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Physics-inspired molecular representations are the cornerstone of similarity-based learning applied to solve
chemical problems. Despite their conceptual and mathematical diversity, this class of descriptors shares
a common underlying philosophy: they all rely on the molecular information that determines the form of
the electronic Schrédinger equation. Existing representations take the most varied forms, from non-
linear functions of atom types and positions to atom densities and potential, up to complex quantum
chemical objects directly injected into the ML architecture. In this work, we present the spectrum of
approximated Hamiltonian matrices (SPA™M) as an alternative pathway to construct quantum machine
learning representations through leveraging the foundation of the electronic Schrédinger equation itself:
the electronic Hamiltonian. As the Hamiltonian encodes all quantum chemical information at once,
SPA™M representations not only distinguish different molecules and conformations, but also different
spin, charge, and electronic states. As a proof of concept, we focus here on efficient SPA™M
representations built from the eigenvalues of a hierarchy of well-established and readily-evaluated
"guess’ Hamiltonians. These SPA"M representations are particularly compact and efficient for kernel
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1 Introduction

Modern machine learning (ML) techniques are at the forefront
of an unprecedented methodological shift affecting virtually all
fields of chemistry.’ Regardless of the chosen application or
algorithm, the predicting power of artificial intelligence in
chemistry is ultimately related to the choice of a molecular
representation, i.e. of a numerical descriptor encoding all the
relevant information about the chemical system.®*®

The crucial role of representations is mirrored by the
intensive work that has been dedicated to finding ever more
reliable and widely applicable fingerprints.”® Although there are
effectively infinite ways to input the information about a mole-
cule into a machine learning algorithm, conceptually molecular
representations could be subdivided into well-defined macro
categories. Chemoinformatics descriptors are a comprehensive
set of fingerprints that relies either on string-based fingerprints,
such as SMILES*' and SELFIES," or on readily available and
descriptive properties, such as the number of aromatic carbon
atoms, the shape index of a molecule, and its size,***® which are
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evaluation and their complexity is independent of the number of different atom types in the database.

usually chosen using an a priori knowledge about their corre-
lation with the specific target."”” A second class of chemical
representations has been introduced very recently, relying on
artificial neural networks (and no human input) to infer suit-
able descriptors for the learning exercise.® Finally, physics-
based or quantum machine learning (QML) representations
include all those fingerprints inspired by the fundamental laws
of physics that govern molecular systems, in particular, the laws
of quantum mechanics and the basic laws of symmetry.

As physics-based representations are rooted in fundamental
laws, they are directly applicable to any learning task, ranging
from the regression of molecular properties to revealing the
relationship between molecules in large chemical databases.
Although existing quantum machine learning representations
have drastically different mathematical forms and physical
motivations, they all share the same starting point: the position
(and often the type) of the atoms in real space. This choice is not
arbitrary and it is intimately related to the connection between
(static) molecular properties and the electronic Hamiltonian A.

For a fixed nuclear configuration, the information about all
the electronic properties of a molecule is contained in the many-
body electronic wavefunction ¥(xy, ..., X,), as defined by the
Schrodinger equation. Since the electronic Hamiltonian defines
(x4, ..., X,), the molecular information necessary to fix A is in
principle sufficient for a non-linear model to establish a one-to-
one relationship with any electronic property. The expression
for all the universal (i.e. non-molecule specific) terms of the
Hamiltonian (e.g. kinetic energy) only requires the knowledge of

© 2022 The Author(s). Published by the Royal Society of Chemistry
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the total number of electrons (N). In contrast, the external

potential (the electron-nuclear attraction potential) also

depends on the position of the nuclei {R;} and their charges

{Z;}.* Under the assumption of charge neutrality (i.e. N = }_Z;),
1

R; and Z; uniquely fix the form of the Hamiltonian and thus
represent the only required information to characterize the
electronic wavefunction and electronic properties.

