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h neural networks for organic
cages†
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The development of accurate and explicable machine learning models to predict the properties of

topologically complex systems is a challenge in materials science. Porous organic cages, a class of

polycyclic molecular materials, have potential application in molecular separations, catalysis and

encapsulation. For most applications of porous organic cages, having a permanent internal cavity in the

absence of solvent, a property termed “shape persistence” is critical. Here, we report the development of

Graph Neural Networks (GNNs) to predict the shape persistence of organic cages. Graph neural

networks are a class of neural networks where the data, in our case that of organic cages, are

represented by graphs. The performance of the GNN models was measured against a previously

reported computational database of organic cages formed through a range of [4 + 6] reactions with

a variety of reaction chemistries. The reported GNNs have an improved prediction accuracy and

transferability compared to random forest predictions. Apart from the improvement in predictive power,

we explored the explicability of the GNNs by computing the integrated gradient of the GNN input. The

contribution of monomers and molecular fragments to the shape persistence of the organic cages could

be quantitatively evaluated with integrated gradients. With the added explicability of the GNNs, it was

possible not only to accurately predict the property of organic materials, but also to interpret the

predictions of the deep learning models and provide structural insights for the discovery of future materials.
1. Introduction

Porous organic cages are a class of molecules with an internal
cavity that is made accessible to guest molecules via at least two
molecular windows (“intrinsic porosity”).1,2 Poor packing of
large organic cages in the solid-state results in accessible
channels between the individual molecules (“extrinsic
porosity”). The cavity of porous organic cages offers potential
applications including encapsulation,3 molecular separation,4–7

and catalysis.8 Thanks to their molecular structure, organic
cages are usually soluble in organic solvents, allowing for
solution processing into thin lms or membranes both in the
crystalline and amorphous solid state.9 Unlike other porous
materials such as zeolites and metal–organic frameworks
(MOFs), cages lack an extended network of bonds in the solid
state. The absence of three-dimensional chemical bonding
allows the solid-state structures to undergo large rearrange-
ments between polymorphs, which has been used in the crea-
tion of molecular crystals exhibiting “on/off” extrinsic porosity
switching.10 However, such exibility also means that individual
cage molecules are more likely to collapse and lose their
ces Research Hub, White City Campus,
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the Royal Society of Chemistry
intrinsic porosity as a result of desolvation,11 which is known as
a lack of “shape persistence”. The shape persistence of organic
cages is difficult to predict without employing computational
modelling.11,12 High-throughput computational screening has
been used in combination with robotic synthesis for the
discovery of novel organic cages, but the number of structures
reported experimentally is still relatively low, especially
compared to isoreticular MOFs.12 The cost of computational
screening of organic cages is signicantly cheaper than experi-
mental measurements, however modelling larger systems
requires specialist soware and is still time consuming, espe-
cially for organic cages that oen have several hundred atoms.

Machine learning (ML) has many potential uses within
material discovery, including to reduce the cost of property
calculation compared to carrying out computational simula-
tions (especially via quantum mechanical methods) and to
remove the need for specialist modelling packages. This allows
researchers to focus experimental synthesis and measurement
effort on the most promising materials, reducing wasted labo-
ratory resources,13,14 as well as to help facilitate the exploration
of larger chemical space.15–17 Apart from the widely reported ML
models for molecular discovery, especially drug discovery, the
applications of ML to porous materials such as MOFs have
gained signicant interest.18 Various structural and geometrical
descriptors for MOFs have been developed for the prediction of
their gas sorption,19 and open-source databases recording the
Digital Discovery, 2022, 1, 127–138 | 127
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structures with experimental and/or computational properties
have been published and the diversity of the chemical space has
been examined.20 The development and application of ML to
modelling the properties of organic cages, on the other hand, is
less reported.

We have previously developed a computational database of
>60 000 organic cages formed through a range of reaction
chemistries via a [4 + 6] reaction of four tritopic and six ditopic
building blocks and studied their behaviour using molecular
dynamics (MD) simulations.21 Each cage was allowed to evolve
at an elevated temperature to sample different regions of the
conformational potential energy surface. A subset of structures
along the MD trajectory was then optimised and the resulting
lowest energy conformations were analysed for shape persis-
tence, following heuristic rules based on the expected number
of windows and the observed window diameters. We then
modelled the computed shape persistence of these cages using
random forest models with Morgan ngerprints – vectors
indicating the presence of specic substructures within
a molecule – as the input features to the model. We found the
models to be very effective when applied to systems with the
same reaction chemistry, for example a random forest model
trained on cages formed from imine chemistry was effective at
predicting shape persistence in other imine cages.21 However,
the random forest model did not translate well between cages
formed from different reaction mechanisms: an imine-trained
random forest model was not as effective at predicting the
shape persistence of a cage formed by alkyne metathesis
chemistry. This was not surprising given that experimentally,
extremely small changes to the synthesis, for example adding
a single CH2 group to one cage precursor, could completely
invert the shape persistence behaviour.11 The prediction result
of the random forest models could not be attributed to specic
monomers of the cage or fragments of the monomers, because
the feature importance analysis did not show a strong prefer-
ence to any specic molecular features.21 Recently developed
graph neural networks (GNNs), which encode molecular infor-
mation into neural graph ngerprints with machine-learned
continuous numeric vector representation, have exhibited
improved predictive performance on various tasks including
chemical reactivity,22 compound protein interaction23 and
partial charge assignment,24 because of the exibility of such
ngerprints, especially when a larger dataset is available.25

