 and g(1)¼ 1. The set of warping functions
denoted as G forms a mathematical structure called the group
(i.e. a set with an inverse and identify properties under an
associated action) and it can be understood by how it acts on
functions f. For example, if we dene the group action of a g ˛ G

as simply warping the domain using (f, g) ¼ f◦g, we can
compute g that optimally warps f1 to f2 by solving
min
g

kf1 � f2
�gk

L
2. The L

2 norm, however, is known to suffer
from pinching effect among others thus a square-root slope
function (SRSF) metric is used instead,13,14 details of which are
out of the scope of this paper. SRSF transforms a function f
using:

qðlÞ ¼ sign
�
f
�

ðlÞ
� ffiffiffiffiffiffiffiffiffiffi			f� ðlÞ
r

:
			 : (9)

The resulting function representation q is again a differential
manifold and q˛L2. We can once again use the differential
geometry of the L

2-space to compute the inner product as
© 2022 The Author(s). Published by the Royal Society of Chemistry
described below. If v is a tangent vector in the tangent space
T

L
2 , then its corresponding tangent vector using SRSF is given

by w ¼ v
�

=2
ffiffiffi
f
�

q
. The required inner product for w1; w2˛T SRSF is

dened as described in Section 2.3:

hw1;w2iSRSF ¼
ð1
0

v
�

1ðlÞ
2

ffiffiffi
f
�

q
ðlÞ

v
�

2ðlÞ
2

ffiffiffi
f
�

q
ðlÞ

dl

¼ 1

4

ð1
0

v
�

1ðlÞv
�

2ðlÞ 1

f
�

ðlÞ
dl

(10)

The required warping function g is now computed by solving
for min

g
kq1 � ðq2; gÞkSRSF where the group action is

ðq;gÞ ¼ ðq�gÞ
ffiffiffi
g
�

q
. The warping function g allows us to dene: (i)

the amplitude – that doesn't change with the action of g, (ii) the
phase – that only changes with the action of g. We can now use
g to decompose the function space into the amplitude space
and the phase space and assign separate metrics to compute
relevant distances. The amplitude space will comprise of

“orbits” ½q� ¼ fðq�gÞ
ffiffiffi
g
�

q 			g˛Gg as functions that can be obtained

interchangeably by warping their domain alone.** These orbits
are not vector spaces thus we need to dene a notion of
distance. For any given pair of SRSF's q1, q2 in the amplitude
space, we dene their distance using the orbits as:

daðf1; f2Þ ¼ dð½q1�; ½q2�Þ ¼ inf
g

kq1 � q2
�gk

L
2 (11)

Intuitively, the amplitude distance measures the minimum
distance between two functions aer alignment. The phase
space of the functions is dened by the set of warping functions
G. Phase distance between two functions f1, f2 is equivalent to
function distance between the corresponding warping function
g and the identity warping function g(t) ¼ t, t ˛ [0, 1]. Warping
functions attain a well-known spherical geometry (the innite
dimensional Hilbert spheres LN i.e. points with unit norm in
innite dimensions required to fully represent a function space)
upon representing them using the SRSF transformation i.e.

qgðtÞ ¼
ffiffiffi
g
�

q
ðtÞ (since _g(t) > 0). This is because,

kqgk
L
2 ¼

ð1
0

qg
2ðtÞdt ¼

ð1
0

g
� ðtÞdt ¼ gð1Þ � gð0Þ ¼ 1 (12)

Since qg uniquely maps a given g, we can conclude that
g˛LN with the geodesics given by the great circles LN. Thus the
required phase distance between the functions f1, f2 is given by
arc length of the great circle:

dpðf1; f2Þ ¼ cos�1

ð1

0

ffiffiffi
g
�

q
ðtÞ dt

�
(13)
** Orbits w.r.to the warping function group and its associated action.
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Fig. 3 Comparison of different distance and similarity measures of
Gaussian functions. (left) comparison between function-level mean
squared error and SRSF distance; (right) plot of amplitude–phase
distance that results in a near-convex distance function aiding the
optimization.
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The total (un-weighted) distance between functions f1, f2 can
now be computed using:

dap( f1, f2) ¼ da( f1, f2) + dp( f1, f2) (14)

