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Self-learning entropic population annealing for
interpretable materials designt

Jiawen Li,? Jinzhe Zhang,® Ryo Tamura*?*“® and Koji Tsuda & *@<d

In automatic materials design, samples obtained from black-box optimization offer an attractive
opportunity for scientists to gain new knowledge. Statistical analyses of the samples are often
conducted, e.g., to discover key descriptors. Since most black-box optimization algorithms are biased
samplers, post hoc analyses may result in misleading conclusions. To cope with the problem, we
propose a new method called self-learning entropic population annealing (SLEPA) that combines
entropic sampling and a surrogate machine learning model. Samples of SLEPA come with weights to
estimate the joint distribution of the target property and a descriptor of interest correctly. In short
peptide design, SLEPA was compared with pure black-box optimization in estimating the residue
distributions at multiple thresholds of the target property. While black-box optimization was better at the
tail of the target property, SLEPA was better for a wide range of thresholds. Our result shows how to
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Introduction

Automatic design of materials based on black-box optimization®
has shown tremendous success in developing functional
materials including organic chemical compounds,> inorganic
materials® and biopolymers such as peptides* and proteins.”
Popular methods of black-box optimization include Bayesian
optimization,® and evolutionary algorithms.*” Given a candi-
date material, an experiment is regarded as a black-box function
that returns its property value such as bioactivity,® thermal
conductivity’ or electron gain energy.'® Black-box optimization
is an iterative procedure that recommends one material or
a batch of materials for experiments at a time. It is expected to
find a material with a favorable property with a minimum
number of experiments. Notice that an experiment is often
replaced with a simulator or a prediction model.

Samples obtained from black-box optimization offer an
attractive opportunity for scientists to gain new knowledge.
Statistical analyses of the samples are often conducted to
discover new structure-property relationships,’ or key
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information (ESI) available. See
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reconcile statistical consistency with efficient optimization in materials discovery.

descriptors that explain their favorable property.”* However,
such analyses have to be done with caution, because most of the
existing black-box optimizers are biased samplers. Fig. 1a and
b show a schematic picture about this issue. This paper aims to
develop algorithmic methods that achieve efficient optimiza-
tion and statistical consistency at the same time.

Density-of-states (DoS) refers to the probability distribution
of observables of a physical system such as spin glass.”
Observables may include energy, pressure and other physical
parameters. If DoS is obtained, the free energy of the target
physical system can be evaluated and the system is regarded as
understood. Exact estimation of DoS requires enumeration of
all possible physical configurations which involves prohibitive
computational cost. Estimation of DoS is nevertheless possible
with sampling methods including the Wang-Landau method*®
and stochastic approximation Monte Carlo." These methods
are known under the umbrella term entropic sampling. They
have mechanisms to obtain samples from low energy regions,
which are hardly found by naive sampling procedures due to the
small occurrence probability. In this paper, we use entropic
sampling in the context of interpretable materials design. The
target property and a descriptor are designated as the energy of
the system and an additional observable, respectively, and the
joint distribution is estimated as DoS.

Among several methods of entropic sampling, we employ
entropic population annealing (EPA)* as our base method, and
extend it to self-learning EPA (SLEPA) by incorporating
a machine learning model. In both methods, Boltzmann
distributions at multiple temperatures are introduced and
some samples are obtained from each distribution using
Markov chain Monte Carlo (MCMC) (Fig. 1c). As the
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Fig.1 Estimation of the joint distribution of the target property and a descriptor of interest. (a) Ground-truth distribution derived from all possible
materials. (b) Black-box optimization creates a number of samples, but simply plotting them leads to a misleading picture. (c) In self-learning
entropic population annealing, samples are obtained at multiple temperatures. They are integrated with weights to yield an accurate estimation

of the whole distribution.

temperature is decreased, the samples are gradually concen-
trated towards optimal solutions. Then, DoS is estimated from
the samples using the multiple histogram method (MHM)."®
The difference between EPA and SLEPA is that EPA accesses the
energy (i.e., target property) whenever a new sample is created,
while SLEPA uses a predicted value from the surrogate machine
learning model. SLEPA tends to be more cost effective, but the
distribution shift made by the prediction error has to be cor-
rected eventually in DoS estimation.

