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s.-accuracy dilemma in machine
learning modeling of electronic excitation spectra

Prakriti Kayastha,† Sabyasachi Chakraborty† and Raghunathan Ramakrishnan *

In this study, we explore the potential of machine learning for modeling molecular electronic spectral

intensities as a continuous function in a given wavelength range. Since presently available chemical

space datasets provide excitation energies and corresponding oscillator strengths for only a few valence

transitions, here, we present a new dataset—bigQM7u—with 12 880 molecules containing up to 7 CONF

atoms and report ground state and excited state properties. A publicly accessible web-based data-

mining platform is presented to facilitate on-the-fly screening of several molecular properties including

harmonic vibrational and electronic spectra. We present all singlet electronic transitions from the ground

state calculated using the time-dependent density functional theory framework with the uB97XD

exchange-correlation functional and a diffuse-function augmented basis set. The resulting spectra

predominantly span the X-ray to deep-UV region (10–120 nm). To compare the target spectra with

predictions based on small basis sets, we bin spectral intensities and show good agreement is obtained

only at the expense of the resolution. Compared to this, machine learning models with the latest

structural representations trained directly using <10% of the target data recover the spectra of the

remaining molecules with better accuracies at a desirable <1 nm wavelength resolution.
1 Introduction

The future of chemistry research hinges on the progress in data-
driven autonomous discoveries.1–3 The performance of intelli-
gent infrastructures necessary for such endeavors, such as
chemputers,4 can be tremendously enhanced when augmenting
experimental data used for their training with accurate ab initio
results.5,6 For designing opto-electronically important mole-
cules such as dye-sensitized solar cells,7,8 sunscreens,9,10 or
organic photovoltaics,11,12 the corresponding target properties
are excitation energies and the associated spectral intensities.
Additionally, successful molecular design also requires infor-
mation about thermodynamic/dynamic/kinetic stabilities,
molecular lifetimes, solubility, and other experimental factors
pertaining to molecular characterization. Accelerated discov-
eries based on molecular design workows require a seamless
supply of accurate theoretical results. To this end, machine
learning (ML) models trained on results from ab initio predic-
tions have emerged as their rapid and accurate surrogates.13–15

ML models have been shown to accurately forecast a multi-
tude of global13,16,17 and quasi-atomic molecular properties.18–20

For atomization or bonding energies, their prediction uncer-
tainties are comparable to that of hybrid density functional
theory (DFT) approximations.14,21–26 They have also successfully
Hyderabad, Hyderabad 500046, India.
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modeled non-adiabatic molecular dynamics,27 vibrational
spectra,28,29 electronic coupling elements,30 excitons,31 elec-
tronic densities,32 excited states in diverse chemical spaces,33–35

as well as excited-state potential energy surfaces (PES).34,36–39 A
key difference in the performance of ML in the latter two
application domains is that ambiguities due to atomic indices
and size-extensivity that affect the quality of structural repre-
sentations for chemical space explorations40,41 do not arise in
PES modeling or dipole surface modeling42–44 resulting in better
learning rates.

ML models of global molecular energies (atomization/
formation energies, etc.) with a robust structural representa-
tion benet from the well-known mapping between the ground
state electronic energy and the corresponding minimum energy
geometry established by the Hohenberg–Kohn theorem.45 The
Runge–Gross theorem provides a similar mapping between the
time-dependent potential and the time-evolved total electron
density.46 However, the target quantities in ML modeling of
excited states are state-specic stemming from local molecular
regions. For quasi-atomic properties such as 13C NMR shielding
constants18–20,39 or K-edge X-ray absorption spectroscopy,18,39

a representation encoding the local environment of the query
atom results in better learning rates. Similarly, quasi-particle
density-of-states—interpreted as intensities in a photo-
emission spectrum—have also been successfully modeled.47,48

However, for valence electronic excitations that are also local,
the corresponding molecular substructure varies non-trivially
across the chemical space. Hence, intensities based on
Digital Discovery, 2022, 1, 689–702 | 689
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oscillator strengths derived from many-electron excited state
wave functions obeying dipole selection rules exhibit slow
learning rates.34 Determining the characteristic chromophore
responsible for the electronic excitations is non-trivial for
chemical space datasets such as QM9 (ref. 49) that exhibit large
structural diversity. This complexity, in turn, hinders the
development of local descriptors that can map to the compo-
sition or structure of the chromophore and its environment.
Hence, we are limited to using global structural representations
for ML modeling of electronic excited state properties. This
limitation becomes evident from the modest performances of
ML models of excitation energies,33,34 and their zero-order
approximations, the frontier molecular orbital (MO)
energies.22,35,50,51

In this study, we: (i) present a high-quality chemical space
dataset, bigQM7u, containing ground-state properties and
electronic spectra of 12 880 molecules containing up to 7 CONF
atomsmodeled at the uB97XD level with different basis sets. (ii)
Demonstrate the resolution-vs.-accuracy dilemma in modeling
spectroscopic intensities. (iii) Present MLmodels trained on the
bigQM7u dataset for an accurate reconstruction of the elec-
tronic spectra of allowed transitions in a given wavelength
domain.
2 Chemical space design
2.1 The bigQM7u dataset

