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t computational screening of
nanoporous materials in targeted applications

Emmanuel Ren, ab Philippe Guilbaud b and François-Xavier Coudert *a

Due to their chemical and structural diversity, nanoporous materials can be used in a wide variety of

applications, including fluid separation, gas storage, heterogeneous catalysis, drug delivery, etc. Given

the large and rapidly increasing number of known nanoporous materials, and the even bigger number of

hypothetical structures, computational screening is an efficient method to find the current best-

performing materials and to guide the design of future materials. This review highlights the potential of

high-throughput computational screenings in various applications. The achievements and the challenges

associated to the screening of several material properties are discussed to give a broader perspective on

the future of the field.
1 Introduction

Nanoporous materials are characterised by a high internal
surface area on which a large number of molecules can physi-
cally or chemically adsorb on. They can thus be used in various
key sectors of the industry, such as gas separation and capture,1

storage,2 heterogeneous catalysis3,4 or drug delivery.5,6 Among
notable examples we can cite H2 and CH4 purication and
storage, CO2 capture, CO removal for fuel cell technology,
desulfurisation of transportation fuels, and other technologies
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for meeting increasingly higher environmental standards.
Moreover, nanoporous materials can have different chemical
natures (inorganic, organic, or hybrid) and porosity (macro-
porous, mesoporous, or microporous). This opens up a large
space of possible properties to explore and to nd the most
suitable structure for each specic application.

Nanoporous materials can be used in a very wide range of
applications, but systematically identifying the best material
may seem like searching for a needle in a haystack. In fact,
hundreds of thousands structures have been synthesised and
possibly millions of materials are yet to be studied. A purely
experimental approach, in addition to be expensive and time-
consuming, would never be exhaustive to screen all these
structurally and chemically diverse materials. Beyond this
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Fig. 1 Number of scientific publications per year for computational
screening of nanoporous materials, from 2008 to 2021, highlighting
the acceleration of research in this area in the past decade (data from
Scopus). Over the same period of time, the total number of articles
published in chemistry and materials sciences has grown from
356 000 to 602 000.
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experimental limitation, large-scale computational screening
studies can enable a more in-depth exploration of the existing
materials, as well as generate novel hypothetical structures with
potentially better performance. Even if the idea of this thorough
exploration and the required databases of computationally-
generated or experimentally-sourced structures were known
for a very long time,7–9 research interest on computational
screening applied to nanoporous materials has just experienced
a rapid growth in the last decade (see Fig. 1). Several factors can
explain this recent expansion: (1) the emergence of open data-
bases of material structures and properties has opened the
access for a growing number of scientists;10–14 (2) the advances
in the in silico construction of hypothetical nanoporous mate-
rials have created new datasets to explore;15–17 (3) efficiently
implemented open-source soware have granted access to
simulation tools for a much larger research community;18,19 (4)
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increasingly efficient supercomputers are now more and more
available;20 (5) text and data mining have generated new data-
bases of unreported properties from existing literature;21,22 (6)
and the size of screenable databases have been increased by
several orders of magnitude thanks to articial intelligence
techniques.23–26

Given the aforementioned scientic advances, computa-
tional screening, that was commonly used on small series of
materials, began to be used on larger databases to identify top
performing candidates, to better understand the main explan-
atory factors at the origin of the performance and to objectively
set theoretical performance limits for a given application.
Borrowing some techniques from the new eld of data science,
screening techniques are now applied to predict key perfor-
mance indicators. These gures of merit are related to a variety
of material properties such as electronic structure,27–29 chemical
and catalytic activity,30–32 thermal properties,33–35 mechanical
properties,36,37 transport and thermodynamic properties for
adsorption.38–41

The present work is by no mean an exhaustive review of all
the works on the subject, but it aims at giving nonspecialist
readers a high-level overview of the potential of computational
screening in a large variety of applications, and of the diversity
of the different approaches used in this eld of research. First,
a brief survey of the development of materials databases and
screening methodologies is given along with some examples
illustrating the major milestones. Then, the thermodynamic
properties linked to the adsorption processes are thoroughly
reviewed; before moving to kinetic effects, looking at the
prediction of transport properties. Finally, other aspects that
differ from the adsorption process such as the computational
screening of mechanical, thermal and catalytic properties are
described at the end. We conclude by outlining some of the
perspectives of the eld.

2 Screening methodologies
2.1 Nanoporous material databases

Before building any screening strategy or performing any
computational screening, one needs to generate a set of les
describing the atomic structure of the materials. Nanoporous
materials can have different degrees of crystallinity from
perfectly crystalline to completely amorphous. Most of the
computational work is focused on crystalline structures, since
the atoms are well-described within a periodic framework,
which enables faster simulations. The presence of defects are
also usually neglected, which could explain some of the
discrepancies between simulations and experiments. And
amorphous materials are described by thousands of atomic
positions in order to grasp their intrinsic non-periodicity.44 One
can distinguish roughly four main classes of crystalline nano-
porous materials: the inorganic zeolites (e.g. aluminosilicates,
aluminophosphates), the porous polymer networks, the cova-
lent organic frameworks (COFs) and the metal–organic frame-
works (containing the zeolitic imidazolate frameworks i.e. ZIFs
and others). This diversity of nanoporous materials offer a wide
range of potential candidates for any targeted applications.
© 2022 The Author(s). Published by the Royal Society of Chemistry
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The International Zeolite Association (IZA) gave a stand-
ardised set of 244 zeolites (in their idealized all-silica form) that
can be used for screening purposes. To generate a dataset of
structures, existing experimental database like the Cambridge
Structural Database can be exploited. However, the raw struc-
tures determined experimentally by X-ray cannot be used directly
as is. To obtain a computation-ready dataset, Chung et al. used
algorithmic cleaning procedures to build the publicly available
Computation-Ready Experimental MOF (CoRE MOF) data-
base.45,46 CoREMOF 2019 contains about 14 000 MOF structures,
which is the biggest experimental database. Similar approach
applied to organic frameworks led to the construction of a set of
187 COFs with disorder-free and solvent-free structures.47,48

These experiment-based databases can already be used in
computational screenings to retrieve valuable information, but
unknown structures that are yet to be discovered are not rep-
resented. To overcome the limits and biases of experimental
synthesis, articial ways of generating nanoporous material
datasets can be used, which proved to be extremely efficient.
The rst in silico generated database of about 130 000 MOFs
used a recursion-based assembly (or tinkertoy-like) algorithm to
combine 102 building blocks.41 Martin and Haranczyk then
proposed a topology-specic structure assembly algorithm that
leverage the topological information of the structures.49

Inspired by this algorithm, topology-based databases emerged
a few years later with the set of 13 000MOF structures generated
using the Topologically Based Crystal Constructor (ToBaCCo)
algorithm developed by Colon, Gómez-Gualdrón and Snurr.50