In computational experiments, SLEPA and EPA were eval-
uated in a peptide design problem, where scientists are
interested in finding sequential signatures that determine the
properties.”” We are thus committed to estimating the residue
distributions of qualified sequences that correspond to a small
percentile in the target property. Multiple qualification
thresholds ranging from 0.01 to 10 percentiles were used.
When an evolution strategy (ES),® a pure black-box optimizer,
was applied, its estimation accuracy was best for the tightest
thresholds. Simple random sampling was best for the loosest
thresholds. For a wide range of thresholds, however, SLEPA
and EPA were better than them. SLEPA showed better esti-
mation accuracies than EPA, indicating that the use of
a surrogate model enhances sample efficiency. This result
illustrates how to reconcile statistical consistency with effi-
cient optimization and shows the usefulness of our approach
when acquiring knowledge is more important than
optimization.

Method

Observables and density of states

Let X denote the set of all possible materials. In black-box
optimization, we aim to find x € X that minimizes the target
property e(x). Obtaining e(x) for x incurs certain cost, because it
is done via an experiment or numerical simulation. In the
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following, e(x) is referred to as energy and the acquisition of e(x)
is called observation. In this paper, we deal with the research
tasks where the relationship between e(x) and d(x), a descriptor,
is of interest. More specifically, we need to find the expectation
value of an observable O(d(x), e(x)), i.e., a function depending on
e(x) and d(x),

= 0. e()

xeX

(0) (1)

The observable is determined according to users' interest.
Let us suppose that one is interested in the descriptor value to
yield a favorable target property, e(x) = ¢, where ¢ is a qualifi-
cation threshold. The observable should then be set as O(d(x),
e(x)) = d(x)I(e(x) = 6), where I(-) is the indicator function which
is one if the condition in the parentheses is satisfied, zero
otherwise. Also, if one needs to draw a two dimensional distri-
bution as in Fig. 1, the density at the grid e; < e(x) < ey, d) = d(x)
= dj, can be obtained by setting O(d(x), e(x)) = I(d, = d(x) = dy,, e
= e(x) = ep).

In understanding our method, it is beneficial to reformulate
(0) from another viewpoint, i.e., histogram-based view. Let E
and D denote all possible values of e(x) and d(x), respectively.
The observable expectation of eqn (1) can be rewritten as

(0) = 3500, dynfe, d), ©)
where
n(e,d) = ﬁZl(e(x) — I(d(x) = d) 3)

is called density of states (DoS) with respect to e and d. The DoS
n(e) of target property e(x) without considering the descriptor
d(x) can be defined in a similar way.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Multicanonical sampling

In multicanonical sampling,” we consider a family of distri-
butions parameterized by inverse temperature £,

Py(x) = exp(—pe(x) + /), (4)
where f corresponds to the normalization factor,
/= log > exp(~pe(x)), (5)
xeX

called free energy. Let us assume that N; samples {x;};_, .~ at
inverse temperature @; (i = 1, ..., 7) are obtained using
a sampling technique. Here, 7 is the number of inverse
temperature. To generate {xz]}jzl,---,Nu there are several possible
techniques, but we employ PA*® as detailed in the next subsec-
tion. Using the samples, the observable is estimated as

(0) = D> rile(xy)) Ole(xy), d(xy) Jexp (Bie(xy) — £i),  (6)

i
where r(e) denotes non-negative weight parameters,
>"ri(e) = 1, and f; is the normalization factor at (8;. The weights
i

are determined so that the estimation error of DoS with respect
to e, n(e), is minimized.*® By using MHM which will be explained
later, r,(e) and n(e) are estimated. A consistent estimate of (O)
can be obtained via correction by weights r{e) (see Fig. 1c).

Population annealing

Population annealing (PA) was developed by Hukushima and
Iba* as an improved form of simulated annealing.*® In recent
years, it has been applied to various problems in physics.>** In
the simplest form of simulated annealing, an initial particle x is
randomly chosen, and the increasing sequence of 8 = 84, ..., 8.
is given (see Fig. 2a). Hereinafter, the maximum and minimum
inverse temperatures are denoted as Bmax = 8. and Bmin = B4,
respectively. At the i-th iteration, K; samples by Pg(x) are