Using the distance in eqn (14), we can now successfully
differentiate between the solid and dotted black curves in Fig. 2
where both curves have zero amplitude distance to the reference
blue curve but are at a phase distance of 0.55 and 0.62 respec-
tively. We refer to the distance function in eqn (14) as the
amplitude–phase distance to differentiate it from the SRSF
distance function obtained using eqn (5) under the SRSF inner
product in eqn (10) (i.e. dSRSF¼ kf1� f2kSRSF). The SRSF distance
function suffers from a similar problem as that of the L

2

distance and considers both the solid and dotted black curves to
be equidistant at 1.78 units from the solid blue curve. The
effectiveness of shape matching can be inferred from the
distances each metric assigns to f3 relative to f1. We observe that
functions f1, f3 are a very similar to each other as their peaks are
perfectly aligned (at l ¼ �2) but f1 is similar to f0 in shape than
f3. While all the metrics successfully differentiate f1, f3 to be
distinct (see Table 1), the amplitude–phase distance measures
the distance to f3 as 4% longer than f1 which is in agreement
with our intuition while other metrics consider it to be z10%
shorter. The amplitude–phase distance, therefore, is a suitable
measure for shape matching. Note that, alternatively, we can
dene total shape matching distance to be a weighted combi-
nation of da and dp to better capture the retrosynthesis target.
For example, if we want to prioritize matching nanoparticle size
than concentration as our retrosynthesis target, we can weigh
phase distance more to better match the peak position.
2.5 Advantage of SRSF over MSE and other function
distances

MSE or Euclidean distance are commonly used as a measure of
similarity for optimizing spectral data. In this section, we provide
a simple example to demonstrate the advantages of the SRSF
framework over the standard metrics and similarity measures
such asMSE.We rst note thatMSE, and Euclidean distance in n-
dimensions ℝn are identical and require all the functions to have
the same evaluation points in the domain. However, SRSF is
a metric on the vector space of function spaces and can be
computed irrespective of the domain sampling rate used to
represent them. The general SRSF distance based on the metric
Table 1 Comparison of different distance functions on space of
functions given by eqn (8). Functions f1 ¼ f(�2, 0.5), f2 ¼ f(�3, 0.5), f3 ¼
f(�2, 0.8) are compared with different distance functions (or metrics)
along the rows with respect to f0 ¼ f(3, 0.5). The amplitude–phase
distance is the only metric that can differentiate f1, f2 and quantify that
f1 is closer to f0 than f3

Metric/distance function f1 f2 f3

Euclidean ðdℝn Þ 3.34 3.34 3.01
L
2 distance ðd

L
2 Þ 0.34 0.34 0.30

SRSF distance (dSRSF) 1.78 1.78 1.61
Amplitude–phase distance (dap) 0.55 0.62 0.57
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provided in eqn (10) varies smoothly as opposed to MSE that
measures effective “overlap” resulting in numerically-at regions
away from the target spectra as shown in Fig. 3. In Fig. 3, we plot
the distance from a target Gaussian function centered at zero
with a xed variance¼ 0.5 to all other curves with different mean
values on the x-axis. We observe that MSE results in distance
functions with extended at regions in addition to a sharp
minimum also observed with SRSF distance. The amplitude–
phase distance on the other hand results in a distance measure
shown in the right panel of Fig. 3 that monotonically decreases
towards the target. The amplitude–phase distance function is
noisy as the internal working of eqn (14) involves optimizing for g
using a dynamic-programming algorithm.13 The noisy distance
function is not going to be problematic in practice as we use
a surrogate model dened by smooth Gaussian processes for BO
with a Gaussian likelihood noise (see Section 3.1).

Measures of similarity such as MSE, do not perform well in
high-dimensional data sets such as the ones we are interested in
(i.e., spectra or scattering proles), and quantifying the amount of
similarity between two functions using them may not be mean-
ingful. One reason for this is the curse of dimensionality,15 where
trends in data become counter-intuitive as the number of
dimensions increases. One aspect of the curse of dimensionality
is that in higher-dimensional vector spaces, almost all the points
are equidistant thus the notion of similarity is not well dened.
Some of the recent works in machine learning and deep learning
address this problem by formulating learning as a geometric
problem dened by symmetry groups and differential mani-
folds.16 Our current approach for functions belongs to a similar
category where we exploit the underlying symmetries (i.e. invari-
ance of inner-product under domain warping encoded via group
structure on the warping functions) along with their underlying
geometry (given by innite-dimensional Hilbert sphere).