Later, Boyd and Woo proposed another topology-based algo-
rithm using a graph theoretical approach and generated
a 300 000 structures database (BW-DB) based on 46 different
network topologies.51 Similar approaches are used for other
classes of materials, Deem and coworkers proposed a dataset of
nearly 2.6 million hypothetical zeolite structures.52–54 However,
one could wonder if these hypothetical structures are synthe-
sisable and can remain stable under operational conditions (e.g.
thermal, mechanical, radioactive constraints). To discuss their
synthetic likelihood, Anderson and Gómez-Gualdrón computed
the free energies of 8500 hypothetical structures and compared
them to experimentally observed MOF structures.55 This type of
prediction can be very useful as it enables to gauge the relative
stability of each materials and to only consider the stable
structures. Later, Nandy et al. performed a meta-analysis of
thousands of articles associated to the CoRE MOF 2019 data-
base to extract their experimental solvent-removal stability and
thermal decomposition temperature.150 These data were then
leveraged in the training of multiple ML models to predict
stability; such predictions can be very useful to gauge the rela-
tive stability of each material and to restrict screening to only
structures considered experimentally stable. Other types of
materials have been explored, Turcani et al. published 60 000
organic cage structures and used machine learning to predict
their stability based on the shape persistence metric.56

The Materials Genome Initiative, a 100 million dollar effort
from the White House that aims to “discover, develop, and
deploy new materials twice as fast”, led to the creation of the
“Materials Project”, a centralised database containing all the
© 2022 The Author(s). Published by the Royal Society of Chemistry
above mentioned structures.57–59 The fast development of this
nanoporous materials genome motivated Boyd et al. to write
a comprehensive review on all the initiatives on generating new
data for computational analysis.60

Yet, the sole increase in size of the databases is not enough.
One needs to add diversity to have more general knowledge on
the maximum performance and the explanatory features of
such performance. Moreover, the diversity of structures ensure
the quality of the predicted best materials for a given applica-
tion. To qualitatively or quantitatively assess the diversity of
a database, inventive methodologies have been developed. For
instance, Martin, Smit and Haranczyk proposed a Voronoi
hologram representation as a way of measuring similarities
between structures to generate geometrically diverse subsets of
a database.61 Moosavi et al. made a comparative study of the
diversity of three well-known databases CoRE MOF 2019,46 BW-
DB51 and ToBaCCo50,62 using geometrical and chemical
descriptors to design a theoretical strategy for generating the
most diverse set of materials.63 Another approach consists in
searching for similarities instead of differences in the materials
by studying topological patterns in the data.64 These investiga-
tions on the data structures give a solid ground to develop novel
materials by objectively dening similarity, diversity and
novelty. From the analysis gathered so far, one would need to
radically change the approach by proposing materials with new
chemistry, topology or mechanism (e.g. exibility) in order to
signicantly improve the diversity of the current databases.
2.2 Evolution of screening methods

In its early stage, computational screening has been used on
small series of nanoporous materials to generate specic
knowledge on some sub-classes of materials. These small-scale
screenings combined with experiments helped faster identi-
cation of good performing candidates, but they failed to
establish general rules of design or to explore the unknown.
Larger-scale screenings overcame these limitations by trying to
exhaustively cover the whole spectrum of nanoporousmaterials.

With the development of a nanoporous materials genome,
several articles proposed methods to screen thousands of struc-
tures. Other challenges arose, such as the design of more efficient
methods than the brute force screening or the analysis of big
data. Two research groups led by R. Snurr and J. Hupp began to
address those questions, they used a “funnel-like” approach to
efficiently screen about 130 000 hypothetical MOF structures.41

To do so, they performed a rst screening involving less steps of
simulation on the whole dataset, then they extracted a subset of
top performing structures to perform a second round with more
simulation steps. This procedure is repeated until a few materials
are selected by a nal round of simulations with reasonable
accuracy. Similar “funnel-like” procedures have then been used
in other eld of applications as described in the Fig. 2. This type
of screening saves precious computation time by balancing the
complexity of the calculation with the amount of data to be
screened. The most demanding simulations or experiments are
only applied to the few most promising structures. This method
can rather efficiently identify top candidates, but it can't draw
Digital Discovery, 2022, 1, 355–374 | 357
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Fig. 2 Simplified representation of typical funnel-type screening procedures, exemplified on three different applications from the published
literature. (a) Wilmer et al.41 used a series of bi-component Grand Canonical Monte Carlo (GCMC) calculations at different levels of complexity to
screen a large dataset of hypothetical MOFs for methane storage application. (b) Yang et al.42 used simulations at infinite dilution to pre-screen
the dataset before using computationally demanding simulations and multiple metrics to find the most promising ZIFs for carbon capture. (c) In
Qiao et al.,43 transport properties were screened along standard adsorption properties to find the best materials for the targeted CO2/N2/CH4

ternary separation; similarly, cheaper calculations at infinite dilution were carried out in a first step, before using more expensive calculations at
working pressure and temperature.
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quantitative structure–property relationships (QSPR), beside
facing scalability issues above a critical dataset size.

To overcome these new challenges, people are looking
increasingly towards transferable models trained by a machine
learning (ML) algorithm on a diverse and size-limited sub-
sample. Ideally, such a model is transferable to potentially
millions of structures and can provide valuable QSPR. For
instance, Fernandez et al.65 used multiple linear regression
analysis, decision tree regression, and nonlinear support-vector
machine models to extract QSPR and establish rules of
designing well-performing MOFs for methane storage, while
identifying promising structures. In this rst work they only
used geometrical descriptors to describe methane storage,65 but
realising the importance of chemical descriptors, they proposed
the atomic property weighted radial distribution function as
a powerful descriptor to predict CO2 uptakes.66 More impor-
tantly, they proved that ML can be used as a pre-screening tool
to avoid running time-costly simulations by correctly identi-
fying around 95% of the top 1000 best performing materials.
Recently, the same group used similar techniques to predict
CO2 working capacity as well as CO2/H2 selectivity in MOFs for
precombustion carbon capture.67
2.3 ML-assisted high-throughput screening

We saw the use of ML in the comprehension of the structure–
property relationships, but it can also assist high-throughput
358 | Digital Discovery, 2022, 1, 355–374
screenings as illustrated in the Fig. 3. In an ML-assisted
screening, one needs to consider rst the type of algorithm
and the features or descriptors. The descriptors exhaustively
describe the physicochemical properties, while the ML algo-
rithms set rules for learning patterns in the data. At the end, the
ML model needs to be predictive while maintaining a high level
of interpretability68 and reproducibility.69 To illustrate this
approach, a few studies of such ML-assisted high-throughput
screenings and their particular contributions to the eld are
presented below.