(a) Simulated Annealing with Single Particle

B ﬁ\z Bs Ba Bs

Fig. 2 Simulated annealing and population annealing towards mini-
mization of the target property. Each dot represents a particle and its
color corresponds to the property value. (a) Simulated annealing
achieves minimization via MCMC sampling with gradually increasing
inverse temperature (. (b) Population annealing retains multiple
particles. When the temperature changes, resampling is performed for
adjustment to the new temperature. Some particles multiply, while
others vanish.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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generated by applying the MCMC method. One can apply any
MCMC method including Metropolis sampling and Gibbs
sampling.”> When Metropolis sampling is employed, particle x
is randomly perturbed to x’' and it is accepted with probability
min(1, Pg(x')/Ps(x)). If rejected, the particle stays the same. In
population annealing, M particles {x,,},»—1, a are used. At i-th
iteration, K; samples by P (x) are generated for each particle by
MCMC steps with fixed (;, and N; = M x K;. Then, the particles
are resampled to fit to the next canonical distribution Pg_(x). In
this resampling, the probability for x,, is determined as

qm < exp(_(ﬂﬁl - ﬂi)e(xm))- (7)

The particle set is updated by drawing M particles with
replacement. As a result, a particle may vanish or multiply (see
Fig. 2). Reweighting is similar to natural selection in evolution
algorithm,” because poor particles with high e are more likely to
vanish. It is known that, when the temperature difference |81
— B;| is too large, resampling may lead to loss of diversity, i.e., all
particles end up having the same ancestor.”

Multiple histogram method

MHM is a numerical algorithm for estimating the DoS from the
samples of Boltzmann distributions at multiple temperatures.*®
Let us assume that N; samples are obtained at temperature (; by
PA, and denote the number of samples with energy e as i;(e). In
MHM, using weight parameters r,(e), DoS is obtained as

n(e) = er(E)Pf(f—')eXp(ﬁie —1i); (8)

where p;(e) is the Boltzmann distribution at temperature 8;, and
fi is the free energy described as

fi = -logd n(e)exp(-ye). ©)

ecE

The weights r,(e) are determined to minimize the estimation
error of n(e). MHM assumes that 7,(e) is subject to Poisson
distribution whose mean is N;n(e)exp(—@;e + f;). Since the vari-
ance of a Poisson distribution is equal to its mean, the variance
of hye) is described as V[h(e)] = Nin(e)exp(—@Be + fi). So the
variance of p{e) = he)/N; is derived as

n(e)exp(—Bie +1i)

Vipi(e)] = —————-

N (10)

Due to the statistical independence of samples at different
temperatures, we obtain the estimation error of n(e), i.e., the
variance of n(e) as

Vel =Y

i

[r* (e)n(e)exp(Bie — f7)] - (11)

The optimization problem for the weights r{e) is then
defined as

Digital Discovery, 2022, 1, 295-302 | 297
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minVn(e)], s.t., Zr,-(e) =1. (12)
Using a Lagrange multiplier, we obtain
o) = BT (13)

= SN exp(Be+ )’

Substituting it to eqn (8), we obtain the optimized repre-
sentation of n(e),

Shi(e)
T SN exp(Be+f)

n(e) (14)

The DoS n(e) and free energy f; are obtained by solving the
nonlinear system consisting of eqn (14) and (9) by fixed point
iteration. When f; is obtained, ,(e) and (O) can be estimated.

Self-learning entropic population annealing

Like EPA, self-learning entropic population annealing (SLEPA)
uses M particles and alternates MCMC steps and resampling.
The difference is that the energy e(x) is replaced by the predic-
tion by a machine learning model e(x) (see Fig. 3). In our
experiments, we used Gaussian process regression** as the
machine learning model. The model is updated as more and
more training examples are available. The first model é;(x) is
trained by initial M particles and their energies. The i-th model
corresponding to ; is trained by iM examples obtained up to the
point. Notice that the number of MCMC steps K; does not affect
the number of observations in SLEPA. So K; can be set to
a reasonably large value to ensure the convergence of MCMC
steps. Populations of samples obtained from SLEPA are based
on the Boltzmann distributions of predicted energies. Before
applying MHM, these populations are corrected by resampling.
The weight of the j-th particle obtained at §; is described as

qy o expl—Bie(xy) — ex))]. (15)

Machine learning (Self learning)

View Article Online
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Results
Estimation of residue distribution