3 Results and discussion

We apply the Bayesian optimization framework for spectra
based retrosynthesis in two different case studies. In the rst
case study, we use simple Gaussian functions as the space of
© 2022 The Author(s). Published by the Royal Society of Chemistry
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spectra to explore and optimize in and compare the perfor-
mance of different distance measures for optimization prob-
lems. We then apply the framework to an experimental
synthesis case study with user-dened UV-Vis spectrum as
a target and again compare the performances of different
metrics. Both the case studies presented here are run in a batch
fashion to account for the optimization of the acquisition
function updates using the stochastic gradient ascent. In both
the case studies, we model the surrogate GP using the
commonly used Matérn Kernel (see ref. 17, ch. 4, p. 84) with the
default hyperparameter priors and optimization algorithms in
the botorch package. The best estimate at any given batch
iteration is obtained by maximizing the surrogate GP which is
equivalent to nding the maximum of trained GP mean func-
tion. We solve the maximization problem with a goal to maxi-
mize the negative distance therefore the similarity to target.
3.1 Case study 1: comparing the performance of MSE and
amplitude–phase distance

In this case study, we compare the performance of the MSE and
our proposed amplitude–phase distance within the BO frame-
work of Section 2.1. We try to optimize the mean m and standard
deviation s parameters of a target Gaussian function using the
BO framework presented in Section 2.1. The Gaussian function
is computed over a uniform interval l ˛ [�5, 5] using eqn (8).
The search space X ¼ m� s is bounded on m ˛ [�5, 5] and s ˛
[0, 1]. We arbitrarily pick a target location in X to be xt ¼ (�2,
0.1) and the spectral target is given by f(l; xt). The goal in this
task is to obtain a x*˛X that results in minimum distance
between f(l; xt) and f(l; x*). In Fig. 4, we plot the optimization
trace with distance between current best estimate x*b at batch
iteration b of the target and the ground truth denoted kx*b � xtk2
on y-axis over the batch iteration number on x-axis. Both the
MSE and amplitude–phase distances start the optimization
process with the same set of randomly selected data and are
allowed a budget of 16 batch iterations with a batch size of 4
samples. The optimization is repeated 10 times each time
starting with different random samples in X . We can observe
Fig. 4 Comparison of MSE and amplitude–phase distance in optimi-
zation. The solid blue line represents the mean trace with variance
across 16 repeats of optimizations each with a random starting point
depicted using shaded blue color. The amplitude–phase distance on
average is 0.1 units better than the MSE.

© 2022 The Author(s). Published by the Royal Society of Chemistry
from the mean trace in Fig. 4 (solid-blue curve) that on average
amplitude–phase distance obtains z0.1 units gain over MSE.
We also observe that MSE provides more noisy estimates of the
best location even towards the end of the campaign (batch
number z10) in comparison to the amplitude–phase distance.
Amplitude–phase distance also converges much faster (batch
number z10) to its best estimate while the MSE has not
converged at the budget expiry. We attribute the success of the
amplitude–phase distance to its convexity as described earlier.
3.2 Case study 2: comparison of similarity metrics for the
retrosynthesis of gold nanorods

In this case study, a high-throughput experimental retrosyn-
thesis campaign of a gold nanorod structure is performed
starting with a target UV-Vis spectra. Retrosynthesis campaigns
were performed in parallel, with a different similarity metric in
a two-dimensional reaction space. We describe and discuss
results for two retrosynthesis campaigns: (a) using the
Euclidean distance between the raw spectra, (b) using the
amplitude–phase distance (eqn (14)). Retrosynthesis campaigns
for two other metrics (peak-wavelength distance and SRSF
distance (eqn (10))) are included in the ESI.† Following the
synthesis procedure described in ref. 18, gold nanorods were
synthesized with ve chemicals: gold(III) chloride trihydrate,
hexadecyltrimethylammonium bromide (CTAB), ascorbic acid
(AA), silver nitrate (AgNO3), and gold seeds. An arbitrary nano-
rod was synthesized by pipetting a pre-specied volume of the
ve solutions and its UV-Vis spectrum was used as the target for
the optimization.