Regarding energy descriptors, different ones can be used
alongside the most basic geometrical ones. For instance, Simon
et al. introduced the Voronoi energy, combined with structural
descriptors they used them to predict Xe/Kr selectivity of over
600 000 structures using a random forest model.70 Bucior et al.
also used an energy-based descriptor, the energy histogram, to
predict the cryogenic storage capacity of hydrogen three times
faster than traditional simulations.71

Descriptors based on the analysis of data have also been
studied and enable to nd similarly performing materials.
Based on advanced knowledge on mathematics and topology,
Lee et al. used a topological data analysis-based descriptor,
called persistent homology and resembling barcodes, to screen
a zeolite database for methane storage and carbon capture
applications.72 Later, Yongjin Lee led his group to propose an
ML prediction method using the same pore geometry
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Schematic representation of the main subjects typically covered as part of an ML-assisted high-throughput screening procedures. First,
one needs to train an machine learning (ML) model and analyse its performance on an independent subset of the data. Then, one can use the
model to quantitatively extract structure–property relationships. Finally, once proven accurate, the model can be used on a larger scale to
accelerate screening procedures.
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barcodes.29 More recently, Moosavi et al. built geometric land-
scapes, a representation for energy-structure–function maps
based on geometric similarity, quantied by persistent
homology.73

To model the chemical behaviour of materials, one devel-
oped several chemical descriptors. In particular, Borboudakis
et al. introduced the chemical building block as a feature or
descriptor of their ML models. In their study, they integrated all
the models into a unied algorithm called “Just Add Data” and
concluded that random forest and support vector machine were
outperforming the other algorithms they tested.74 Recently, the
same group continued on providing a universal (transferable on
different materials) ML algorithm by using the type of atom
instead of the previous building block description, which led to
an increased performance on the prediction of methane and
carbon dioxide adsorption capacities.75 Anderson et al. used the
chemical building blocks of the MOF and the Lennard–Jones
parameters of existing or “alchemical” adsorbates to train
a neural network model for adsorption isotherms prediction.76

Through the scope of different types of descriptors, we
introduced some ML-assisted approach to computational
screenings. Fig. 3 gives a higher-level view on how machine
learning is practically applied. One can nd a more compre-
hensive review on big-data science applied to porous materials
written by Jablonka et al.77 The authors go through the selection
of diverse data, the design of meaningful descriptors, ML
algorithms, the best practices in the training process of an ML
© 2022 The Author(s). Published by the Royal Society of Chemistry
model, the measurement of its performance and the interpre-
tation of the model to avoid the “black box” effect.

Beyond the reluctance to apply data science to fundamental
sciences, one should not associate machine learning with the
“end of theory”; physicochemical theories can guide the devel-
opment of the descriptors at the base of any MLmodels and the
interpretation of these models is impossible without scientic
insights. The laws of physics are not explicitly included in an
ML model, interpretability and exploitability methods can help
cover these aws by identifying potential nonphysical behav-
iours, or conrming its consistency in describing known phys-
ical behaviours, or unveiling unexpected scientic insights.68 If
the model fails to meet some standards, further developments
are needed for the descriptors to contain all relevant informa-
tion, or to draw a more consistent relationship between the
descriptors and the desired metric. Without a well-designed
(containing all physical information) set of descriptors, an ML
approach cannot make reliable predictions. The recent devel-
opments presented here are conrming this close interplay
between data science and theory.
3 Thermodynamic properties of
adsorption

In its early development, computational screening was mainly
used to predict thermodynamic properties in adsorption
processes. Three main applications have been identied in the
Digital Discovery, 2022, 1, 355–374 | 359
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associated literature: gas storage (for energy or medical appli-
cations), gas separation (noble gas, hydrocarbons, carbon
dioxide, etc.) and post-combustion CO2 capture. These appli-
cations are closely linked to urgent environmental and energy
issues that are yet to be solved. Screening can guide the devel-
opment of better performing materials by shedding light upon
unknown structure–property relationship, probes possible
theoretical limitations (unreachable targets) and identies
potential candidates that need to be experimentally tested.
Fig. 4 Two-dimensional response surfaces of the support vector
machine (SVM)models trained by Fernandez et al. for methane storage
at (A) 35 bar and (B) 100 bar using void fraction and dominant pore size.
The blue dots represent the GCMC simulated uptake values. The color
of the surface represents themethane storage value, from blue (lowest
values) to red (highest values). Blue and red arrows indicate maxima on
the response surface. Reprinted with permission from ref. 65. Copy-
right 2013 American Chemical Society.
3.1 Gas storage

One can leverage the high surface density of the nanoporous
materials, especially the MOFs, to stock in very low-density gas.
In the eld of energy storage or transportation, natural gas
(mainly methane) or hydrogen are considered plausible alter-
native fuels to replace conventional ones for transport. The US
Department of Energy (US DOE) recently nanced research
programs and set target for methane and hydrogen storage.
Nanoporous materials could reduce energy, infrastructure and
security cost due to the required compression and cooling. In
this section, we are focusing on high-throughput screening for
methane storage in nanoporous materials, before broadening
the scope hydrogen and other perspectives.

One of the pioneering works in computational screening was
published in 2011 by Wilmer et al.41 They performed a large-
scale screening of 137 953 hypothetical MOF structures to
estimate the methane storage capacity of each MOF at 35 bar
and 298 K based on the US DOE standards. Back then, the US
DOE set a target methane capacity value of 180 volSTP

�1 (which
has since been achieved by several materials reported in the
literature). In their large-scale analysis, Wilmer et al. found over
300 hypothetical MOFs that meet the targeted requirements
and the best one can store up to 267 volSTP

�1, surpassing the
state-of-the-art of the time. From their large dataset, a prelimi-
nary structure–property relationship analysis revealed that void
fraction values of approximately 0.8 and gravimetric surface
areas in a range 2500–3000 m2 g�1 resulted in the highest
methane capacities. Optimal pore size are also shown to be
around the size of one or two methane molecule(s). Max-
imisation of gravimetric surface area was a common strategy in
the MOF design for storage applications, but this study showed
the existence of an optimal range of surface area values.
Computational screenings can draw clear relationships
between structural descriptors and performance. Later, a more
quantitative relationship was drawn by Fernandez et al. using
ML models as illustrated on Fig. 4. Beware not to over-interpret
the relation given by the response surface, since the identied
maxima do not always have a physical reality, especially where
there is no training data in the area pointed by the red arrows.
However, it highlights promising unexplored feature space and
shows potential research directions.

Since then new materials above the target have been found
and the US DOE decided to set a higher target of 315 volSTP�1.
Until now, this new target is not yet reached. This is why the
recent developments have focused on assessing the feasibility of
such a target by accelerating the screening methods so that
360 | Digital Discovery, 2022, 1, 355–374
more data can be screened, and by interpreting the QSPR
models to extract important knowledge for the design of novel
materials. For instance, Gómez-Gualdrón et al. showed that
even by articially quadrupling the Lennard–Jones interaction
factor 3 and by increasing the delivery temperature by 100 K, the
newly set target is only reached by a handful of MOFs.78 This
study suggests the impossibility to reach the DOE target using
a preconceived (experimentally or theoretically) material to
store methane. However, this theoretical limitation can be
overcome by increasing the surface density of sites with high
affinity with methane and by increasing the delivery
temperature.