Since no two different molecules have the same Hamilto-
nian, any representation that relies upon Ryand Z; is guaranteed
to satisfy the injectivity requirement of machine learning, i.e.
there must be a one-to-one map between the representation of
a molecule and its properties. Nonetheless, injectivity is not the
only condition necessary for efficient and transferable learning.
A representation must encode the same symmetries as the
target property upon any transformation of real-space coordi-
nates (equivariance): rotation, reflection, translation, and
permutation of atoms of the same species.****!

To organize in separate groups all the existing physics-based
representations, it is fundamental to define a metric for the
classification. Among all the possibilities, it is useful for the
purpose of this work to classify representations according to the
way they use and transform their molecular inputs.

One well-established methodology is to build representa-
tions using atom-centered continuous basis functions from an
input containing the type and the position of the nuclei. This
choice is the common denominator of a series of representa-
tions such as the Behler-Parrinello symmetry functions,*>* the
smooth overlap of atomic positions (SOAP),*** the overlap
fingerprint of Goedecker and coworkers,* the N-body iterative
contraction of equivariant features (NICE),** and the atomic
cluster expansion (ACE).> 2

Other descriptors such as the many-body tensor represen-
tation (MBTR),* permutation invariant polynomials (PIPs),**"
and graph-based representations®® rely on the transformation of
the structural input into a system of internal coordinates and
use directly this information to establish similarity measures.

A third possibility is to build representations as fingerprints
of potentials. This family includes the Coulomb matrix
(CM),*”=* the bag of bonds (BoB),** (atomic) spectrum of London
and Axilrod-Teller-Muto potential [(a)SLATM],* the long-
distance equivariant (LODE) representation,* FCHL18,* and
FCHL19.*

More recently, sophisticated neural network architectures,
such as OrbNet,**** have shown that it is possible to use even
more complex quantum chemical objects as input features,
such as the tensor representation of quantum mechanical
operators and their expectation values obtained from
a converged semi-empirical computation.

In this work, we propose a different approach to designing
physically motivated and efficient QML representations. The
spectrum of approximated Hamiltonian matrices (SPA™M)
looks back at the common origin of physics-based representa-
tions and uses the electronic Hamiltonian as the central
ingredient to generate an input for machine learning algo-
rithms. In contrast to standard geometry-based descriptors, the
Hamiltonian encodes all the relevant quantum chemical

© 2022 The Author(s). Published by the Royal Society of Chemistry
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information at once and it is able not only to distinguish
different molecules and conformations, but also different spin,
charge, and electronic states. Importantly, SPA™M representa-
tions do not require any self-consistent field (SCF) computation,
as they all leverage the simplest, yet powerful, quantum chem-
ical trick: the use of well-established, low-cost “guess” Hamil-
tonians, which are traditionally used to jump-start the SCF
procedure. These matrices are cheaper to compute than a single
SCF iteration (see Section 3.5 for more details on efficiency) and
form a controlled hierarchy of increasing complexity and
accuracy that is readily computed for any given molecular
system. As a proof of concept, we focus in this work on SPA"™M
representations built from the eigenvalues of the “guess”
Hamiltonians. This choice is physically and chemically moti-
vated, naturally invariant under the basic symmetries of
physics, and, in contrast to existing QML representations,
include seamlessly the information about the number of elec-
trons and the spin state of a molecule. In addition, the choice of
eigenvalues results in a small-size representation, which is
particularly efficient for kernel construction and rather inde-
pendent of the degree of chemical complexity in the databases.
Eigenvalue-based SPA™Ms are global representations, which
have the benefit to be rather accurate for molecular properties,
but are not as transferable as local representations and are not
applicable to regress local (atomic) targets (e.g. atomic partial
charges).® Nonetheless, the SPA™M representations are not
restricted to eigenvalues and could be constructed from other
(atom-centered) properties, such as the “guess” Hamiltonian
matrix elements, the eigenvectors, and their corresponding
density matrices.