To illustrate how SLEPA can be used in practice, short peptides
of length five are designed. Recently, antimicrobial peptides
have been of increasing interest to address the threat of
multidrug-resistant pathogens." Strong hydrophobic moment*
is a distinct feature of antimicrobial peptides.”” Motivated by
this fact, the target property e(x) is designated as hydrophobic
moment which is computed using a prediction model imple-
mented in python library modlAMP." Given a budget on the
number of observations, our goal is to estimate the residue
distribution for qualified sequences e(x) < 6, where ¢ is a qual-
ification threshold. In SLEPA and EPA, the number of iterations
is set to T = 20, and the inverse temperatures are set between
Bmin = 0 and B = 10 with equal interval. In an MCMC step,
aresidue at a randomly chosen position is changed to a random
residue (i.e., one residue flip). The number of MCMC steps of
SLEPA is determined as K; = 100, while that of EPA is set to one
to save the number of observations. As the surrogate model of
SLEPA, we use Gaussian process regression implemented in
PHYSBO.* To train the surrogate model, each residue is enco-
ded to a seven dimensional feature vector called Tscale.”® As
baselines, we employ simple random sampling and (u, A)
evolution strategy (ES).® In the ES, A particles are retained. In
each step, the energies of all particles are observed and top u
particles are chosen. A new generation of A particles are
generated by applying one residue flip to the chosen ones. The
number of particles A and the number of iterations are aligned
with SLEPA and EPA, and u is fixed to 10% of A. For simple
random sampling and ES, the residue distribution is con-
structed by counting.

Fig. 4 shows the Hellinger distance of the residue distribu-
tion obtained by each method to the ground truth distribution
obtained by complete enumeration. The Hellinger distance is
defined as the Euclidean distance of square roots of probabili-
ties. It is robust against zero probabilities. In all methods, the
distance gets smaller as the number of particles M is increased.
In all ranges of M, the performance of ES, one of our baseline
methods, deteriorates as the qualification threshold is relaxed.
This is intelligible, because ES performs pure optimization and

::'t')a'f‘at?: L{azst ;tites if B4 i Tincrease of training data Training of surrogate model | | . [Resampling of states First states at ;.
mim=t,..M | =P | (Em}m=1... ' {D, {Zm, e(@m)}mer,.. 11} Eip1(z) ' 7 | Gm o< exp[—Bis1Eit1(Tm) + Bii(Tm)] {&m}m=1,...u0
i=1 =0 el | | —, e e |

| MCMC sampling with 3811 ( K; MC steps) |

— W(@m — a7,) = min (1,exp[—Fir1{Eir1(a7,) — Eira(zm)}]) | €

i—=i+1

In each MC step, itis NOT necessary to observe {e(a},) }m=1,...a.
Sampled data

{zij}i=1,..v (Ni= M)
Resampling data are used for MHM.
4ij o exp[=Bi(e(zi) — &(i;))]

Fig. 3 Flow of self-learning entropic population annealing (SLEPA). SLEPA alternates MCMC steps and resampling based on an energy function
predicted by a machine learning algorithm. After all samples are obtained, the distribution shift made by prediction error is corrected via
additional resampling. Finally, the DoS is derived from resampled populations.
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Fig. 4 Hellinger distance of the residue distribution to the ground truth distribution against the qualification threshold when 8.« = 10 and 7 =
20. Each plot corresponds to a different number of particles M. In all plots, the solid line and shaded area indicate the mean and standard

deviation of five runs, respectively.

does not have a mechanism to keep statistical consistency.
Simple random sampling, on the other hand, performs poorly
when the qualification threshold is small due to lack of any
optimization mechanism. SLEPA and EPA show stably good
results at all qualification thresholds, reflecting the fact that
these methods are designed to optimize while maintaining
statistical consistency. SLEPA exhibits better results than EPA in
most cases. This result indicates that the use of machine
learning is effective in increasing the number of MCMC steps to
improve distribution estimation. The best distribution esti-
mates (M = 200) by SLEPA, EPA, and ES are shown in Fig. 5.

Quality of samples

Fig. 6a shows the best target property against the number of
particles. In addition, Fig. 6b and ¢ show the number of unique
samples qualifying the threshold. While ES, a pure optimization
algorithm, is the best, SLEPA shows a competitive performance
when the number of particles is relatively large. EPA is clearly
behind SLEPA, indicating that the surrogate model improves
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optimization substantially. To get an idea about sample diver-
sity, Fig. 6d shows the ratio of the number of unique samples to
the total number. The ratio of ES is particularly low, because the
samples are concentrated around the optimal point and
duplications are likely to happen. Comparing SLEPA and EPA,
the ratio of SLEPA is much higher due to the difference in the
number of MCMC steps. Since the samples of SLEPA are well
mixed by MCMC, there is a smaller chance to create
duplications.