Later, a larger-scale screening on methane storage was
carried out by Simon et al. on 650 000 experimental and hypo-
thetical structures of zeolites, MOFs, and PPNs. This study
conrmed that the classes of materials currently being investi-
gated were unlikely to meet the new target. The authors sug-
gested that it wasn't surprising since the target was based on
© 2022 The Author(s). Published by the Royal Society of Chemistry
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economical arguments, while the screening is based on ther-
modynamic arguments.79 This example illustrates the power of
large scale screening to settle questions of physical feasibility (if
simulations are accurate) and hence avoiding experimental
efforts spent on impossible tasks.

More recently, a dataset containing trillions of hypothetical
MOFs have been screened for methane storage.80 Lee et al.
developed a methodology using machine learning combined
with genetic algorithm to perform the largest screening until
now. In addition to conrming most of the results (theoretical
limits and QSPR) found by previous screenings, 96 MOFs were
found to outperform the current world record. This study shows
the scaling potential of ML-assisted screenings in handling “Big
data”.

Similarly computational high-throughput screenings have
been applied to other storage applications such as hydrogen
storage. Computational screenings showed that cryogenic
storage of hydrogen can meet the DOE target of 50 g L�1.62,81,82

Anderson et al. performed a large scale screening based on
neural networks to test out multiple pressure/temperature
swing conditions to nd that the maximal deliverable capacity
cannot exceed 62 g L�1.83 Compared to the density of liquid
hydrogen (72 g L�1), this upper limit seems reasonable since the
adsorbent material takes at least 10–20% of the tank. Here, we
only showed some agship results of the eld. For a more
detailed meta-analysis, Bobbitt and Snurr wrote a very complete
review on computational high-throughput screening of MOFs
for hydrogen storage.84
3.2 Gas separation

As a representative example of what could be done in the eld of
gas separation, we are going to focus on Xe/Kr separation. These
noble gases have multiple applications in the medical (e.g.
anaesthesia, painkiller),85,86 aeronautical87,88 or lighting
sectors,89,90 just to cite a few. The industry more commonly uses
cryogenic distillation to separate xenon and krypton from the
ambient air, which requires a compression and cooling of the
gas mixture. But this technology can laboriously be deployed in
very security-sensitive cases such as the treatment of radioactive
off-gases from nuclear plants. Nanoporous materials can be
used as a safer, cheaper and less energy-intensive alternative.
Computational screenings is an ideal tool to kick-start the
development of this new technology by identifying rapidly the
best candidates.

The rst large-scale computational screening on Xe/Kr
adsorption-based was performed by Sikora et al. based on the
same approach previously developed for methane storage by
their group at the Northwestern University.91 This study was
based on the same 137 000 structures of hypothetical MOFs.41

They calculated the Xe/Kr selectivity using Monte Carlo molec-
ular simulations on the whole database by iteratively increasing
the number of steps and selecting the best materials similar to
the approach on Fig. 2. By analysing the relationships between
pore sizes and selectivity, they conrmed a hypothesis from
a smaller scale study that the pores should be between the size
of 1 to 2 xenon molecules.92 Tube-like channel were also found
© 2022 The Author(s). Published by the Royal Society of Chemistry
to favour better selectivity. Moreover, they found that top per-
forming materials could have selectivities around 500; but we
can only conclude on the order of magnitude of the theoretical
limitation of the Xe/Kr selectivity, considering the statistical
uncertainty of the simulation.

Seizing the opportunity of a formidable expansion of the
nanoporous materials database triggered by the Materials
Genome Initiative, Simon et al. screened 670 000 experimental
and hypothetical nanoporous material structures for Xe/Kr
separation.70 It is one of the largest-scale screening performed
in this area. Inspired by the work of Fernandez and co-
workers,65 they used ML algorithms to train a model on
a diverse subset of 15 000 structures. This method allowed them
to run time-consuming molecular simulations only on this
training set, before applying the ML model to predict the
selectivity values on the larger set of structures. On top of ana-
lysing the links between pore descriptors and selectivity, they
rationalised it using theoretical pore models of spherical and
cylindrical geometries to conrm the ndings of Snurr and co-
workers.91,92 By comparing the structural descriptors of good-
performing and bad-performing structures, they concluded
that geometrical descriptors wasn't enough to explain the
performance (see Fig. 5). The analysis of a few top candidates
suggests that different chemical insights could explain their
good performance. For SBMOF-1 or KAXQIL,93 an experimental
MOF, its higher performance was explained by the tube-like 1D
channel with a very favourable binding site formed by carbon
aromatic rings. This nanoporous material was later tested using
breakthrough experiments and proved to be one of the most
promising candidates.94 This close collaboration between
computation and experimentation is a testimony of the poten-
tial of computational screenings to nd nanoporous materials
for any targeted application.

The experimental work on Xe/Kr separation on SBMOF-1
revealed discrepancies between the selectivity values obtained
experimentally and computationally.94 The assumption of rigid
crystal structures in the molecular simulations could partially
explain the difference observed. Witman et al. proposed that the
exibility of the materials, that weren't considered in the
screening of Simon et al., could explain the lower selectivity
observed experimentally.95 In this study, they screened the
Henry regime separation of about 4000 MOF structures of the
CoRE MOF 2014 database,45 and found that intrinsic exibility,
i.e. the thermal vibration of the material, can make the pore size
derive from the ideal value for the separation and hence lower
the selectivity. This study further conrms the importance of
the pore size by highlighting the effect of its evolution over time.

In 2019, Chung et al. screened the most extensive
simulation-ready and experimentally synthesised MOF struc-
tures for Xe/Kr separation.46 This study pointed out the poten-
tial of coordinated solvent molecules to ne-tune the selectivity
for any separation application, since their presence can
enhance selectivity in some cases. The results of their screening
conrms the potential of structures such as SBMOF-1 found by
Simon et al., but they also described a few structures with
similar selectivity but with better xenon uptake. The authors
emphasise the importance of considering other gures of merit
Digital Discovery, 2022, 1, 355–374 | 361
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Fig. 5 Statistical analysis of the adsorptive separation of xenon/krypton mixtures by nanoporous materials. The graphs represent the distri-
butions of structural descriptors explored by highly selective (green) and poorly selective (red) materials separately. Reprinted with permission
from ref. 70. Copyright 2015 American Chemical Society.
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such as the adsorption capacity. Other factors should be taken
into account to nd the best trade-off between all the relevant
gures of merit; we could think of the kinetics of such a sepa-
ration, the effect of exibility on the performance, the stability
of the materials (especially in radioactive environment), the
nancial aspects, and more. Some of these aspects will be
tackled in the following sections of this review.