2 Computational methods

Each molecular set (described in the corresponding subsections
of the Results and discussion) was randomly divided into the
training and test sets (80-20% splits). To minimize the bias
arising from the uneven distribution of molecular size and
composition, the learning curves for each representation were
averaged over 5 repetitions of sampling and prediction (error
bars are additionally reported in the ESIt). While the atomiza-
tion energies were taken as computed in the original QM7
reference (PBEO in a converged numerical basis),”” the other
three properties (norm of dipole moment, HOMO energies and
HOMO-LUMO gap) were computed at PBEO (ref. 47)/cc-
pVQZ*** level. The structure and properties of the molecules in
the L11 database were taken as computed in the original ref. 50.
The hyperparameters for each representation were optimized
with a grid search using a 5-fold cross-validation procedure and
the learning curves were computed using random sub-sampling
(5 times per point). The optimization and regression code was
written in Python using the numpy®* and scikit-learn®” libraries.
The QML package was used to construct the CM and SLATM
representations. The Gaussian kernel was used for the SLATM
representation and the Laplacian kernel for CM and all the
SPA"Ms.

The initial guesses were obtained in a minimal basis
(MINAO*%). All quantum chemical computations were made
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with a locally modified version of PySCF.**** The codes used in
this paper are provided in a Github repository at https://
github.com/lcmd-epfl/SPAHM and are included in a more
comprehensive package called Q-stack (https:/github.com/
Iemd-epfl/Q-stack). Q-stack is a library and a collection of
stand-alone codes, mainly programmed in Python, that
provides custom quantum chemistry operations to promote
quantum machine learning. The data and the model that
support the findings of this study are freely available in Mate-
rials Cloud at https://archive.materialscloud.org/record/
2021.221 (https://doi.org/10.24435/materialscloud:js-pz).

The CPU timings were recorded on 24-core CPU servers (2x
Intel Xeon CPU E5-2650 v4@2.20 GHz), using one thread. The
code was run with the packages from anaconda-5.2.0 (python-
3.6) together with numpy-1.16.4, pyscf-2.0.0a, and qml-0.4.0.
The user time was measured with the getrusage() system call
and averaged over eight runs.

3 Results and discussion
3.1 Learning curves

To assess the ability of the SPA™M representations to learn and
their overall accuracy, we trained a kernel ridge regression
(KRR) model on the QM7 database®”*° to target four quantum
chemical properties. Each of these quantities has been chosen
as it is representative of a particular category. Atomization
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energies are both routinely used to assess the quality of ML
models and represent a broader class of extensive (i.e. size-
dependent) thermodynamic properties.’””” Dipole moments
are traditionally used in quantum chemistry as proxies of the
quality of the wavefunction. The HOMO energies are intensive
(i.e. size-independent) quantities. Finally, the HOMO-LUMO
gap allows probing the quality of both frontier orbitals and
simultaneously tests the additivity of errors in the KRR models.

The QM7 dataset® was randomly divided into a training set
of 5732 molecules and a test set containing the remaining 1433
compounds, corresponding to an 80-20% split. For each
molecule, we constructed the SPA™M representations by diag-
onalizing the different “guess” Hamiltonians in a minimal basis
set (MINAO**) and using the sorted occupied eigenvalues as the
KRR fingerprint. The occupied orbital energies carry informa-
tion about both the atom types (core-orbital eigenvalues), the
general electronic structure of the molecule (core and valence),
and the total number of electrons. In addition, the eigenvalues
of a Hamiltonian are naturally invariant under all real-space
transformations (permutation, translation, rotation) and the
size of the occupied set is independent of the choice of the
atomic orbital basis.

The learning curves for all the SPA™M representations are
reported in Fig. 1. In addition, we report the curves of the
original version (eigenvalue) Coulomb matrix (CM)*” and
SLATM,* as the first has a similar size and diagonalization
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Fig. 1

(Left) Learning curves in logarithmic scale of (a) atomization energies, (b) dipole moments, (c) HOMO energies, and (d) HOMO-LUMO

gaps. The color code reflects the different representations. (Right) lllustrative example of the sizes of the CM, SPA™M, and SLATM representations.

All the Hamiltonians were evaluated in the MINAO#*® minimal basis.
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philosophy as SPA™M and the second is an example of a widely-
used global representation.

