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Real-time process analytics enable an insight into chemical processes and are essential to implementing

process optimization and control algorithms. However, the quantification of reaction species in complex

mixtures can be difficult due to overlapping signals or low resolution data. Here we demonstrate the

utilization of artificial neural networks (ANNs), as a technique for advanced data processing of nuclear

magnetic resonance (NMR) and UV/vis spectra. The ANN training process was expedited by the

generation and use of simulated training spectra. The output from multiple process analytical technology

(PAT) instruments, in a continuous flow synthesis towards the active pharmaceutical ingredient (API)

mesalazine, were fused by using ANNs. This allowed all relevant process intermediates and impurities to

be monitored at two points in the process, effectively augmenting the UV/vis spectroscopy data.

Approaches such as this will encourage increased uptake and usage of low-cost and accessible PAT

instruments for multistep reaction monitoring.
Introduction

Digitalization and automation are key technologies to steer the
pharmaceutical and ne chemical industries toward efficient,
safe, and sustainable workows.1 Continuous manufacturing
plays a role in expediting this transformation, due to process
intensication, the ease of automating unit operations and
potential to improve batch quality.2 The vast majority of data to
monitor critical quality attributes (CQAs) is still collected off-
line, manually processed, and analyzed. This time consuming
exercise can be accelerated by using inline or online process
analytical technology (PAT), which provides data in real time.3

Regulatory agencies, such as the US Food and Drug Admin-
istration (FDA), are encouraging industrial process chemistry
labs to integrate inline and online analytics, as part of contin-
uous manufacturing.4 The large amount of recorded data must
be stored, processed, and analyzed in a reliable automated
workow.5 Real-time data from automated continuous ow
platforms enables, amongst others, the use of dynamic experi-
mentation,6 automated self-optimization,7 kinetic model
building,8 and feedback loops for process control.9
Processing (CCFLOW), Research Center

gasse 13, 8010 Graz, Austria

NAWI Graz, Heinrichstrasse 28, A-8010

z.at; stefan.kowarik@uni-graz.at

SI) available: Experimental procedures,
ANNs and additional data. See

the Royal Society of Chemistry
Process streams with multiple components, which are
monitored with inline PAT, oen result in spectra with over-
lapping signals. In such cases, the quantication of single
components cannot be performed by following individual
signals. Advanced data analysis models, such as indirect hard
modelling (IHM)10 and partial least squares (PLS) regression11

are capable of deconvoluting complex spectra and providing
precise concentration measurements. These techniques,
however, are oen limited by the commercial nature of the
appropriate soware and complexity of operation. Addition-
ally, chemists are rarely trained in data science or programing
during their education at university – a missed opportunity
that is oen not recognized in chemistry sub disciplines.
Nevertheless, advanced data analysis could provide more
condence in experimental results and advance their
research.
Fig. 1 A graphical representation of an ANN. The input layer can
consist of process data or spectra from PAT instruments, such as NMR,
FTIR, UV/vis or Raman.
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Articial neural networks (ANNs) have become a powerful
method for data processing in the PAT community.12 An ANN is
a collection of different types of layers, comprised of neurons
(Fig. 1).13 The input layer usually reects the original input data.
This can be, for example, a measured spectrum from the PAT, or
other recorded process variables. The output layer is the last
layer in the ANN and provides the output data. The output can
be multiple different concentrations or molar ratios of reaction
intermediates or products. The hidden layers dene interme-
diate connections between the input and output layer. Different
connectivities between hidden layers have been developed, such
as fully dense, convolutional, locally connected, recurrent, and
pooling layers. Neurons in a given layer take the weighted sum
of inputs from the previous layer, process it with a non-linear
activation function and pass it to the next layer or output. The
numerical weighting factors are adjusted during training. The
initial investment effort for using ANNs has been dramatically
reduced by the use of open-source soware, such as Tensorow
and PyTorch, embedded in python. Application programming
interfaces allow non-specialist users to easily create ANNs with
minimal coding experience.