An additional benet of prediction via GNNs is that it is
possible to identify key building blocks or molecular fragments
contributing to the models' predictions through calculating
attribution scores of the input features. Sundararajan et al.
developed the integrated gradients approach to compute the
contribution of input features for ML tasks and highlighted
a case study of explainingmolecular bindingmechanisms using
integrated gradients.26 McCloskey et al. calculated the attribu-
tion score of fragments of molecules with a hypothesised
binding mechanism and proposed a sanity check to determine
whether a hypothesised mechanism can be learned.27 The
explicability of ML models for predictive tasks in material and
molecular discovery has gained increasing research interest,
since explainable models can not only provide insight for the
128 | Digital Discovery, 2022, 1, 127–138
monomers and fragments that contribute exclusively to the
prediction to help future discovery, but also suggest possible
pitfalls of the models where predictions are accurate, but the
underlying chemical mechanism has not been learnt.

In this study, we developed GNNmodels to predict the shape
persistence of organic cages formed via different [4 + 6] reaction
chemistries: imine condensation, amide condensation, and
alkene/alkyne metathesis. Graph representations of the organic
cages were developed and neural ngerprints for cages were
trained using the GNN architecture. The modular structure of
organic cages allows us to represent the cage structure purely by
combining separate representations of the building blocks and
linkers. In this way, the entire connectivity information is rep-
resented more simply and avoids redundancy present if the
entire polycyclic macromolecular cage graph were used.
Furthermore, this approach allows us to easily create repre-
sentations for cages – be it by synthetic end-users or for future
development – that use different condensation chemistries
from already existing precursors. The shape persistence of the
organic cages was accurately predicted using the GNN model,
with signicant improvement of generalisability towards
unseen monomers compared to prior work with random forest
models. In addition, to obtain explicability of the prediction of
the GNNs, the integrated gradient was implemented and
computed for precursors of the organic cages and fragments of
the precursors. It was therefore possible to quantify the
contribution of precursors as well as fragments to the shape
persistence of organic cages and provide insight for the design
of future precursors for organic cages.

2. Methods
2.1 Dataset

The dataset for organic cages used here was reported in our
previous work.21 In brief, the synthetically viable library of di- and
tritopic precursors was generated based on synthetic experience,
and 118 di-topic and 51 tritopic precursor cores were included,
each with locations of functional groups marked. In this work,
the precursors with the greater number of reactive functional
groups are referred to as the “building block”, and the precursors
with fewer functional groups are referred as the “linker”. Each
precursor backbone was expanded with different functional
groups to include organic cages synthesised with different reac-
tion chemistry. The functional groups included were aldehydes,
alkynes, amines, carboxylic acids, alkenes, which are combined
using imine or amide condensation, alkyne or alkene metathesis,
and disulde formation reactions. The topologies of organic
cages were dened previously by Santolini et al.28 Here, we used
only the Tri4Di6 cages assembled from four tritopic precursors
and six ditopic precursors in a [4 + 6] reaction (example cage in
Tri4Di6 topology is shown in Fig. 1), and the previously reported
random forest models were used as a benchmark for our work.
For each pair of functional groups capable of undergoing a reac-
tion, every possible pair of precursors was used to generate a cage.
For each reaction, 6018 distinct precursor pairs were generated,
resulting in a total of 36 108 cages. A summary of the precursor
pairing for the Tri4Di6 cages is shown in Table 1.
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 The Tri4Di6 tetrahedral topology of the organic cages considered in this study. The tritopic precursor (“building block”) is shown in blue
and the ditopic precursor (“linker”) in orange. The resulting cavity and one of the four windows are highlighted in purple (right). In 3D models,
hydrogen atoms are omitted for clarity, carbon atoms are based on whether they originate from the building block (blue) or the precursor
(orange), nitrogen atoms are shown in dark blue.
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2.2 Dataset labelling