Beside noble gas separation, carbon capture could benet
greatly from the use of nanoporous materials and we can nd
extensive literature on computational screening targeting this
application.42,96–100 Findley and Sholl performed a screening of
CoRE MOF 2014 to nd the best structures for CO2 capture in
humid conditions.101 Aer nding candidates, they performed
quantum calculations but found that the classical methods with
generic force elds overestimated the performance, high-
lighting the limits of the methodology. For a more in depth
362 | Digital Discovery, 2022, 1, 355–374
review on separation, Daglar and Kaskin described the recent
development of high-throughput screening focusing mainly on
CO2 separation from methane of diazote.102

4 Transport properties

In the previous section, the thermodynamic properties only
described the state of equilibrium of the adsorption process.
But sometimes the transient state can last long before reaching
the equilibrium, which makes the process more time-
consuming. Thus, the transport properties complete the ther-
modynamic description of the adsorption process inside
a nanoporous material. For example, a low diffusion rate would
mean for storage applications more time and energy needed to
ll-up the tanks, or for separation applications a less selective
process than expected. In more extreme cases of molecular
© 2022 The Author(s). Published by the Royal Society of Chemistry
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sieves for uid separation, the transport properties become
predominant to assess the performance. One can leverage the
difference of the molecules diffusion coefficients to selectively
lter gas mixtures through a nanoporous membrane.103 Here,
the main subject becomes the transient state and not the
equilibrium. This section is thus dedicated to the kinetics of the
adsorption process to better model the time required to reach
the equilibrium or to study out-of-equilibrium processes such
as molecular sieving by nanoporous membranes.
4.1 Diffusion calculation to model the kinetics of adsorption

In most computational screenings, the diffusion coefficient
considered is the self-diffusion coefficient that describes an
innite-dilution case. Other multi-component diffusion coeffi-
cients could be considered, but for simplicity and clarity they
won't be mentioned in this review. The calculation of the self-
diffusion coefficient gives a rst estimation of the kinetics in
a storage or a separation process in the limit of low adsorption
loading.

There are two approaches to estimate the diffusion inside
a porous material: the rst one relies on molecular dynamics
(MD) and the second one on transition state theories. In the rst
approach, one analyses the mean squared displacement of the
adsorbed molecule moving in the material. In the second, one
identies minimum energy path along the material to identify
transition states (TS) to calculate diffusion energy barriers. The
MD-based method requires fewer assumptions and is therefore
more reliable than the TS-based method, but the latter is
computationally more efficient in the case of low diffusion rate
(diffusivity lower than 10�11 m2 s�1).

State-of-the-art MD simulations could calculate rather accu-
rate diffusion coefficients, but the computational cost scales
quickly with the number of structures. To use this method on
a large dataset without spending to much computation time,
Watanabe and Sholl pre-screened the pore sizes of 1163 MOFs
to select only the structures within a certain range of PLD (pore
limiting diameters).38 A restricted list of 359 MOFs was then
used to carry out MD simulations to calculate diffusion coeffi-
cients. The results of this nal screening are then used to extract
the most promising structures for further experimental or
computational investigation. Similarly, Qiao et al. used a multi-
stage screening to nd the best membrane-material within
about 130 000 hypothetical MOFs for a CO2/N2/CH4 separa-
tion.43 They started to select materials based on pore geometry
analysis; then they calculated Henry's coefficient and diffusion
coefficients at innite dilution; nally they compared the binary
permselectivitys to extract 24 promising MOFs for ternary
adsorption and diffusion calculation at the desired pressure
and temperature conditions.

Another approach replaces MD simulations with more
computationally efficient TS-based methods to determine
diffusion coefficients. Haldoupis et al. developed an algorithm
to identify diffusion paths by exploiting an energy grid with
a clustering algorithm. The diffusion paths are then analysed to
identify the pores and the channels, and to calculate key
geometric (PLD, largest cavity diameter) and energetic (Henry's
© 2022 The Author(s). Published by the Royal Society of Chemistry
constant, diffusion activation energy) features.104 As repre-
sented in see Fig. 6, they found a clear dependence of the
diffusion energy barrier to the PLD. As one of the rst TS-based
screenings, it is still subject to many development perspectives.
For instance, the approach is limited to spherical adsorbates
and rigid frameworks. Moreover, the diffusion coefficients are
approximated using a simplistic hopping model for a qualita-
tive analysis. This method is highly efficient, but the accumu-
lation of approximations makes a quantitative systematic
analysis of diffusion coefficients out of reach.

Later, Kim et al. introduced a ood ll algorithm to obtain all
the points within a given energy.105 These points are then
identied as channels or blocked regions. Along the channels,
local minimums of energy are dened as lattice sites and
transition states are dened perpendicular to the diffusion
direction. A random walk is then computed along the lattice
sites with hop-rates dened according to the activation energy.
A diffusion coefficient is then calculated in each three direc-
tions of the space and an average diffusion coefficients is nally
determined. A comparison with the MD method on the IZA
zeolite structures shows good agreement, but there are still
some discrepancies explained by correlated hops in the case of
rapid diffusion or by the presence of complicated channel
proles. Inspired by this work, Mace et al. developed a similar
method that progressively ll the energy grid to detect transi-
tion states, hence removing the previous restriction to orthog-
onal cells only.106 The diffusion coefficient is now computed
using a kinetic Monte Carlo simulation allowing the adsorbate
to jump freely in all directions instead of restricting it in a single
dimension. This new method, called TuTraSt, handles very
complex diffusion paths (like in the AEI zeolite). This new
approach seems to be promising as it is in good agreement with
MD simulations, while being 2–3 orders of magnitude faster.
However, the time performance could improve tremendously by
translating it from Matlab to C++ and by implementing paral-
lelisation procedures.

Very recently a massively parallel GPU-accelerated string
method has been implemented and shared publicly to compute
very efficiently diffusion coefficients based on the transition
state theory.107 The recent developments in the prediction of
diffusion coefficients in nanoporous materials point towards
a promising future for the screening of transport properties
applied to even larger databases. Going further, Bukowski et al.
reviewed thoroughly diffusion in nanoporous solids as an
attempt to connect theory to experiments.108
4.2 Membrane materials for gas separation

In separation application, the study of the transport properties
can evaluate the feasibility of the thermodynamic equilibrium,
crucial for any bed separation process. If this separation is not
feasible, kinetic separation or partial molecular sieving are to be
considered. Some notable examples are: air separation in
zeolites using pressure swing adsorption,109 N2/O2 separation in
carbonmolecular sieves,110 or N2 removal from natural gas.111 In
kinetic separation, the valuable metric is not the selectivity
anymore, but the permselectivity, i.e. the product of the
Digital Discovery, 2022, 1, 355–374 | 363
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Fig. 6 Calculated energy barrier for the diffusion of CH4 in 216 metal–organic frameworks (MOFs), shown as a function of the pore-limiting
diameter. The solid lines represents statistical upper and lower bounds on the energy barrier, in a transition state theory approach. Reprinted with
permission from ref. 104. Copyright 2010 American Chemical Society.