Number of MCMC steps

So far, the number of MCMC steps of EPA was set to one to keep
the number of observations equal. In Fig. 7, we compared
SLEPA and EPA with the same number of MCMC steps. When
the number of MCMC steps of EPA is increased to 100, it was
better than SLEPA in terms of the accuracy in distribution
estimation and the number of qualified samples. This result
shows the advantage of EPA that it can always make use of the
correct energy instead of the predicted one. Although EPA was

1 percentile

5
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Fig. 5 Residue distributions of qualified peptides obtained by complete enumeration (i.e., ground-truth), self-learning entropic population
annealing (SLEPA), entropic population annealing (EPA), and evolution strategy (ES). For each method, the best estimate in terms of the Hellinger
distance to the ground truth among five runs is shown. The number of particles is 200.
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not performing well under a budget on observations, it is still
a viable choice, if observation can be done cost effectively with
fast simulation or a certain prediction model. See the ESIT for
experimental results with other parameter settings.

Discussion

We have presented how automatic materials design can be
made interpretable by introducing ideas from statistical physics
and machine learning. In a benchmarking problem, it is
confirmed that EPA and SLEPA have the desired property of
accurate distribution estimation. So far, algorithmic methods
for automatic materials design have been developed towards
better optimization efficiency, paying minimum attention to
statistical bias. Hopefully this paper sheds light on statistical
consistency that is crucially important in correct understanding
of materials.
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Fig. 7
Number of qualified samples.
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In our experiments, SLEPA with a Gaussian process was
better than EPA, but the performance of SLEPA depends on the
choice of the surrogate model and its prediction ability. The use
of a surrogate model can be disadvantageous in the occasions
where the model works poorly.

While SLEPA can reveal correlations between variables, it is
well known that correlation does not necessarily mean causa-
tion.”” According to multiple studies, however, if the joint
distribution satisfies certain criteria, it is possible to identify the
causal direction from it.*®* The combination of SLEPA and
such causal discovery methods may detect causal relationships
among variables about materials properties.

The parameters of SLEPA consist of the number of MCMC
steps K; the number of particles M, the inverse temperature
array §; and the hyperparameters of the adopted machine
learning model. First of all, the number of MCMC steps should
be set as large as possible to ensure the convergence in each

(

O
N

3500 A
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2500 -

2000 A

1500 4

1000 A

500 A

Number of qualified samples

0

102 107 100 10t
Percentile for
qualification threshold

(a) Hellinger distance to the ground truth distribution at M = 200. SLEPA (K; = 10 and 100) and EPA (K; = 1, 10, and 100) are compared. (b)

© 2022 The Author(s). Published by the Royal Society of Chemistry
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iteration, but setting it over 1000 would be meaningless. For
accurate DoS estimation, the number of particles M should be
large too, but it is also affected by the capacity of the evaluator.
For example, if SLEPA is used together with a simulator that can
evaluate z materials in parallel, setting M to a value larger than z
may result in unwanted latency. The inverse temperature array
is determined first by setting the range [Bmin, Smax] and dividing
it into 7 equally spaced points. As mentioned, a small 7 leads to
a large change of temperature that is harmful to resampling,
while a large 7 causes slow optimization. As in most black-box
optimizers, we start from uniformly random samples, thus
Bmin = 0. Setting Bmax would be the trickiest part, because, if too
high, the probability is concentrated on one particle in almost
all iterations and, if too low, the accuracy of DoS would be poor.
To set Bmax appropriately, we recommend computation of the
unnormalized probability exp(—Bmaxe(x)) for all initial examples
to check if the probability is concentrated or scattered too
much. Finally, the hyperparameters should be set according to
the guideline of the machine learning model. In our experi-
ments, we used the automatic hyperparameter initialization
and update functions of PHYSBO.**

The integration of statistical physics, machine learning, and
materials design offers a great opportunity of algorithmic
development. When SLEPA is applied in the latent space of
variational autoencoders,” highly structural objects such as
chemical compounds® and crystal structures® can be gener-
ated. To solve multiobjective optimization problems, SLEPA can
be extended to estimate multidimensional DoS.?* In addition,
other entropic samplers such as replica-exchange Monte
Carlo,"® broad histogram®® and transition matrix Monte Carlo**
may find their own advantages in the context of materials
design.

Data availability

Additional experimental results are summarized in the ESI.{ An
implementation of SLEPA is available at https://github.com/
tsudalab/SLEPA and https://doi.org/10.5281/zenodo0.6339987.
The code to reproduce the results in this paper is available at
https://doi.org/10.5281/zenodo0.6374926.
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