The same computational labels of shape persistence for the [4 +
6] organic cages published previously21 were used in this work,
where the shape persistence of the cages was calculated from
the geometrically optimised structures. Specically, the
conformational potential energy surface of the organic cages
was sampled using high temperature MD simulations (2 ns at
700 K using the OPLS3 force eld), followed by Polak–Ribière
conjugate gradient minimisation of 50 structures selected at
regular intervals along the MD trajectory. The cavity size,
window diameter and number of windows of the resulting
lowest energy structure for each cage were calculated using
pywindow,29 and the cages were labelled as either “collapsed”,
“not collapsed” (i.e., shape persistent), or “undetermined”
using the above parameters. If the cages did not contain the
expected four windows for a tetrahedral topology, the cage was
labelled as “collapsed”. For cages with the expected number of
windows detected by pywindow, the following empirical crite-
rion was applied:

a ¼
4� average difference in window diameter

maximum window diameter� expected no: of windows
(1)

If a < 0.035 and the cavity size was greater than 1 Å, the cage
was labelled as “not collapsed”, else it was labelled “undeter-
mined”. Only the “not collapsed” (four windows and a < 0.035)
and “collapsed” (wrong number of windows) cages were used
to train the ML models in this study. There are 16 921
“collapsed” cages (46.8%), 12 167 “not collapsed” cages
(33.7%) and 7020 “undetermined” cages in the database.
Summary statistics of cage collapse labels for different
chemical reactions in this study are provided in Table S1.† An
example cavity with the corresponding window can be seen on
the right of Fig. 1.
© 2022 The Author(s). Published by the Royal Society of Chemistry
2.3 Representation of cages

Building blocks and linkers of the organic cages were encoded
using the graph neural network (GNN), where representation of
each atom in the molecule was obtained by aggregating the
information of the atom and its neighbours. The design of the
GNN layer for encoding the building blocks and linkers is
shown in Fig. 2. Each non-hydrogen atom X in the molecule was
initialised using a numeric vector in the form of Xi ¼ (Vatom,-
Vneighbour,V2nd neighbour). Vatom was calculated using RDkit30 and
contains information including atomic symbol, number of
neighbour non-hydrogen atoms, implicit and explicit valence,
and whether the atom is aromatic. Vneighbour is the sum of the
atomic vector of the atom and its neighbours weighted by the
bond order. V2nd neighbour contains the sum of the atomic vector
of the atom and up to its second-degree neighbour weighted by
the bond order. Given that Vatom is not scaled, while Vneighbour
and V2nd neighbour are scaled between 0 and 1, the GNN is able to
distinguish between “atomic” and “environmental” (including
bonding, see below) features of each atom, as contained in
vector Xi. The feature vector Xi was processed by one fully con-
nected neural network layer, which was then connected to the
message passing layer:

Xi
lþ1 ¼ s

 
Xi

l þ
X

j˛neighbour

Xi
lW

!
(2)

where W is the learnable parameter, Xi
l is the representation of

atom i at the lth message passing layer, and s is the rectied
linear unit activation function.

Explicit bonding features were ignored in our featurisation
as we believe that the detailed information about the type and
valence of the atoms involved captures all relevant bonding
information implicitly without further redundancy and ambi-
guity of the ease of bond rotation in various functional groups.

Similar to our previous work,21 the neural ngerprints for the
organic cages in this study were obtained by concatenating the
molecular vectors of the building blocks and linkers. Such
Digital Discovery, 2022, 1, 127–138 | 129

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d1dd00039j


Table 1 Groups of investigated Tri4Di6 cages in this study, together with the corresponding precursor scaffolds and reaction types. Each group
contains 6018 structures. The number following a functional group name indicates the topicity of the precursor
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neural ngerprints were then processed by a multi-layer neural
network followed by a prediction layer (see Fig. 3). Parameters
for the multi-layer neural network and the GNN were updated
during the training process. As a result, neural ngerprints of
the cage components were also updated. We used cross-entropy
loss as the loss function and it operates with C output neurons
for C classes, which can then be directly used for the corre-
sponding prediction. Hence, the architecture of the prediction
layer is determined by the predictive task in this study: for the
classication tasks, such as predicting the organic cage shape
persistence, the output layer has two neurons zi (i ¼ 1, 2). Each
of the two output neurons was interpreted as the organic cage
being “collapsed” or “not collapsed”, which were processed
using the somax function:
130 | Digital Discovery, 2022, 1, 127–138
sðziÞ ¼ eziP2
j¼1

ezj
(3)