Fig. 7 Selectivity and permeability of metal–organic framework (MOF)
membranes for CO2/CH4 separation, computed at infinite dilution by
combining Grand Canonical Monte Carlo and molecular dynamics
simulations.114 The black solid line represents the Robeson's upper
bound.112,117 MOFs that can exceed the bound are shown in blue, and
the 8 top-performing MOF membranes are shown with red symbols.
Reprinted with permission from ref. 114. Copyright 2018 American
Chemical Society.
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selectivity and the permeability (ratio of diffusion coefficients).
Therefore, the screening of diffusion coefficients gives
complementary information to the thermodynamic selectivity
screenings. Here, we give some examples of such screening and
the main descriptors that partially explains the computed
gures of merit.

To give an overview on the potential of computational
screenings to predict transport properties, we are now going to
focus on the membrane separation applied to natural gas
upgrading. The separation of CH4 from N2 and CO2 is a crucial
step of this upgrading process. In 2016, a large scale high-
throughput screening (see Fig. 2 for the approach) of hypo-
thetical MOF membranes for upgrading natural gas has been
performed using MD simulations.43 In that work, Qiao et al.
conrmed the existence of MOF materials with performances
beyond the upper bound for N2/CH4 and CO2/CH4 separations
previously determined by Robeson on a large set of polymeric
membranes.112 This Robeson's upper bound is systematically
crossed by MOF materials in computational screenings, see as
an example the Fig. 7. This can be explained by the fact that
MOFs perform better that polymeric frameworks and the
simulations at this level of theory. They also identied 24 MOFs
suitable for the ternary CO2/N2/CH4 separation using a multi-
stage screening described in the previous section.

Two years later, Qiao et al. used the same approach to study
this ternary separation on a database of synthesised struc-
tures.113 Applying machine learning techniques to their data,
they performed a QSPR analysis. Using a principal component
analysis, they notably found that the permeability is higher
when materials have high PLD and void fraction coupled with
low density and percentage of pores within a characteristic
range. The opposite was found to be true for high membrane
selectivity for the CO2/CH4 separation. Using decision tree
algorithms, they gave objective procedures of selecting the best
separation membranes based on some key descriptors. Finally,
they studied in detail some of the best performing materials
found by a support vector machine algorithm.
364 | Digital Discovery, 2022, 1, 355–374
Altintas and Keskin later performed a screening on the same
database for CO2/CH4 membrane separation to identify the best
performing materials and perform more computationally
demanding simulations.114 The simulations in rigid structures
at innite dilution show a large number of structures above the
Robeson's upper bound as shown in Fig. 7, this crossing of the
upper bound can be explained by either a better performance of
MOF membranes compared to the polymeric membranes used
by Robeson, or an overestimation due to oversimplied
assumptions (innite dilution, rigidity). But when higher pres-
sures and exibility are considered, the selectivity values are
© 2022 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2dd00018k


Review Digital Discovery

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

5 
Ju

ne
 2

02
2.

 D
ow

nl
oa

de
d 

on
 1

0/
19

/2
02

5 
2:

31
:0

9 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
dropping down closer to the upper boundary, hence conrming
the overestimation of the performance in screenings based on
rigid approximations at innite dilution. Budhathoki et al.
developed a screening methodology for MOFs in mixed matrix
membranes for carbon capture applications by estimating
permeation values in these composite materials using
a Maxwell model.115 The authors even proposed a pricing for
each material compared to their relative performance. Similar
studies have been carried out on different materials, Yan et al.
showed the inuence of decorating COFs with different chem-
ical compounds on the membrane selectivity.116

The transport properties screening is based on the calcula-
tion of diffusion coefficients at innite dilution and in rigid
molecules. There are different methods to calculate them
(mainly MD and TS-based methods). Flexibility and pressure
dependence are very hard to incorporate directly in the
screening procedures. Researchers usually consider these
factors at the end of the screening on the most promising
structures because of the computational complexity of the cor-
responding simulations. To take account of pressure depen-
dence, we need an MD simulation of several adsorbates that
takes much more time than running single component simu-
lations,118,119 which makes it harder to include in a high-
throughput screening. Flexibility could be taken account by
calculating snapshots and runningmultiple MD simulations, or
by using exible force elds, which means in both cases an
increase in computational run-time. Some faster methods of
quantitatively predicting the impact of exibility on diffusion
are being investigated in ZIFs and could give an interesting
alternative to these expensive methodologies.120
5 Non-adsorptive properties

Due to their high internal surface area, adsorption applications
were a natural outlet for nanoporous materials. However, these
materials can be used in many other applications. This section
is dedicated to the physical and chemical properties not directly
related to the adsorption process inside nanoporous materials
such as catalytic activity,30–32 mechanical properties,36,37 or
thermal properties.33–35 These properties require a more rened
description of the atomic interactions within the material. DFT
simulations are usually performed to accurately retrieve these
properties. However, the computational cost required is multi-
plied by several orders of magnitude compared to classical
simulations. The size of the datasets screened are therefore
much smaller (a few hundreds maximum), and the use of ML
can potentially speed up the whole process. ML is based on
lower cost descriptors,121,122 or it can be used in ML potentials
for molecular simulations.123,124
5.1 Catalytic activity

Beyond adsorption properties, screening procedures have been
applied to chemical properties such as catalytic activities.
Heterogeneous catalysis is generally performed using metallic
nonporous structures, the use of nanoporous materials can
increase dramatically the active surface area and the catalytic
© 2022 The Author(s). Published by the Royal Society of Chemistry
activity. Consequently, MOFs have been demonstrated to show
catalytic properties for several chemical reactions. Just to cite
a few, one can think of hydrogenation, hydrolysis, oxidation,
among others explicitly covered by McCarver et al. in their
review.125 Considering the sheer amount of possible materials,
computational studies are potentially more effective than
experimental ones. Therefore, computational screenings
evolved in the last decade aiming at studying larger datasets.

Although the vast majority of computational screenings have
been done on small series, there are a few systematic screenings
of larger datasets. The scarcity of the latter can be explained by
the high level of computational cost required. Here, we show
some examples of such attempts by focusing on the example of
C–H bond activation for the conversion of alkanes into alcohols
in the presence of nitrous oxide.