Collection of training and validation data with concentration
tags can be the most time consuming part in developing ANNs
for data analysis. In an ideal case the training data consist of all
possible concentration levels, spectral disturbances, and
process variations, which may be experienced by the process
itself. For a traditional PLS model, 5 to 10 concentration levels
are recorded for calibration, yet ANNs require thousands of
different levels for effective training. This time consuming part
of manually recording the training spectra can be overcome by
the simulation of synthetic spectra.12c,14

The utilization of multiple PAT instruments in single- or
multistep continuous ow synthesis processes is rare.15

Incorporating these tools at different time points of the
process can provide enhanced insight into the chemical
Fig. 2 Schematic overview of the investigated process for the synthesis
process impurities are 2ClBA, 3N-2ClBA, 5N-2ClBA and 3-NSA. The nitra
step is monitored using inline UV/vis. Data fusion of the inline NMR and
impurities.

406 | Digital Discovery, 2022, 1, 405–412
transformations, compared to a single measurement at the
end.16 Process deviations and faults can be observed more
quickly, allowing for a faster response by the operator or
control algorithm. Incorporating multiple high resolution PAT
instruments generally comes with a high investment cost. The
costs can be reduced by integration of simple PAT instruments,
such as temperature, pressure, pH, conductivity probes, near-
infrared spectroscopy or UV/vis spectroscopy. On the other
hand, the recorded data oen cannot be used to distinguish
precisely between products and impurities. This complemen-
tary data can, however, be merged and exploited in data pro-
cessing models. This approach can be referred to as data
fusion, in which multiple inputs from different PAT instru-
ments can be used for various predictions of output parame-
ters.17 The combination of multiple PAT instruments or
orthogonal techniques increase the model performance and
robustness.

Herein we report the development of an easy to follow
approach to simulating synthetic NMR spectra and showcase
the capabilities of different ANNs on NMR data. Furthermore,
we demonstrate an ANN, which is capable of fusing NMR and
UV/vis spectra to provide precise predictions of process data on
the synthesis pathway of an API.
Results and discussion
Studied reaction, ow process and placement of PAT

Our group previously described a continuous ow platform for
the telescoped synthesis of 5-aminosalicylic acid (5-ASA)
(Fig. 2).16b This API, known as mesalazine, is prescribed for
treating colitis and Crohn's disease.18 The synthesis pathway
starts with the nitration of 2-chlorobenzoic acid in a mixture of
H2SO4 and HNO3. The nitration provides both isomers, the
undesired 3-nitro-2-chlorobenzoic acid (3N-2ClBA) and desired
5-nitro-2-chlorobenzoic acid (5N-2ClBA). The next step in the
of 5-NSA, an intermediate in the synthesis of the API mesalazine. The
tion and extraction steps are analyzed with inline NMR. The hydrolysis
UV/vis data enables the predictions of all process intermediates and

© 2022 The Author(s). Published by the Royal Society of Chemistry
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linear synthesis pathway (hydrolysis) requires basic conditions,
therefore an acid/base extraction was implemented. In the
hydrolysis step the aryl chloride is displaced by hydroxide at
210 �C and elevated pressure. Both isomers from the previous
step (3N-2ClBA and 5N-2ClBA) can be converted to 3-nitro-
salicylic acid (3-NSA) and desired intermediate 5-nitrosalicylic
acid (5-NSA), respectively.

The nitration, and subsequent acid/base extraction, was
monitored using an inline NMR (Magritek, Spinsolve Ultra 43
MHz). The NMRwas placed aer the extraction sequence, where
the reaction mixture passed through a glass ow-through cell.
The observed spectra provided the concentrations of the
process intermediates (2ClBA, 3N-2ClBA, and 5N-2ClBA). This
allowed for feedback control of the hydroxide equivalents for
the hydrolysis step. A new spectrum was acquired every 10 to
12 s throughout the whole processing time (pulse angle ¼ 90�,
acquisition time¼ 6.4 s, repetition time¼ 10.0 s and number of
scans ¼ 1).