The neuron with the larger somax output s(zi) would be
treated as the “predicted” label.
2.4 Training and evaluating the GNN models

In this study, we focused primarily on the classication GNN
model, where the building block and linker of the organic cages
were represented using GNN encoding, and the encoded vectors
for the building block and linker molecules were concatenated
so as to form a feature vector of the organic cage. The feature
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 GNN encoding of the molecular features of the building blocks
and linkers of organic cages in this study.
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vector is then processed through amulti-layer neural network to
predict the shape persistence of the organic cages. To examine
the predictive power as well as the generalisability of the GNN
models, two types of prediction tasks were employed. For the
Fig. 3 Architecture of the GNN in this study: monomers (building block
using a graph neural network (see Fig. 2), the vectors were then concaten
persistence prediction. The prediction by the two neurons in the outpu
classification.

© 2022 The Author(s). Published by the Royal Society of Chemistry
All-vs-One task, cross-reaction prediction was performed: the
“collapsed” and “not collapsed” data in all but one row in Table
1 were used as the training set, and data in the remaining row
were used as the test set. All rows in Table 1 were used iteratively
for the All-vs-One task. For the All-vs-All task, the data for
“collapsed” and “not collapsed” cages in Table 1 were randomly
split to the training (80%) and test (20%) set. Performance of
the All-vs-One model is an indicator of how transferrable the
GNN model is towards cages generated via different reaction
chemistries.

The performance of the GNNmodel on the classication task
of “collapsed” and “not collapsed” cages was evaluated using
the accuracy, precision and recall scores on the test sets, dened
as follows:

Accuracy ¼ true positiveþ true negative

size of test set
(4)

Precision ¼ true positive

true positiveþ false positive
(5)

Recall ¼ true positive

true positiveþ false negative
(6)
s and linkers) of the organic cages were encoded to numeric vectors
ated and processed by a multi-layer neural network to output a shape
t layers was processed using the softmax function to obtain the final

Digital Discovery, 2022, 1, 127–138 | 131
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In this study, the “collapsed” organic cages were regarded as
“positive” in our predictions. “True positive” represents the
data where cages were “collapsed” from both the GNN model
prediction and as labelled in the database; “false positive”
represents the data where cages were “collapsed” according to
the GNNmodel prediction but “not collapsed” as labelled in the
database; “true negative” represents the data where cages were
“not collapsed” from both the GNN prediction and as labelled
in the database; “false negative” represents the cages that were
“not collapsed” according to the GNN prediction but were
“collapsed” as labelled in the database.
2.5 Explicability of the GNN models

The explicability of the GNN model predictions was analysed by
calculating the attribution score of the input features, which is
the atomic input vectors to the GNN in this study. By calculating
the attribution score, we aim to analyse which building block or
linker molecules contribute more to the collapse of an organic
cage, and which fragments in these molecules contribute more
to the building block or linker being a “collapse-inducing”
component of the cage. Collapse-inducing building blocks and
linkers could be selected by simply looking at the prevalence of
building blocks and linkers in the database, however, such
a method does not consider the chemical structure of the
precursors and is not transferrable to cages with precursors not
included in the database. An example of per-atom contribution
to the prediction is shown in Fig. 4, where the fragments with
a positive attribution score (likely to contribute to pore collapse)
are shown in red, and fragments with a negative attribution
score (not likely to contribute to pore collapse) are shown in
blue.

The attribution scores in this study were calculated and
represented using integrated gradients. The formal denition
for attribution scores, as well as the axiomatic justication of
the integrated gradients satisfying certain properties is
provided by Sundararajan et al.26 To explain briey here, let
function F:Rn/ [0,1] represent a deep neural network. Given an
input feature x and some baseline feature x0, the integrated
gradient of x along the ith dimension of xwas dened as follows:

ai ¼
�
xi � x

0
i

�
�
ð1
t¼0

vFðxÞ
vxi

����
x¼x

0 þt�
�
x�x

0
�dt (7)

where
vFðxÞ
vxi

is the gradient of F along the ith dimension of x. In

this study, the input x was the numeric vector for the organic
cages, which is the concatenation of the feature vectors of
Fig. 4 Example visualisation of per-atom contribution to the model
prediction. Fragments with positive contributions (likely to contribute
to pore collapse) are shown in red, while fragments with negative
contributions (not likely to contribute to pore collapse) are shown in
blue.