In Fig. 1, the SPA™M representations are indicated by the type
of approximate Hamiltonian used for their construction.
Although it is rather complex to establish a definitive hierarchy of
self-consistent-field guesses, it is always possible to provide
a more qualitative trend based on the amount of physics that
each guess includes. The diagonalization of the core (Hcore) and
the generalized Wolfsberg-Helmholz (GWH).*® Hamiltonian
matrices are the simplest approximations, as they do not try to
model any two-electron term. Building on the GWH guess, the
parameter-free extended Hiickel method uses approximate ioni-
zation potentials as diagonal terms and it is generally more
robust.*>® The superposition of atomic densities (SAD)*** is
another popular choice that however only produces a density
matrix (DM). Nonetheless, it is rather straightforward to
construct a complete Hamiltonian matrix (including the one- and
two-electron terms) by contracting the SAD density matrix with
a potential of choice (Hartree-Fock or any exchange-correlation
density functional). We report the SAD learning curve in Fig. 1
using the PBEO potential, as all the properties were computed
with this functional. Finally, the superposition of atomic poten-
tials (SAP)*** and the Laikov-Briling (LB)*® guesses use effective
one-electron potentials to construct sophisticated, yet computa-
tionally lightweight, guess Hamiltonians.

Besides the internal hierarchy, the accuracy of all the
SPA™Ms is always comprised between SLATM and the eigen-
values of the Coulomb matrix. While SLATM consistently
outperforms the SPA™M representations, the difference with the
most robust guesses (LB and SAD) is usually much smaller than
the accuracy of the functional itself (~5 keal mol ).%® Impor-
tantly, SLATM is also three orders of magnitude larger than
SPA™M on QM?7. The significant difference in the extent of the
representation is crucial from an efficiency perspective, as the
number of features dictates the computational effort of con-
structing the kernel matrix for an equal size of the training set.
While lightweight, efficient, and naturally accounting for the
charge state of molecules, we only tested a few well-known
Hamiltonians for building SPA™M. As the performance of
SPA™M is largely independent of the choice of the basis set or
potential (see ESIf), it is necessary to consider alternative
strategies to improve its accuracy. The heavy dependence of the
learning on the quality of the parent Hamiltonian suggests that
the construction of “better guesses” is the correct direction.
Nonetheless, as discussed in Section 3.2, better guesses does
not necessarily mean “improved quantum chemical approxi-
mate Hamiltonians” (i.e. closer to the converged Fock matrix),
but rather the construction of simpler, systematic Hamiltonians
specifically optimized for the learning task.

Besides the rather simple organic molecules of QM7, we
tested the accuracy of the best performing SPA™M represen-
tation (LB) on larger molecules, transition metal complexes,
and conformers. Even in these more challenging chemical
situations, SPA™ shows the same relative performance
with respect to existing representation as in QM7 (see ESI,
Section IIt).

© 2022 The Author(s). Published by the Royal Society of Chemistry
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3.2 Physics and noise

In general, the accuracy of the different SPA™M representations
(Fig. 1) follows the same trend as the complexity of the under-
lying SCF guess. This result seems to suggest that the more
physics is included in the approximate Hamiltonian, the easier
is the learning exercise for the corresponding SPA™M repre-
sentation. To test the robustness of this conclusion, we con-
structed a test representation using the converged PBEO
Hamiltonian matrix (Fig. 2, label PBEO). As already mentioned,
any representation based on the converged Fock matrix is both
too expensive and worthless for practical machine learning,
since it is always possible to (upon diagonalization) use the
converged wavefunction to compute any desired quantum
chemical property. Nonetheless, this test is essential, as it
pushes the physics of SPA™M to the limit. Fig. 2 shows that
PBEO is not the best representation when regressing the atom-
ization energies and even some SPA™Ms outperform its accu-
racy. As the SCF changes the eigenvalues of each molecule
independently from the others, the relationship between the
feature vectors also varies unconcertedly. This sparsification of
the data in the representation space effectively decreases the
correlation between the features and the target properties and
worsens the learning.