The hydrolysis was analyzed using inline UV/vis spectroscopy
(ber-coupled Avantes Starline AvaSpec-ULS2048 spectrometer).
A home-made ow cell, constructed out of PFA tubing and a 4-
way connector, provided chemical and pressure resistance.16b

The observed spectra showed only minor spectral features and
could only give insight into conversion of the reaction. The
sampling time for each spectrum was 2 s (20 ms integration
Fig. 3 Schematic workflow of the simulation of synthetic training data.
(A) Single component spectra were experimentally recorded. (B) Linear
combinations of the experimentally recorded spectra allowed for the
simulation of multiple concentration levels. (C) Artificial noise was
added to the spectra. (D and E) The simulated spectra were shifted,
normalized and reduced prior to usage for ANN training.

© 2022 The Author(s). Published by the Royal Society of Chemistry
time and an averaged combination of 100 measurements per
data point).
Development of neural network for NMR

The development of the ANNs for NMR started with the prep-
aration of synthetic training data. To achieve this, the single
component spectra of 2ClBA, 3N-2ClBA, and 5N-2ClBA were
recorded by recirculating stock solutions through the NMR. For
each component 100 spectra were recorded and averaged
(Fig. 3A). The pretreatment of the spectrum included phasing
(auto, negative peak penalization) and spectral alignment of the
highest peak (water) to 5.00 ppm. The global range was set from
7 to 9 ppm, to exclude parts of the spectrum with no relevant
information.

A python script generated a matrix of 343 different concen-
tration levels from linear combinations of the 3 pure compo-
nents (Fig. 3B). Each concentration level consisted of 50
simulated spectra, obtained from linear combinations of the 3
pure components. The synthetic spectra were compared to
experimentally recorded spectra and low residuals were
observed (see ESI†). Additionally, random noise was added to
each spectrum, to simulate measuring noise in the training set
(Fig. 3C). Noise was added to each point in the spectrum indi-
vidually. The magnitude at each point was selected at random
from a Gaussian distribution, centered at 1.0, with a standard
deviation of 2. The center and standard deviation values were
selected empirically, to mimic the level of noise observed in
experimentally-measured spectra.

The synthetic spectra were triplicated and the position of the
spectra were changed to simulate the inuence of different pH
values in the process (Fig. 3D). One part of the synthetic set was
shied by 0.03 ppm upeld, the other part was shied down-
eld by the same distance, and nal part was not shied. In
total, the synthetic training data set was comprised of 51 450
spectra. Prior to using the synthetic spectra for training the
ANNs, each spectrum was reduced from 1148 data points to 600
(Fig. 3E). The spectra and the concentration tags were scaled
between 0 and 1 to improve the stability and performance in the
ANN training phase. The nal training data set for the ANN was
comprised of 7 experimentally measured concentration levels
and the aforementioned synthetic training data.

To obtain a dynamic validation data set, with transient
concentration values, an automated concentration ramp was
performed experimentally (see ESI†). Stock solutions of the pure
components and a solvent solution were pumped with HPLC
pumps and mixed prior to the NMR in a 5-way mixer. The
concentration tags were calculated from the corresponding
input ow rates. The nal validation spectra were pretreated
with the same phasing, spectral alignment, reduction of the
global range and scaling.

The ANNs were coded in Python (v3.8), using Keras appli-
cation programming interface (based on TensorFlow 2.0). The
training of the ANNs was conducted either on an Intel i5-7200U
(2.5 GHz) or AMD Ryzen 9 3950X (3.5 GHz) CPU. The initial
attempts to develop an ANN to process NMR data used a fully
dense architecture. In fully dense layers every neuron of one
Digital Discovery, 2022, 1, 405–412 | 407
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Fig. 4 (A) Schematic overview of the architecture of the final used
ANN. Prediction of the continuous validation data (B) and process data
(C) with the developed ANN for NMR compared to the calculated
values from the pumps and indirect hardmodelling (IHM), respectively.
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layer is directly connected to every neuron of its preceding layer.
During the training process different numbers of layers and
neurons were examined, but no satisfactory results could be
obtained. Our attention was drawn to convolutional neural
networks (CNNs), which have been previously applied for NMR
data.12b,c,19

The convolutional layer in a CNN applies different lters to
the input data. The lters have three adjustable parameters: the
number of lters per layer, the kernel size (size of the lter) and
strides (overlap of each lter). During the training process, an
architecture of one convolutional layer followed by dense layers
was investigated. The convolutional layer was either a conv1D
layer or a locally connected 1D layer.