Inspired by enzymatic catalysis of the reaction of small
alkanes with N2O into alcohols, Vogiatzis et al. identied 7 iron
containing MOF structures out of 5000 structures from the
CoRE MOF database.126 They found two descriptors that govern
the catalytic activity: (1) the N–O dissociation energy of N2O on
the adsorption site and (2) the energy difference between two
spin states of the intermediate. Using a screening on these
descriptors, three structures were identied as promising for
further experimental studies. The best one has been computa-
tionally demonstrated to catalytically and selectively oxidise
ethane to ethanol in presence of N2O. Moreover, the authors
found that defects played a major role in the observed catalytic
activity.

Later, Rosen et al. enlarged the scope of materials screened
to other metals.127 From an 838 DFT-optimised MOFs subset of
CoREMOF 2014, the authors selected 168 MOFs that were likely
to have openmetal sites and pore-limiting diameters that allows
the diffusion of the reactants. They then used a fully automated
workow to place the reactants in the adsorption site and
relaxed the system using periodic DFT calculations. As shown in
Fig. 8, using the bond activation energy Ea,C–H and the metal–
oxo formation energy DEO as key parameters, they classied the
materials according to their relative stability and reactivity to
nd the best materials for the application. These energies were
then analysed using physicochemical descriptors such as the
spin density on the oxygen and the metal–oxygen distance.

This type of brute force screening can be quickly cumber-
some, as a result many researchers in the eld are trying to nd
key structure–activity relationships to accelerate future
computational screenings. Several descriptors have been
developed for high-throughput screenings: Butler et al. used
electron removal energies to explain photocatalytic behaviours
of MOFs;128 Rosen et al. showed that the energy required to form
the metal–oxide intermediate was a key descriptor of the
thermal catalysis of alkane oxidation by N2O;129 and Fumanal
et al. show a screening protocol based on two energy-based
descriptors to predict photocatalytic properties of MOFs.130

Lately, Rosen et al. screened thousands of MOF structures to
compare different DFT functionals and leveraged the data
calculated to train machine learning models that can rapidly
predict MOF band gaps.131
Digital Discovery, 2022, 1, 355–374 | 365
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Fig. 8 Analysis of a diverse set of experimentally derived metal–organic frameworks (MOFs) with accessible metal sites for the oxidative acti-
vation of methane. The graph shows the predicted barrier for the C–H bond activation of methane, Ea, as a function of the metal–oxo formation
energy, DEO. For each material, the symbol colour refers to the group number of the metal in the periodic table. The best-fit line has is plotted in
black, and has amean absolute error (MAE) of 0.09 eV. MOFs with Ea < 1 eV are classified as being reactive toward C–H bond activation andMOFs
with DEO < 0 as having thermodynamically favoured active sites when using O2 as the reference state. Reprinted with permission from ref. 127.
Copyright 2019 American Chemical Society.
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The development of ML methods are also critical in the
eld,132 but the lack of centralised database with high precision
descriptors is a challenge for the future of these methods. The
inuence of defects, the different ways of modelling MOFs as
periodic structures or clusters, the diversity of structures and
the stability of such structures remain open problems. Yet, it
does not threaten the major role of high-throughput screenings
in the early design process of any nanoporous materials for
catalysis. To conclude this brief overview, we point the readers
to a more exhaustive presentation of the matter.133
5.2 Mechanical properties

In the past decade, there has been a growing interest in the
systematic study of physical properties of various classes of
materials, including inorganic materials and framework mate-
rials. Among these physical properties, mechanical properties
have been a topic of particular interest, as they are crucial for
many applications, and at the same time can be computed by
relatively standard methodologies. In particular, is it possible to
calculate linear elastic constants (the second-order elastic
tensor) in the zero-Kelvin limit by strain/stress or strain/energy
approaches, performing a series of DFT calculations of strained
structures and calculating the elastic constants. From these
constants, all other mechanical properties can be evaluated by
tensorial analysis,134 including the bulk modulus, Young's
modulus, shear modulus, Poisson's ratio, etc. This type of
calculation can be coupled with any available quantum chem-
istry code,135 and is even integrated in some packages, like
CRYSTAL17.136

One of the rst studies that investigated systematically the
elastic properties of a family of materials was a 2013 study of all-
silica zeolites,137 i.e., crystalline and porous SiO2 polymorphs.
366 | Digital Discovery, 2022, 1, 355–374
While this dealt with only 121 zeolitic frameworks out of 244
known structures, it showed that systematic studies at the DFT
level were computationally tractable, and that they provided
physical insight into the link between microscopic structure
and macroscopic physical properties. This study demonstrated,
among other things, that a small number of zeolites presented
large negative linear compressibility (NLC), which could be
linked to the wine-rack motif of their frameworks.

Looking outside of the specic case of zeolites, other groups
have applied DFT calculations of elastic constants in a high-
throughput manner. de Jong et al. leveraged the structures of
the Materials Project,58,59 trying to chart the diversity of elastic
properties across the whole space of inorganic crystalline
compounds.138 As shown in the Fig. 9, they provided a database
containing the full elastic information of 1181 inorganic
compounds initially, and has grown steadily since then, con-
taining more almost 14 000 records to date.139 This dataset has
been used in two different ways by researchers in the eld.

Firstly, the exploration of the database of elastic properties
by tensorial analysis has allowed to study quantitatively the
occurrence of certain “anomalous” or rare mechanical behav-
iour, including negative linear compressibility, very high
anisotropy, or negative Poisson's ratio (also called auxeticity).
Indeed, such properties are considered rare and usually sought
aer—the materials exhibiting these anomalous behaviours are
mechanical metamaterials.140 In addition to their fundamental
interest, such materials have applications in materials engi-
neering: for example in energy dissipation (as shock absorbers
and for bulletproong), energy storage, as well as acoustics.141

However, it was not possible until now to quantify exactly “how
rare” they are. Chibani et al. showed through a systematic
exploration of available mechanical properties of crystalline
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 9 Statistical analysis of the calculated volume per atom, Poisson's ratio, bulk modulus KVRH and shear modulus GVRH of 1181 compounds in
the Materials Project database. In the vector field-plot, arrows pointing at 12 o'clock correspond to minimum volume-per-atom and move anti-
clockwise in the direction of maximum volume-per-atom, which is located at 6 o'clock. Reprinted from ref. 138 under CC-BY license. Copyright
2015 de Jong et al.

Review Digital Discovery

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

5 
Ju

ne
 2

02
2.

 D
ow

nl
oa

de
d 

on
 1

0/
19

/2
02

5 
2:

31
:0

9 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
materials that general mechanical trends, which hold for
isotropic (noncrystalline) materials at the macroscopic scale,
also apply on average for crystals. Moreover, they could quantify
the presence of materials with rare anomalous mechanical
properties: 3% of the crystals were found to feature negative
linear compressibility, and only 0.3% to exhibit complete aux-
eticity (negative Poisson's ratio in all directions of space).