132 | Digital Discovery, 2022, 1, 127–138
building block and linker molecules, and F is the probability of
the organic cage being “collapsed” as predicted by the GNN. This
denition of integrated gradient is justied by the axiomatic
result that it satises the requirement of completeness: the attri-
butions of the input features (cage atoms) should add up to the
difference between the output of F at the input x and the baseline
x0 for eqn (7).26 In this study, the probability of the organic cages
and the corresponding baseline cages being “collapsed” were
computed from the GNN models, the completeness of the attri-
bution model requires that the difference between the two
probability values DP should be equal to the integrated gradient
of the input features for the organic cage Sig.

The integrated gradient attribution was dened relative to
a baseline, and the selection of the baseline is essential to
causal analysis of ML models.31 A robust baseline input should
give uninformative predictions; for example, for a classication
task, the MLmodel should give the probability of approximately
0.5 for the baseline input, which requires a comparable number
of “collapsed” and “not collapsed” cages to mimic the distri-
bution of p ¼ 0.5 for cage collapse in the training set. Here, we
used the input of zero vectors as the baseline molecule and
augmented the training set using the baseline cages to achieve
uninformative predictions for the baseline cages. The detailed
implementation is provided in Section S2.†

Once the integrated gradients for all input atoms of the
organic cage were calculated, the contribution of the building
block and linker of the cage was calculated by summing up the
integrated gradients for the atoms corresponding to the
building block and linker, respectively. The attribution of
fragments in the building block and linker molecules were
visualised using the atomic integrated gradients in the
molecules.

The GNN model, as well as the computation of integrated
gradients were implemented in Python 3.7.5 combined with
PyTorch 1.1.0; the source code is provided at http://github.com/
qyuan7/Cage_GNN.
3. Results and discussion
3.1 Predictive performance of the GNN for organic cage
shape persistence

A comparison of the predictive performance of the previously
reported random forest model (used here as a benchmark) and
the GNN model on the All-vs-All task is shown in Table 2, where
the data for all cages in this study were randomly split to
training and test sets. The GNN model and the random forest
benchmark have comparable performance for the All-vs-All
Table 2 Shape persistence prediction of the GNN and random forest
models on the All-vs-All task. The models with better performance for
each metric are highlighted in bold

GNN Random forest

Accuracy 0.89 0.88
Precision 0.90 0.89
Recall 0.90 0.91

© 2022 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d1dd00039j


Paper Digital Discovery

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

1 
Fe

br
ua

ry
 2

02
2.

 D
ow

nl
oa

de
d 

on
 2

/1
0/

20
26

 6
:4

9:
22

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
task, with the GNN model slightly outperforming the random
forest model based upon the accuracy and precision metrics.
The reason for the almost equally good performance of the GNN
and random forest models on the All-vs-All task could originate
from the dataset in this study. The building block and linker
molecules in this study were built by changing the functional
groups on a xed set of precursor cores, and each row of organic
cages in Table 1 was generated from only 118 unique ditopic
precursors and 51 unique tritopic precursors. For the All-vs-All
task, the dataset of all the organic cages in Table 1 was
randomly split between the training and test sets, and the same
precursor would possibly be present in both the training and
test sets. In addition, for both the GNN and random forest
models, the organic cages were represented by concatenating
the molecular vectors of the precursors. It is therefore possible
for both models to learn the “possibility” of a certain precursor
belonging to a collapsed cage from the training set and to then
make predictions on the test set. In this sense, both the GNN
and the random forest learnt the probability distribution of
certain precursors resulting in collapsed cages across all sets,
but it is unclear how much of the contribution of the precursor
towards cage shape persistence was learnt in the All-vs-All task.
Therefore, the advantage of the neural ngerprints learnt from
the GNN model of being more exible is minimised in the All-
vs-All task.

The All-vs-One task, where data for cages in all but one row in
Table 1 was used as the training set and the remaining row is
used as the test set, is more challenging compared to the All-vs-
All task, as most of the precursors in the test set were not
included in the training set (except for the amine2 linkers and
amine3 building blocks, which were used by two rows in Table
1). The All-vs-One task provides better evaluation of the trans-
ferability of the ML models towards different families of
precursors with different functional groups, which carries more
application signicance for the design of future organic cages.
The accuracy scores for the GNN and random forest models are
shown in Table 3, and the corresponding precision and recall
scores are provided in Table S2.† The results are for when
a model was tested on a single data set within a row, i.e. with
cages formed by a single reaction chemistry type. The data sets
in the other rows were used as the training set. For example, for
the test of aldehyde3amine2 cages (row 1), all the precursor
Table 3 Shape persistence prediction of the GNN and random forest
models on the All-vs-One taska

Building block Linker
Test accuracy
(Random forest)

Test accuracy
(GNN)

Aldehyde3 Amine2 0.61 0.72
Amine3 Aldehyde2 0.72 0.73
Alkene3 Alkene2 0.63 0.81
Alkyne3 Alkyne2 0.41 0.77
Acid3 Amine2 0.71 0.76
Amine3 Acid2 0.73 0.79
Aggregated score (95% CI) 0.64 � 0.10 0.76 � 0.03

a Model with better performance for each task is highlighted in bold.