The weights of the different lters are shared for the conv1D
layer, but are unshared for the locally connected 1D layer.
Therefore, a different set of lters is applied to different
sections of the input spectrum. The kernel size, strides, number
of lters, architecture of the fully dense layers and batch size
were optimized during the training process.

The training validation was performed on the continuous
validation data set (described above). The result of the ANNs for
NMR were benchmarked against partial least squares (PLS)
regression, the current industry standard chemometric method,
as well as indirect hard modelling (IHM), a more complex
chemometric method that is not yet widely adopted (Table 1).
The IHM and PLS regression models were trained with the 7
experimentally measured concentration levels (see ESI†). All
investigated ANNs outperformed the PLS model. Additionally, it
was found that ANNs comprised of convolutional layers had
a lower root mean square error of validation for the continuous
validation set (RMSEVcon, approximately 3 mM for each
compound), compared to the ANN with fully dense layers only.
Both convolutional ANNs had similar RMSEVcon values to the
IHM approach. However, due to the relative simplicity of the
ANN, the time taken to interpret a spectrum was signicantly
lower (�2 ms vs. �2 s). This represents a clear advantage of
ANNs, for example in low-power computing applications.

The best convolutional ANN model was comprised of
a conv1D layer with 16 lters, kernel size of 9, and a stride size
of 9. The output was attened and followed by 3 fully dense
layers of 27, 9, and 3 neurons, respectively (Fig. 4A). The
Table 1 Measure of the error of the continuous validation set in the
analysis of the nitration and extraction step, monitored by NMR. State-
of-the-art techniques such as indirect hardmodelling (IHM) and partial
least squares (PLS) regression are compared to different architectures
of the ANN

Iterations

RMSEVcon

2ClBA
(mM)

3N-2ClBA
(mM)

5N-2ClBA
(mM)

Indirect hard modelling (IHM) 3.4 3.9 7.4
PLS 22.4 13.6 15.4
ANN (fully dense) 8.2 5.6 11.1
ANN (locally connected 1D) 6.2 2.9 8.2
ANN (conv1D) 3.9 3.1 6.8

408 | Digital Discovery, 2022, 1, 405–412
activation function for the convolutional layer, fully dense layer,
and output layer was a rectied linear unit (relu). A total number
of 28 981 parameters could be adjusted during the training. The
comparison of the ANN to the calculated concentration values
from the continuous validation data shows an excellent t
(Fig. 4B). The root mean square error of the 7 experimentally
measured concentration levels (RMSEVexp) was calculated to be
0.9 mM for 2ClBA, 1.1 mM for 3N-2ClBA, and 1.5 mM 5N-2ClBA
for the locally connected 1D network.

The concentration predictions from process data were in
accordance for compounds 2ClBA, 3N-2ClBA, and 5N-2ClBA in
relation to the previously published IHM concentrations
(Fig. 4C).16b In sections where no compounds were present (start
up and shutdown), the ANN predicted with less noise compared
to IHM. Additional predictions on process data can be found in
the ESI.†
Data fusion of NMR and UV/vis spectra

The hydrolysis step was monitored using UV/vis spectroscopy.
Peaks corresponding to each of the reaction components are
not separated (see ESI†), resulting in a relatively featureless UV/
© 2022 The Author(s). Published by the Royal Society of Chemistry
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vis spectrumwith nonlinear response to concentration changes.
Analysis of these spectra alone did not allow quantication of
the 5 process intermediates. Therefore, our focus was to fuse the
information from the nitration step, quantied with NMR, with
the information from the UV/vis spectrometer. By combining
the output from both instruments, it should be possible to build
a more detailed analytical model, essentially augmenting the
usefulness of UV/vis measurements.16