Secondly, the datasets of mechanical properties were used as
a basis to accelerate the discovery of novel materials with tar-
geted behaviour. Dagdelen et al. used search algorithms to
identify 38 candidate materials exhibiting features correlating
with auxetic behaviour, from more than 67 000 materials in the
Materials Project database.142 Performing DFT calculations on
these 38 structures, they could identify 7 new auxetic
compounds. In a more complex setup, Gaillac et al.37 have used
a multi-scale modelling strategy for the fast exploration and
identication of novel auxetic materials. They combined clas-
sical force elds MD simulations with DFT calculations on
candidate materials, and then used this reference DFT data to
train an ML algorithm. They found that the accuracy of this
multi-scale method exceeds the current low-computational-cost
approaches for screening. In a similar work, Moghadam et al.
© 2022 The Author(s). Published by the Royal Society of Chemistry
used molecular simulation to train an articial neural network
(ANN) for the prediction of the bulk modulus of metal–organic
frameworks.143 This shows the potential of such methodologies
to treat very different (chemically as well as structurally) classes
of materials.
5.3 Thermal properties

While mechanical properties (in the elastic regime) have been
by far the most studied physical property in nanoporous
materials, others have also been occasionally screened. We can
cite, in particular, the systematic study of piezoelectric tensors
by de Jong et al., on almost a thousand crystalline compounds,
by rst-principles calculations based on density functional
perturbation theory.144 We can also cite efforts to calculate
thermal properties in a high-throughput setup, using the quasi-
harmonic approximation (QHA).145 This method requires the
calculation of each structure's phonon modes at various
volumes, and can be coupled to any electronic structure
program.146 It is, however, quite computationally intensive, and
sensitive to the parameters of the QHA methodology (range of
volume, range of temperature, precision of the frequency
Digital Discovery, 2022, 1, 355–374 | 367
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calculation, etc.). Therefore, it has been limited so far to modest
numbers of structures: a dataset of 75 inorganic structures by
Toher et al.,33 and more recently a dataset of 134 pure SiO2

zeolites by Ducamp et al.35 Very recent work in our group on the
prediction of thermal properties through machine learning
based on structural features alone indicates that thermal
behaviour is more difficult than mechanical behaviour to
predict, and might require the use of a wider set of structural
descriptors, or more advanced ML models.122

6 Outlook

In this review, we highlighted the advances in computational
screening of nanoporous materials for some archetypal cases
through the scope of their physical and chemical properties.
Although each type of property requires a specic simulation
methodology and has distinct challenges, the essence and
general workow of high-throughput screening does not
fundamentally change. The goal is to generate quickly and
accurately increasing amounts of valuable data in order to
analyse it. With the increase of high-performance computing
(HPC) resources and the help of statistical tools such as
machine learning, screening techniques have seen a rapid
acceleration in recent years. Researchers can more efficiently
analyse larger and larger databases and help theoreticians
better understand the origins of the performance, hence
guiding the design process of nanoporous materials.

Despite the progress made, important drawbacks of the
current methodologies remain. High-throughput screenings
rely too much on oversimplied assumptions such as the
rigidity of the framework, the absence of defects, the use of
Lennard–Jones potentials and inaccurate charges. For instance,
the rigidity of the framework only takes into account one
conformation of the framework. Yet, thermal agitation induces
a “breathing” movement of the framework with an amplitude
dependent on its intrinsic exibility. The pores of the frame-
work can change depending on the number of adsorbates to
interact more optimally with them, which can be induced by
a change in pressure. The issue of exibility is rarely tackled,
and when considered, it is only on the few most selective
structures given by an inaccurate screening based on the rigid
crystal approximation. One can wonder about the results ob-
tained if it is applied to larger sets of structures. Witman et al.
found that exibility applied to top performing materials can
decrease the selectivity, because the pore does not have an
optimal size anymore.95 In some cases, the selectivity of a well
performing material can even increase to become a top per-
forming one. Computational screenings can be closer to predict
experimental values of selectivity, diffusivity, and other key
performance metrics.

Many open problems remain for the design of efficient high-
throughput computational screenings. The connection between
different properties for a given application is not systematically
integrated in the screening procedures. For example, in
methane storage, the working capacity of the material is the
main property to optimise, but the kinetics of the adsorption/
desorption or the mechanical resistance to compaction
368 | Digital Discovery, 2022, 1, 355–374
amongst others also need to be considered. Designing a nano-
porous material is in fact a multivariate optimisation problem
with tacit constraints, for example the synthesisability. More-
over, the transferability of the methodology to a broad range of
materials is oen achieved at the expense of accuracy in specic
cases. And one can rightly question the universality of
depending on faster but less elaborated models, which boils
down to a trade-off problem between prediction accuracy and
computational cost (or complexity). For instance, classical
force-elds are broadly used in rigid materials for adsorption
properties, but the switch to more costly ab initio methods or
the addition of exibility can result in a more accurate
description at the expense of computational resources. The use
of ML algorithms can be a way out of this apparent deadlock.
They can learn sufficient information on as small a subset as
possible to accurately predict the performance of other mate-
rials on a large dataset. It could in the future reduce the size of
the dataset that needs to be accurately screened by computa-
tionally expensive simulations, while maintaining the quality of
the predictions.

The development of such ML-assisted screenings is paired
with the advances in data science techniques and algorithms,
but more importantly to the construction of descriptors tailored
to the many possible application. This construction work
cannot be dissociated to the physical and chemical intuition of
the scientists. Topological, chemical, electronic and other
descriptors have been developed on top of the more common
geometrical and thermodynamic descriptors, which displays
the importance of strong physical chemistry knowledge. The
discovery of novel relevant descriptors remains the main lever
for increased performance of the ML models and is closely
related to a rigorous theoretical work.

The development of databases is another key aspect in the
promotion of data science in the eld of materials science in
general, and nanoporous materials chemistry in particular. The
diversity of materials, the inclusion of experimental data
(successful or failed), the addition of under studied classes of
materials (e.g. amorphous) are all key aspects to upgrade the
existing database. Even if existing attempts to create a central-
ised database have been initiated by the materials project,139

this database does not contain all the existing information on
each material.

In the future, computational high-throughput screening
could be integrated more tightly into the design process of
nanoporous materials, hence further improving its efficiency.
The computational pre-screening can be coupled with auto-
mated screenings of the most promising materials to nally
identify candidates for further studies. This automated design
process is described by Lyu et al. in their paper on “Digital
Reticular Chemistry” and set out promising perspectives for
computational screenings in the eld.147 Some studies are
already pioneering this new research area by combining high-
throughput characterisations, active learning algorithms and
robotic synthesis.148,149 Another step towards faster industriali-
sation would integrate process modelling to enrich the purely
atomistic approach.
© 2022 The Author(s). Published by the Royal Society of Chemistry
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