© 2022 The Author(s). Published by the Royal Society of Chemistry
pairs in the other rows were used as the training set (ami-
ne3aldehyde2, alkene3alkene2, etc.), only the aldehyde3amine2
cages were used as the test set.

For the All-vs-One task, the GNN model consistently out-
performed the random forest model and by a larger margin
compared to the All-vs-All task. The biggest improvement in the
predictive performance of the GNN model compared to the
random forest benchmark was for the alkene3alkene2 cages
(alkene metathesis of a trialkene and dialkene) and the alky-
ne3alkyne2 cages (alkyne metathesis of a trialkyne and dia-
lkyne). As shown in Table 1, the building blocks for
alkene3alkene2 and alkyne3alkyne2 cages were not used for the
other cages, and the benchmark random forest model failed to
give reasonably accurate predictions on the shape persistence of
the alkene3alkene2 and alkyne3alkyne2 cages, thus the trans-
ferability for the benchmark random forest model is poor to
building blocks that were not used in the training sets. The GNN
model, on the other hand, was equally accurate for the predic-
tions of the alkene3alkene2 and alkyne3alkyne2 cages
compared to the other groups of cages. The consistent
improvement in predictive power of the GNN model compared
to the random forest model indicates that the GNN model has
better transferability to novel precursors for cages and different
reaction types. In addition, the improved performance of the
GNN model for the alkene3alkene2 and alkyne2alkyne2 cages
suggests that the GNN model has learnt some structural
features of the precursors that led to collapse from the training
process, providing the model with some “chemical intuition”,
which can be investigated further by trying to explain and
interpret the predictions of the GNNmodel using the integrated
gradients.

It is worth discussing here possible extension to different
cage topologies. In this work, we focused on the Tri4Di6

topology, which is only one of the six topologies resulting from
a condensation of tritopic and ditopic precursors that we have
previously enumerated.28 We foresee re-employment of our
approach to cages in other topologies, not even limited to tri-
and ditopic precursors. As it is difficult to predict a priori which
topology will be preferred, we would recommend training
separate models for other possible topologies using the same
cage representation as the one used in this work (see Fig. 3).
However, in the future we hope for a more general model, which
would include neurons in the output layer containing proba-
bilities of cage collapse in all possible topologies alongside
a prediction of which topology is the thermodynamically more
stable reaction outcome.
3.2 Explicability of the GNN predictions

To interpret the predictions of the GNN models for the All-vs-
One task, we computed the integrated gradients of input
vectors to the GNN, which were further summed up to get the
integrated gradients of cage precursors and fragments in the
test sets. Before analysing the results, we validated our calcu-
lations by checking the completeness of the integrated gradient
in this study. The probability of the organic cages and the cor-
responding baseline cages being “collapsed” were computed
Digital Discovery, 2022, 1, 127–138 | 133
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from the GNN models, and the difference of the two probability
values is noted as DP. The sum of integrated gradient of the
input features of the organic cages is noted as Sig. The distri-
bution of the difference between theDP andSig values for all the
cages in the test sets of the All-vs-One task is shown in Fig. 5(a).
The distribution is centred around 0, with a mean value of 0.008
and standard deviation of 0.013, indicating that the integrated
gradient computed in this study meets the requirement of
completeness for an attribution model.

In this study, the integrated gradient of the cage input
feature x for an atom is dened relative to the baseline input x0

in eqn (7), thus it is important that the GNNmodel F should give
uninformative predictions to the baseline input. For the clas-
sication task in this study, the baseline input should render
a probability close to 0.5, indicating the baseline cage composed
of vector of zeros should have neutralised probability of being
“collapsed”. When calculating the integrated gradients, we used
the data augmentation technique on the training set, as
described in Section S2 of the ESI† and the work by McCloskey
et al.27 The distribution of the predicted somax scores for the
“collapsed” neuron in the output layer (which can be inter-
preted as the probability of the cage being collapsed) on the
baseline cages used in training the GNN model for calculating
the integrated gradient is shown in Fig. 5(b). The somax score
of the baseline cages centres around 0.5 with a mean value of
0.501 and standard deviation of 0.008. This result indicates that
Fig. 5 Validation of the integrated gradient calculations in this study:
(a) distribution of the difference between the DP and Sig values for all
the cages in the test sets of the All-vs-One task; (b) distribution of the
predicted softmax score of baseline cages.