Deep learning modules with multiple inputs and outputs
should allow the ANN to be fed with both the NMR and the UV/
vis spectra. One output can be placed in the middle of the ANN
to predict the values of 2ClBA, 3N-2ClBA, and 5N-2ClBA aer the
nitration step. Additionally, the concentrations of 3N-2ClBA,
5N-2ClBA, 3-NSA, and 5-NSA can be predicted as a nal output.
The concentration of 2ClBA was not predicted aer the hydro-
lysis step, because experimental observations showed that its
concentration did not change between the two measuring
points.

Training data was generated by taking UV/vis spectra from
dynamic experiments and prepared concentration levels (see
ESI†). Additionally, a simulated baseline shi was added to
the UV/vis spectra to cover spectral deviations in the process
data. The concentration tags for the UV/vis spectra were
mainly calculated by offline UHPLC measurements, taken
directly aer the process. Due to the difference in measuring
frequency (2 s vs. 10–12 s), most of the UV/vis data did not
have a corresponding NMR spectrum, therefore the NMR
spectrum was synthetically simulated (as described and vali-
dated above).

A multidimensional dynamic experiment was conducted,
using an automated concentration ramp for the nitration step
and temperature ramp for the hydrolysis step. Stock solutions
of pure components and solvent were pumped with HPLC
Fig. 5 Schematic overview of the final ANN for data fusion. The chemical
of the figure. The NMR spectrum was processed with ANN1, which pred
nitration step. The UV/vis spectrumwas analyzed by ANN2, whose outpu
predict the concentrations of 3N-2ClBA, 5N-2ClBA, 3-NSA, and 5-NSA

© 2022 The Author(s). Published by the Royal Society of Chemistry
pumps and mixed prior to the NMR in a 5-way mixer. The outlet
of the NMR was collected in a buffer vessel and directly pumped
with an HPLC pump through a stainless steel coil, which was
placed on a coil heater. Aer passing through a back pressure
regulator, the process mixture was analyzed with UV/vis and
offline samples were taken (every 3 min) for UHPLC validation.
The concentration tags were either calculated from the corre-
sponding input ow rates (NMR) or the interpolated UHPLC
measurements (UV/vis).

The pretreatment of NMR spectra included the reduction
from 1148 data points to 600 data points and scaling of each
spectrum. The UV/vis spectra were reduced from 2048 data
points to 187, by averaging every 10 values (roughly 2–3 nm).
Ranges without spectral information (below 250 nm and above
770 nm) were excluded from the UV/vis spectra. Additionally,
the spectral intensities were scaled between 0 and 1. The
concentration tags for the training output were also scaled
between 0 and 1 to improve performance during training.

The basic structure of the ANN for data fusion was
comprised of 3 different ANN parts (Fig. 5). ANN1 and ANN2
processed the NMR spectrum and the UV/Vis spectrum,
respectively. The architecture of ANN1 was adopted from the
previously developed ANN for NMR. During the training of the
data fusion ANN, it was found that the 1D locally connected
layer performed better than the conv1D layer (see ESI†).
Therefore, ANN2 was comprised of a 1D locally connected layer
followed by dense layers aer attening. The number of lters,
kernel size, strides, number of dense layers, amount of neurons
per layer, and activation functions were optimized during the
training process.

The outputs of ANN1 and ANN2 were merged to provide the
input for ANN3. This input was then connected with dense
layers and one output layer. During the training the number of
process and the placement of the PAT is depicted on the left hand side
icted the concentration of 2ClBA, 3N-2ClBA, and 5N-2ClBA after the
ts merge with the output of ANN1. ANN3 uses these merged outputs to
after the hydrolysis step.