Each optimization had a batch size of 4 samples and the
iterative process continued until a total of 7 batches had been
synthesized. The concentrations of CTAB, gold(III) chloride tri-
hydrate, and gold seeds were kept constant and equal to those
that were used to synthesize the target sample (see the column
target concentration in Table 2). The search space for the
autonomous retrosynthesis is then dened as the two-
dimensional reaction space of the concentrations of silver
nitrate ([AgNO3]) and ascorbic acid ([AA]). An OT2 liquid
handling robot was used to autonomously synthesize the
samples using an in-house developed control soware OT2-
DOE,†† and a Biotek plate reader was used to characterize the
samples using UV-Vis spectroscopy with wavelengths of 400–
900 nm in increments of 5 nm. The samples were made in 96-
well polystyrene microplates, which were heated to around
30 �C during the synthesis using a hot plate. Aer the synthesis,
the samples were kept at the same temperature for 50 minutes,
so that the nanoparticles could fully grow, before being char-
acterized by UV-Vis spectroscopy. All the retrosynthesis
campaigns had identical initial conditions (i.e., the rst batch
had the same concentrations and measured spectra).

Results from the retrosynthesis of gold nanorods using the
amplitude–phase distance are shown in Fig. 5. Each panel in
Fig. 5 represents the surrogate at a particular stage of the
†† https://github.com/pozzo-research-group/OT2-DOE/tree/Shape_
Matching_Paper.
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Table 2 Concentrations and volumes of arbitrary nanorod target

Reagent
Stock solution
concentration (M)

Target concentration
(M) Concentration range (M)

CTAB 2.0 � 10�1 6.40 � 10�2 6.40 � 10�2

Gold(III) chloride trihydrate 1.0 � 10�3 1.96 � 10�4 1.96 � 10�4

Silver nitrate 6.4 � 10�4 6.20 � 10�5 0 to 7.38 � 10�5

Ascorbic acid 6.3 � 10�3 3.60 � 10�4 0 to 7.27 � 10�4

Gold seeds 1.8 � 10�5 1.44 � 10�6 1.44 � 10�6
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optimization (annotated by the iteration) along with the data
the model has ‘seen’ or been trained on. The surrogate is
plotted as continuous contours using the colorbar shown on the
far right in Fig. 5. We obtain a best composition estimate (i.e.
location in the design space whose spectra best matches the
target spectra ut shown in aqua colored star in Fig. 5) in the
design space by querying for the maximum of surrogate
pðyjX;DÞ.

In Fig. 6 we visualize the optimization campaign for a gold
nanorod target structure using a Euclidean distance for spectral
similarity similar to Fig. 5.

As can be seen from Fig. 5 and 6, both the retrosynthesis
campaigns result in a fairly similar approximation to the target
spectra but do so with distinctly different surrogate models at
the end of respective campaigns (see Fig. S2 and S3 in ESI† for
Fig. 5 Optimization trace for a gold nanorod target using the amplitude
plot, data points collected/queried from the experiment in circles, the cu
target using a green-colored star. The x-axis of each plot represents the
concentration of ascorbic acid (M � 10�4). All the compositions are ann
observe gradual changes to the surrogate approximationwith an increase
region with a lot of ‘target-like’ spectra. As argued in the text, the surro
phase diagram of nano-structural geometry obtained from a coarse grid