134 | Digital Discovery, 2022, 1, 127–138
the GNN model gives neutral predictions to the baseline cages,
and for a cage with somax score larger than 0.5 for the
“collapsed” neuron in the output layer that is classied to be
“collapsed”, the majority of the attribution to the increased
somax score can be ascribed to the molecular features of the
building block and linker molecules of the cage.
3.3 Explicability of the GNN models – precursors with the
highest integrated gradients

With the validation of the integrated gradient calculations
completed, it was possible to calculate the attributions of the
cage building blocks and the linkers and identify the precursors
with a high integrated gradient contribution for the “collapsed”
predictions. If some precursors have high integrated gradient
scores in “collapsed” cages, it is possible that such precursors
can be regarded as the “collapse-inducing precursors” that
should be avoided in the design of novel organic cages.
However, if the precursors' integrated gradient attribution
scores have no strong correlation with the shape persistence,
then the structural features of the “collapsed” precursors have
not been learnt.

We calculated the integrated gradients of the precursors in
the test sets for the All-vs-One tasks and ranked the building
blocks and linkers according to their integrated gradient attri-
bution scores. The top 5 building blocks BB1–5 for the cages
generated from the aldehyde3amine2 (imine reaction of tri-
aldehyde and diamine) cages with the largest integrated gradient
are shown in Fig. 6. The percentage of aldehyde3amine2 cages
containing the building blocks that were “collapsed” in the All-
vs-One test set are also shown. It can be seen that almost all
the building blocks in Fig. 6 have a probability of larger than 90%
of being “collapsed”, indicating that cages with these building
blocks have a great chance of being “collapsed” and that these
building blocks should be avoided in the design of future organic
cages for the sake of shape persistence. The top 5 linker mole-
cules L1–5 for the aldehyde3amine2 cages with the largest inte-
grated gradient attribution to “collapsed” cages are shown in
Fig. 7, with the percentage of “collapsed” aldehyde3amine2 cages
containing the linker molecules shown. Apart from L1, the cages
in the test set containing these linkers have a high probability of
being “collapsed”. The integrated gradients of the building block
and linker molecules can thus serve as an indicator for the
organic cages being “collapsed” – using building block/linker
molecules with high integrated gradient attributions means
there is a high probability of collapsed cages. It might be
tempting to assume that precursors with smallest gradient
attributions would indicate “non collapsed” cages. The “bottom
5” building blocks and linkers of the aldehyde3amine2 cages are
shown in Fig. S11 and S12.† Cages with such building blocks and
linkers still have a considerable possibility of being “collapsed”,
thus the integrated gradient has only limited effect of identifying
less collapse-inducing precursors. Limitation of the GNN model
in identifying “non collapsed” cages could also be observed from
the low specicity scores for the All-vs-One tasks, as shown in
Table S2.† We, therefore, focus on the collapse-inducing
precursors in this study.
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 The top 5 building blocks with the largest overall integrated gradient attributions for the aldehyde3amine2 cages. Atoms with integrated
gradients greater than 0.01 are highlighted in red. Percentages of cages containing each building block identified as “collapsed” in the test set and
the highlighted backbones in the whole database are shown. The building blocks can be regarded as collapse-inducing precursors if they tend to
form cages with high probability of collapse. The highlighted fragments in the building blocks are those contributing most to the integrated
gradient of the corresponding building block.
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The top building blocks and linkers for the other groups of
organic cages with the largest integrated gradient together with
the probability of a cage being “collapsed” with such precursors
are provided in Section S4 of the ESI.† For the acid3amine2
cages (amide condensation of a tricarboxylic acid and diamine),
the integrated gradient attributions of the top building blocks
had poor correlation to the cage shape persistence, which could
be because the carboxylic acid functional group was used less in
the database (Table 1), and the GNNmodel therefore had poorer
transferability to the cages with the tricarboxylic acid building
blocks. Further improvement of the GNN model for the cages
formed via amide condensation reaction would require a larger
dataset labelled as per the current dataset. The relationship of
cage shape persistence and the average integrated gradient
attribution scores for the building block/linker molecules in the
All-vs-One task is shown in Fig. S11 and S12.† Qualitative
agreement of cage collapse and high integrated gradient scores
can be found for cages formed via imine condensation, alkene
metathesis and alkyne metathesis, which could provide initial
insight into the shape persistence of organic cages formed via
such reaction chemistries (see Fig. S13 and S14†).
© 2022 The Author(s). Published by the Royal Society of Chemistry
If specic precursor fragments could be identied as
collapse-inducing from the above analysis, then such a frag-
ment could be usefully avoided in the design of novel precur-
sors. Atoms in the cage components with an integrated gradient
attribution score greater than 0.01 are highlighted in red in
Fig. 6 and 7. The majority of the integrated gradient attribution
is located in the central core of the building blocks; and such
fragments could contribute to the poor shape persistence of the
corresponding cages. It is thus possible to identify molecular
fragments/centre cores that have high attribution to the
collapse of organic cages and to therefore avoid/alter such
fragments when selecting precursors for cage synthesis. In
order to validate whether the identied central cores correlate
with the shape persistence of all the organic cages in this study,
we performed a sub-structure match of the cores across all the
cages in this study and calculated the probability of a cage with
precursors containing the backbones being collapsed, which is
also shown in Fig. 6. Meanwhile, the linkers in Fig. 7 (apart from
the outlier L1) contain more saturated carbon chains and hence
more internal degrees of freedom. Furthermore, the amine part
of the imine bond (resulting from the condensation to give
cages in the aldehyde3amine2 set) contains one more exible
Digital Discovery, 2022, 1, 127–138 | 135
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Fig. 7 The top 5 linkers with the largest integrated gradient attributions for the aldehyde3amine2 cages. Atoms with integrated gradients greater
than 0.01 are highlighted in red. Percentages of cages containing each building block identified as “collapsed” in the test set are shown. The
linkers can be regarded as collapse-inducing precursors if they tend to form cages with high probability of collapse. The highlighted fragments in
the linkers are those contributing most to the integrated gradient of the corresponding building block.