Digital Discovery, 2022, 1, 405–412 | 409
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layers and the amount of neurons per layers were investigated.
Typically, an epoch number of 1000 and a batch size of 1000 was
used during training. The “Adam” optimizer was selected in the
training process and reduced the mean square error on the
validation data of the output of ANN1 and the output of ANN3.
The data from the multidimensional dynamic experiment and
selected process data were used as validation data. The duration
of one epoch was roughly 2–3 seconds, which corresponds to
roughly 30 to 50minutes of training time. The root mean square
error on the validation set (RSMEVfusion) was found to be
<1.0 mM for 2ClBA (NMR), <1.0 mM for 3N-2ClBA (NMR),
<2.0 mM for 5N-2ClBA (NMR), <1.0 mM for 3N-2ClBA (UV/vis),
<1.0 mM for 5N-2ClBA (UV/vis), <1.0 mM for 3-NSA (UV/vis),
and <2.0 mM for 5-NSA (UV/vis). The values obtained have to
be carefully assessed, because the model was evaluated on these
data during the training. Therefore, we also tested the ANN on
process data.
Fig. 6 Predictions of the final data fusion ANN model from a multi-
dimensional dynamic experiment (A), process data on a stability run (B)
and a run with dynamic changes (C).
Application of data fusion to process data

The nal model was evaluated on real process data.16b First, the
residence time between the two instruments (z20 min) had to
be accounted for. The difference in acquisition times between
the NMR (10–12 s) and UV/vis (2 s) was resolved by interpolating
the NMR data to the UV/vis time scale. Prior to feeding the
spectra to the ANN model, the pretreatments for NMR and UV/
vis were conducted, as detailed above. The prediction of the
model was compared to offline or online UHPLCmeasurements
aer a moving average lter with a lter size of 30 (z1 min).

The model predictions for the multi-dimensional dynamic
experiment show an excellent t with the offline UHPLC data
(Fig. 6A). The process data in a steady-state experiment revealed
slight under prediction of 5-NSA and over prediction of 3-NSA
during the whole run (Fig. 6B). The estimated error of predic-
tion (compared to online UHPLC) of 5-NSA was �18 mM at the
beginning of the run (0.5 to 2 h) and �8 mM at the middle and
end. The over prediction of 3-NSA was roughly 12 mM
throughout the run. The 3N-2ClBA and 5N-2ClBA were pre-
dicted with an error of less than 2 mM (compared to online
UHPLC).

Additionally, process data from a run with dynamic changes
was analyzed (Fig. 6C). The predictions obtained for 2ClBA, 3N-
2ClBA, 5N-2ClBA, and 5-NSA were in good agreement with the
online UHPLC points. The results for 5N-2ClBA differed only at
the end of the run (5 h to 6 h). A similar result, as in the stability
run, of slight over prediction of 3-NSA was observed during the
run with dynamic changes. This observationmight be explained
by an over prediction of 3N-2ClBA aer ANN1 (see ESI†), which
is fed forward in ANN3. In the future, the developed ANN could
be further improved by rening and retraining it with
process data.

The use of real-time data from inline PAT allows process
deviations to be recognized more quickly compared to chro-
matographic methods. For example, a decrease in the separa-
tion efficiency aer the nitration at around 1.5 hours could be
detected and resolved faster using real-time data (Fig. 6C). The
automation of the model can easily be utilized by implementing
410 | Digital Discovery, 2022, 1, 405–412
a simple folder watch system. The NMR and UV/vis spectra can
be saved as a csv le locally or using cloud storage and auto-
matically read in and analyzed by a python script. The devel-
oped and validated ANN allows one to monitor the synthesis
process of mesalazine, which can yield signicant improve-
ments in terms of process control and quality by design (QbD)
principles.

This successful application of ANNs demonstrates determi-
nation of seven species (3 aer rst reaction step and 4 aer
second reaction step) in a relatively complex process. It is
envisaged that, based on the developed code, application to
other processes will be relatively straightforward to implement.
This will assist in bringing ANNs to the fore as a chemometric
data processing method. Although there is no guarantee that
the ANN architecture used here would be directly transferrable
© 2022 The Author(s). Published by the Royal Society of Chemistry
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to other systems, it is likely that only minor changes (e.g.,
number of inputs, outputs, hidden layers) would be required, to
suit the process to be monitored and desired species
quantication.