The performance of the converged Fock matrix versus more
approximated (and computationally cheaper) Hamiltonians
shows that “more physics” is not necessarily the key to better
learning. Yet, the relative ordering of the guess Hamiltonians

QM7: Atomization energy
256.0 ‘ ;
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. LB+0.005 random
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Fig. 2 Learning curves (in logarithmic scale) of atomization energies
for SPA™M based on the converged PBEO Fock matrix and on the LB
Hamiltonian, with an increasing (pseudo-)random perturbation added
to the representation vector. The perturbation max. magnitude is re-
flected in the legend. For comparison, a learning curve for a fully-
random representation is shown. All the Hamiltonians (including
converged PBEO) were evaluated in the MINAO* minimal basis.
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suggests that higher-quality potentials correlate with the best
representations. The question associated with the relevance of
the physics could be generalized and one could ask if there is
the need for any physics at all or random featurization could
lead to the same (or better) results.”” In addition, SPA"M
representations are so small (33 features for QM7) with respect
to the size of the dataset (7165 molecules), that the learning
could be the result of random correlations between the features
and the target properties. Overall, it is still unclear if any
random (i.e. not physically motivated) perturbation of SPA™M
could lead to better learning. To analyze the behavior of our
most robust representation upon random perturbation, we
modify SPA"M-LB by adding an increasing (pseudo-)random
perturbation sampled from a uniform distribution and testing
its accuracy on the QM7 database.

Fig. 2 shows that, for the smallest perturbation tested
(magnitude max. 0.001), the original and the modified learning
curves are almost indistinguishable, except for a non-significant
difference due to the shuffling of the training set. As the allowed
random noise increases, we observe the systematic and
progressive worsening of the learning exercise towards the limit
of physically meaningless random numbers. As the magnitude
of the perturbation increases, the physics in the representation
fades, the error increases, and the learning curves become
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flatter. This demonstrates that the performance of SPA™M is not
just a consequence of a random correlation between the feature
vectors and the properties.

3.3 Core and valence

Besides any consideration about the relative importance of
physics, the SPA™M representations are still the eigenvalues of
(approximate) electronic Hamiltonians. As such, it is relevant to
try to rationalize how the different parts of SPA™M contribute to
learning. As for any set of eigenvalues, it is always possible to
divide any SPA™M representation into its core and valence parts.
The core orbital energies do not vary significantly for the same
atom in different molecules and therefore naturally track the
number and the types of nuclei across the database. In contrast,
the valence set is a fingerprint of the chemistry and the bonding
patterns proper to each molecule.

Fig. 3 shows the learning curves for the SPA™Ms based on the
LB Hamiltonian with core, valence, and the full occupied
eigenvalues sets taken as representation vectors. While the
valence set results in consistently better learning than the core,
both are necessary to achieve the overall accuracy of SPA"M-LB
with the exception of the HOMO energies. For the HOMO
eigenvalues, the valence set can be considered an alternative
type of A-learning,’® where the approximate baseline

QM7: Dipole moment
0. 35 ‘

| -~ core
—o- valence
—— full

71 6 1 433 2866 5732

Training set size

QM7: HOMO-LUMO gap

wﬁ

0.25
716

1433 2866
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Fig. 3 Learning curves (in logarithmic scale) for the SPA?Ms based on the LB Hamiltonian with core, valence, and the full occupied eigenvalues
sets used as representations. All the Hamiltonians were evaluated in the MINAO?*® minimal basis.
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(approximate HOMO energies) are the input of the kernel itself,
rather than corrected a posteriori. Importantly, core orbital
energies are not sufficient information to accurately regress the
atomization energies, but the valence set error is also twice as
large as the total SPA™M. Therefore, while the information
about the chemical bonding is more relevant for the general
performance, the information about the number and the type of
nuclei in the molecules is essential to improve learning.