508 | Digital Discovery, 2022, 1, 502–510
other metrics). To understand which surrogate model better
captures the true shape-based phase diagram of nano-structural
geometries, we performed a coarse grid sampling of the two-
dimensional design space shown in Fig. 7. We observe three
broad classes of nanostructures in the design space X : (a)
nanorods – spanning the upper right corner of X in orange; (b)
nanospheres – spanning le-most part of X in blue and (c)
space with no nanostructures at the bottom in red. Based on the
classes we observe in Fig. 7, we hypothesize that the underlying
phase diagram would be a function (assuming continuous,
mapping concentrations to the type of nano-structure classes
mentioned above) with nearly at regions representing the
three classes. The surrogate model learned during the optimi-
zation campaign should at least identify the critical points/
regions of the phase diagram function in order to provide
–phase distance. Each panel shows the surrogate model as a contour
rrent best estimate using an aqua-colored star, and the retrosynthesis
concentration of silver nitrate (M � 10�5) and the y-axis represents the
otated with the respective spectra obtained from the experiment. We
in data collected and the optimizationmainly focuses on improving the
gate obtained around iteration 6 and 7 appear closer to an underlying
sampling of the design space shown in Fig. 7.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 Optimization trace for a gold nanorod target using a Euclidean distance similar to Fig. 5. As argued in the text, the surrogate obtained from
the optimization is not reflective of the underlying phase diagram in Fig. 7 although the target approximation is relatively similar to that of the
amplitude–phase distance.
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trustworthy approximations of the retro-synthesized target.
Based on our observations in Fig. 7, for a nanorod target, we
note that the surrogate obtained from amplitude–phase
distance is a better representation of the underlying phase
diagram as it clearly identies that the top right corner of X to
contain nanorods with minimal changes to similarity w.r.to
target spectra. In contrast, the surrogate from Euclidean
Fig. 7 Spectra obtained from a coarse grid sampling of the two-
dimensional design space in Table 2. Observe that the space is
continuous in terms of nano-structural geometries with three broad
classes: no nano-structures (red), nanospheres (blue), and nanorods
(green). Retrosynthesis target spectrum location is highlighted with
a black cross mark.

© 2022 The Author(s). Published by the Royal Society of Chemistry
distance has a sharp peak near the best estimate followed by
a sharp decrease in the space comprising only nanorods effec-
tively only capturing similarity closer to the target not anywhere
else. This does not capture the underlying phase diagram
structure in terms of at regions and the nature of function
transitions, but it may indicate that the Euclidean distance
metric is suitable when differentiating between structures of the
same class (e.g., nanorods). We also observe that BO with
Euclidean distance metric prioritizes exploitation, as seen by
a high number of samples near the target in iteration 7 of Fig. 6,
while the one using amplitude–phase prioritizes exploration, as
seen by the more dispersed samples in iteration 7 of Fig. 5.
Moreover, the Euclidean distance surrogate is highly dependent
on samples collected during the exploration phase being close
to the target as the true function approximation has a sharp
peak that needs to be modeled by the surrogate for the opti-
mization to nd the true global maximum.
4 Conclusion

In this paper, we introduced a practical framework for autono-
mous retrosynthesis of nanoscale structures using a combination
of Bayesian optimization and Riemannian geometry. Our frame-
work is designed for structure optimization using spectral data
such as optical extinction, scattering as structural proxies. We
proposed a differential geometry-based approach for analyzing
and comparing spectral data that result in a near-convex function
to be optimized and outperforms the commonly used similarities
Digital Discovery, 2022, 1, 502–510 | 509
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measures (MSE) and distances (Euclidean). The proposed use of
amplitude–phase distance allows us to run material retrosyn-
thesis campaigns to match the shape of spectra as opposed to
matching expert-dened or hand-engineered features. We antic-
ipate that the generic framework proposed in this paper would
provide a powerful framework to optimize over complex synthesis
spaces and spectral characterization beyond the case studies
presented here. Specically, we anticipate that this approach
would be useful in optimizing for spectra where the scientically
interesting features are complex, occurring over a span of the
domain (e.g.: small-angle X-ray scattering) as opposed to point-
wise (such as peak intensity or position) or when the spectra are
closed curves (e.g.: cyclic voltammetry).

Data availability

All the data and code to reproduce the case studies presented in
this paper is available at https://github.com/pozzo-research-
group/HEAD/tree/BO. We use botorch19 for Bayesian
optimization routines, GPyTorch20 for Gaussian processes,
geomstats21 and fdasrsf22 for differential geometry based
computation. All the code is implemented in python with
reliance on numpy,23 scipy24 for numerical computing and
matplotlib25 for plotting routines.
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