Fig. 8 Proof-of-concept replacement of the collapse-inducing core in building block BB2 with a less collapse-inducing unit in the modified
BB2mod. Upon imine formation with the same linker L and geometry optimisation, cage (BB2)4L6 was found to be “collapsed” (as expected from
the GNN model) and cage (BB2mod)4L6 exhibited significantly more open structure (improved shape persistence). In 3D models, non-polar
hydrogen atoms are omitted for clarity, carbon atoms are based on whether they originate from the building block (blue) or the precursor
(orange), nitrogen atoms are shown in dark blue, oxygen atoms are shown in red.

136 | Digital Discovery, 2022, 1, 127–138 © 2022 The Author(s). Published by the Royal Society of Chemistry
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methylene unit compared to the aldehyde contribution. As
a result, the fragments with high integrated gradients for
linkers L2–5 span over both the linker backbone and the func-
tional group, making it difficult to attribute the GNN prediction
to any particular motif within those molecules, and therefore
substructure matching of the linker molecules was not
performed.

To investigate whether the integrated gradient analysis can
help chemists design cages with improved shape persistence,
we replaced the collapse-inducing core of building block BB2
with a simple rigid benzene ring (yielding BB2mod). Aer
identical MD geometry optimisation conditions as those used
in the training set, the modication provided a shape persistent
cavity (see Fig. 8). This demonstrates that the GNN model not
only shows higher accuracy than the previously reportedmodels
but also that the integrated gradients analysis is a powerful tool
for molecular design.

4. Conclusions

We developed graph neural network (GNN) models to predict
the shape persistence of organic cages computationally gener-
ated via a range of reactions. The GNN model has better
performance compared to our previously published random
forest model,21 especially for cross-reaction prediction tasks.
Apart from the improved predictive performance, we evaluated
the explicability of the GNN models by computing the
precursor-wise and atom-wise integrated gradients. We showed
that integrated gradients can be used to learn structural
features of the precursors that contribute to the collapse of
organic cages, which could help exclude precursors that are
more likely to result in collapsed cages. For the generally more
rigid building blocks, the core backbones appear to be of
greatest importance for collapse prediction, while for the
smaller and more exible linker molecules, the collapsibility
appears to originate from saturated aliphatic chains and the
corresponding increased degrees of freedom, as would be
expected.

The computational study of supramolecular systems such as
organic cages is time consuming using physical simulations,
and the development of ML techniques has the potential to
provide data-driven solutions that might accelerate the evalua-
tion of supramolecular systems. However, in many cases the ML
models are regarded as powerful black-boxes, providing limited
insight to further thematerials discovery process further. In this
study, we aimed to develop an explainable GNN model both to
ensure the transferability of our model and to provide guidance
for further material discovery.

Data availability

All the data, code and models in this study is available in the
Github repository https://github.com/qyuan7/Cage_GNN.
Structural and shape persistence data of all cages in this study is
available in le ltered_all_smi.csv following the link. In order
to process the information to input vectors to the GNN model,
run the code database/db_preparation.py. Models trained in
© 2022 The Author(s). Published by the Royal Society of Chemistry
this study are available in the trained_models/folder. Detailed
descriptions and further information can be found in the above
Github repository.
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