3.4 Spin and charge

Existing QML representations such as SLATM are computed as
non-linear functions of atom types and internal coordinates.
However, from a quantum chemical perspective, this informa-
tion is not sufficient to fix the (ground-state) wavefunction, which
also requires knowledge of the number of electrons (N). Omitting
the charge (and spin) information is not particularly problematic
under the assumption of electroneutrality in the dataset, i.e. the
number of electrons in each molecule is exactly equal to the sum

of the nuclear charges (N = ZZ,). Nonetheless, existing
I

geometry-based representations are not suitable for datasets of
molecular systems with different charges (spin states), since the
injectivity rule is violated (the same geometry would correspond
to multiple target properties) or, in the milder case of relaxed
geometries, the representation-to-property mapping is not
smooth. By construction and by choice of the electronic Hamil-
tonians as the key ingredient, SPA™M representations include
naturally both the structural (geometry and atom type) and the
electronic (spin and charge) information and they are applicable
with no modification to any molecular database.

To demonstrate the difference in performance between
geometry- and Hamiltonian-based representations on more

QM7’: M and M+ QM7’: M an

d M+
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complex databases, we randomly selected one-half of the QM7
set (3600 molecules) and computed at fixed geometries the
properties of the double cations (M) and radical cations (M"").
In this way, we constructed three additional sets: (a) neutral
molecules and double cations (7200 molecules, 5760 in the
training and 1440 in the test set); (b) neutral molecules and
radical cations (7200 molecules, 5760 in the training and 1440
in the test set); and (c) neutral molecules, double cations, and
radical cations (10 800 molecules, 8640 in the training and 2160
in the test set). We set the learning task to predict the HOMO
(SOMO for radicals) orbital energies and report the learning
curves in Fig. 4. As expected, CM and SLATM fail the learning
exercise and the curves are flat for all three sets.

SPA™M representations include the charge information on
two separate levels. First, as we only include the occupied space,
the length of the representation changes if we remove electrons.
For instance, the SPA™M representations of neutral
molecules M and their double cations M"" differ by one entry in
length. Second, some of the approximate potentials at the origin
of SPA"M, e.g. LB, SAP, and SAD, are sensitive to electronic
information and result in different Hamiltonian matrices when
the number of electrons differs. For instance, the LB Hamilto-
nian relies on a constraint that fixes the charge corresponding
to the effective Coulomb potential (LBm in Fig. 4). While both
LB (with no modified potential) and LBm learn, it is evident
from Fig. 4, that SPA"™M-LBm provides more robust predictions,
resulting in errors one order of magnitude smaller than SPA™M-
LB at small training set sizes.

The spin-state information is also readily included in
SPA™Ms by the same method used in traditional quantum
chemistry: separating the a and B-spaces and concatenating
o and B orbital energies in a matrix of size N, x 2 (the p-orbitals

8QM?’: M, M+, and M+
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Fig.4 Learning curves (in logarithmic scale) of HOMO energies for the SPA"Ms based on the LB Hamiltonian (LB and LBm) compared to CM and
SLATM for the artificial sets including neutral molecules (M) taken from QM7 and their double cations (M**) and/or radical cations (M**).
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column is padded with zeros). Using the Laplacian kernel
function, this choice ensures that for closed-shell molecules the
similarity measures are the same as described above when the
fingerprint is a single vector of length N/2.

Hamiltonian-based representations such as SPA™M outper-
form geometry-based representations in every database where
electronic information is fundamental to distinguish molecules.
The three sets proposed above are an example, but they are also
quite peculiar since we do not allow geometries to relax. As
a more realistic example of a database where electronic infor-
mation is essential, we compare the overall performance of
SPA"™M (LBm Hamiltonian) and SLATM on the L11 set.*® L11
consists of 5579 small molecular systems (single atoms and
atomic ions were excluded from the original set) characterized by
a substantial diversity in terms of chemistry, charge, and spin
states. From L11, 4463 molecules were randomly selected as the
training set and the remaining 1116 - as the test set. To assess the
accuracy of the representation, we set the norm of the dipole
moment (for charged systems the origin is chosen to be the
geometric center) as the learning target and report the learning
curves in Fig. 5. Since there are no identical geometries in the set,
the injectivity rule is not violated for SLATM, and the represen-
tation learns. However, even with relaxed structures, geometry-
based representations struggle with a database containing
mixed electronic information since they are not smooth with
respect to the target property (similar geometries can correspond
to significantly different values), and SPA™M, incorporating
seamlessly the electronic state information, performs better.