Conclusions

In conclusion, we have developed an ANN for data fusion, which
can be used to predict concentrations of process intermediates
in the production of mesalazine. The use of information from
multiple PAT instruments facilitated reliable concentration
predictions for mixtures of intermediates, even though a simple
sensor (UV/vis) was used. The lack of experimental training data
was overcome by simulation of synthetic training data for NMR.
This provides straightforward access to training data. Develop-
ments in the prediction of spectral data should further increase
accessibility to synthetic training data for PAT in open data
initiatives. Based on the techniques and workows presented,
we envision that more chemists will begin to use ANNs with
their PAT data to develop powerful, low cost and accessible
advanced data processing models.
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L. Eriksson, Chemom. Intell. Lab. Syst., 2001, 58, 109–130.

12 For selected examples of ANNs, see: (a) T. Väänänen,
H. Koskela, Y. Hiltunen and M. Ala-Korpela, J. Chem. Inf.
Comput. Sci., 2002, 42, 1343–1346; (b) E. C. Ferreira,
D. M. B. P. Milori, E. J. Ferreira, R. M. Da Silva and
L. Martin-Neto, Spectrochim. Acta, Part B, 2008, 63, 1216–
1220; (c) S. Kern, S. Liehr, L. Wander, M. Bornemann-
Pfeiffer, S. Müller, M. Maiwald and S. Kowarik, Anal.
Bioanal. Chem., 2020, 412, 4447–4459; (d) F. Fricke,
M. Brandalero, S. Liehr, S. Kern, K. Meyer, S. Kowarik,
R. Hierzegger, S. Westerdick, M. Maiwald and
P. M. Hubner, IEEE Transactions on Emerging Topics in
Computing, 2021, 1; (e) J. R. Long, V. G. Gregoriou and
P. J. Gemperline, Anal. Chem., 1990, 62, 1791–1797; (f)
J. Liu, M. Osadchy, L. Ashton, M. Foster, C. J. Solomon and
S. J. Gibson, Analyst, 2017, 142, 4067–4074; (g) F. Despagne
and D. Luc Massart, Analyst, 1998, 123, 157–178.

13 C. M. Bishop, Rev. Sci. Instrum., 1994, 65, 1803–1832.
14 For selected examples of ANNs trained with synthetic data

for NMR analysis in biomolecular applications, see: (a)
G. Karunanithy, H. W. Mackenzie and D. F. Hansen, J. Am.
Chem. Soc., 2021, 143, 16935–16942; (b) X. Qu, Y. Huang,
H. Lu, T. Qiu, D. Guo, T. Agback, V. Orekhov and Z. Chen,
Angew. Chem., Int. Ed., 2020, 59, 10297–10300; (c) J. Luo,
Q. Zeng, K. Wu and Y. Lin, J. Magn. Reson., 2020, 317, 106772.

15 M. A. Morin, W. Zhang, D. Mallik and M. G. Organ, Angew.
Chem., Int. Ed., 2021, 60, 20606–20626.

16 (a) P. Sagmeister, J. D. Williams, C. A. Hone and C. O. Kappe,
React. Chem. Eng., 2019, 4, 1571–1578; (b) P. Sagmeister,
R. Lebl, I. Castillo, J. Rehrl, J. Kruisz, M. Sipek, M. Horn,
S. Sacher, D. Cantillo, J. D. Williams and C. O. Kappe,
Angew. Chem., Int. Ed., 2021, 60, 8139–8148.

17 (a) R. R. de Oliveira, C. Avila, R. Bourne, F. Muller and A. de
Juan, Anal. Bioanal. Chem., 2020, 412, 2151–2163; (b)
N. O'Mahony, T. Murphy, K. Panduru, D. Riordan and
J. Walsh, 2016 27th Irish Signals Syst. Conf., 2016, pp. 1–6;
(c) T. Casian, A. Farkas, K. Ilyés, B. Démuth, E. Borbás,
L. Madarász, Z. Rapi, B. Farkas, A. Balogh, A. Domokos,
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