3.5 Efficiency

The efficiency and computational complexity of SPA™M repre-
sentations depend on the choice of the underlying guess
Hamiltonian, the simplest guesses (core, GWH) being the fast-
est to evaluate. Formally, as the framework requires the diago-
nalization of a matrix, the overall complexity in big-O notation is
O(N®) where N is a measure of the system size. SLATM, despite
being a much larger representation (see Fig. 1e), also scales as
O(N®), since it includes three-body interactions. Formal

5 L11: Dipole moment

MAE, a.u.

1115 2231 4463
Training set size

0.5
557

Fig. 5 Learning curves (in logarithmic scale) of dipole moments for
the SPAYM based on the LB Hamiltonian (LBm) compared to SLATM for
the set of ref. 50 (L11).
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SLATM and SPA™M representations and the molecular kernels on (a)
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complexities for a single molecule are a useful analysis tool, but
they are not always sufficient to characterize the efficiency of the
representations on a full dataset. In this case, practical exam-
ples are a more compelling demonstration of the relative merits
of the SPA™M philosophy.

For this reason, we report in Fig. 6 the CPU timing for SLATM
and SPA”M-LBm on the QM7 and the L11 (ref. 50) databases
(more details in the Computational methods). For both repre-
sentations, we recorded the time for building the representation
itself and the time for constructing the kernels.

As SPA™M representations based on occupied orbital eigen-
values are particularly compact, SPA"M-LB is significantly more
efficient than SLATM in the kernel construction for both data-
bases. This result follows directly from the fact that, for a fixed
dataset size, the complexity of the kernel construction depends
only on the number of features (SLATM: 10 808 features on QM7
and 2 49 255 on L11; SPA™M: 33 on QM7 and 64 on L11).

The relative efficiency of the construction of the represen-
tation itself is more sensitive to the dataset. To better under-
stand the behavior of both SLATM and SPA™M-LBm it is crucial
to clarify the composition of each database. QM7 includes
molecules up to 7 non-hydrogen atoms with a limited chemical
complexity (H, C, N, O, S). In contrast, L11 contains all the
elements hydrogen through bromine (noble gases excluded)
and as such includes a significantly diverse chemistry. SLATM is
faster to evaluate than SPA™M-LB in the QM7 dataset, as the
amount of different many-body types is very limited. However,
on more complex databases with diverse chemistry and atom
types, representations like SLATM become heavy in both
computer time and memory (SLATM binary file occupies 11 GiB
of memory vs. 5.5 MiB of SPA™M). As the cost of the guess
Hamiltonian does not depend on the number of different atom
types, SPA™M representations are extremely efficient for chem-
ically complex molecular databases.

4 Conclusions

In this work, we proposed a lightweight and efficient quantum
machine learning representation, capable of naturally
accounting for the charge state of molecules by leveraging the
information contained in standard quantum chemical “guess”

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Hamiltonians. Using the QM7 and the L11 databases, we tested
the performance of a hierarchy of representations for a set of
four representative quantum chemical properties. The perfor-
mance of the SPA™M representations follows the same quali-
tative trend as the one describing the amount of physics
encoded in the parent approximate Hamiltonian. Nonetheless,
we also find that the trend stops when pushing the physics to
the limit and using the fully converged Fock matrices to
construct the representation. Since increasingly adding physics
is not the roadmap for the potential improvement of the SPA"M
representations, alternative strategies have to be analyzed.
Sharing the same conceptual origin of this work, an alternative
strategy for future improvement consists in representing
molecules for ML using the approximate Hamiltonian matrix
itself, its eigenvectors, or the resulting density matrices.
Together with the SPA™Ms, these descriptors form a more
comprehensive class of Hamiltonian-centered fingerprints
leveraging the simplest, computationally efficient, and robust,
quantum chemical trick: SCF guesses.

Data availability

The data that support the findings of this study are openly
available in Materials Cloud at https://
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SPAHM is available in Q-stack (https://github.com/lcmd-epfl/
Q-stack) and as a separate Github repository at https://
github.com/lcmd-epfl/SPAHM.
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