Pioneering efforts in small molecular chemical space design
have culminated in the graph-based generated dataset,
GDB11,52,53 containing 0.9 billion molecules with up to 11 CONF
atoms. GDB11 provides simplied-molecular-input-line-entry-
system (SMILES) string-based descriptors encoding molecular
graphs. Larger datasets, GDB13 (ref. 54) and GDB17 (ref. 55)
Fig. 1 bigQM7u chemical space design: Molecular composition and data
all molecules with up to 7 CONF atoms were collected. For the GDB1-GD
are shown in blue. HCN that is present in GDB17, but absent in GDB1
subsequently optimized at the PM7 and uB97XD/3-21G levels. uB97XD
were done using the ConnGO workflow. TDDFT single point calculati
calculations were done at PM6 geometries.

690 | Digital Discovery, 2022, 1, 689–702
have since been created containing 13 and 17 heavy atoms,
respectively. Synthetic feasibility and drug-likeness criteria
eliminated several molecules in GDB13 and GDB17. Starting
with the SMILES descriptors of GDB13, QM7 (ref. 13) and QM7b
(ref. 56) quantum chemistry datasets emerged, provisioning
computed equilibrium geometries and several molecular
properties. Recently, QM7 has been extended by including non-
equilibrium geometries for each molecule resulting in QM7-X.57

Similarly, the QM9 dataset49 used SMILES from the GDB17
library reporting structures and properties of 134 k molecules
with up to 9 CONF atoms.

In the present work, we explore molecules with up to 7 CONF
atoms. We begin with the GDB11 set of SMILES because several
important molecules such as ethylene and acetic acid present in
GDB11 were ltered out in GDB13 and GDB17. Our new dataset
contains 12 883 molecules—almost twice as large as the QM7
sets. The breakdown for subsets with 1/2/3/4/5/6/7 heavy atoms
is 4/9/20/80/352/1850/10 568. The previous datasets QM7,
QM7b, and QM9 have been generated using yesteryear's
quantum chemistry workhorses: PBE,58 PBE0,59 and B3LYP.60

Here, we use the range-separated hybrid DFT method,
uB97XD61 that is gaining widespread popularity for its excellent
accuracy. Hence, we name this dataset as bigQM7u, with the
last character emphasizing the DFT approximation utilized. The
high-throughput workow used for generating bigQM7u is
shown in Fig. 1 and Table 1 puts the new dataset in perspective
by comparing with other popular datasets of similar constitu-
tion. While bigQM7u is smaller than QM9, it provides a better
coverage of molecules for the same number of CONF atoms.
Further, bigQM7u also provides excited state data collected at
various theoretical levels, hence, comprehensively covering the
property domain. A summary of properties of bigQM7u, made
available in the form of structured datasets,62 is provided in
generation workflows. From the GDB11 dataset, SMILES descriptors for
B3 subsets, CHONF molecules present in GDB11 but absent in GDB17

1 is shown in red. Initial geometries were obtained with UFF that are
geometry optimizations with large basis sets (def2SVP and def2TZVP)
ons were done using the DFT equilibrium geometries, while ZINDO

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Comparison of volume, variety and veracity of selected small molecules chemical space datasets. Size, composition and methods (only
DFT or post-DFT) used for data generation are listed

Details QM7 QM7b QM9a bigQM7u

Origin GDB13 GDB13 GDB17 GDB11
Elements CHONS CHONSCl CHONF CHONF
Size 7165 7211 133 885 12 880
Geometry optimization PBE0/tight tier-2 PBE/tight tier-2 B3LYP/6-31G(2df,p) uB97XD/3-21G

uB97XD/def2SVP
uB97XD/def2TZVP

Frequencies B3LYP/6-31G(2df,p) uB97XD/3-21G
uB97XD/def2SVP
uB97XD/def2TZVP

Excited states E1 E1, E2, f1, f2 All states
GW/tight tier-2 RICC2/def2TZVP TDuB97XD/3-21G

TDPBE0/def2SVP TDuB97XD/def2SVP
TDPBE0/def2TZVP TDuB97XD/def2TZVP
TDCAMB3LYP/def2TZVP TDuB97XD/def2SVPD

a Contains 3993/22 786 molecules with up to 7/8 CONF atoms. Excited state data are available for the 22 786 subset ref. 33.
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Table 2. As unstructured datasets, we provide raw input/output
les63 to kindle future endeavors. For example, for MLmodeling
of forces, properties of non-equilibrium geometries may be
extracted from these raw data.
2.2 Computational details

Initial structures of the 12 883 molecules in bigQM7u were
generated from SMILES by relaxing with the universal force
eld (UFF)64 employing tight convergence criteria using
Table 2 Structured content of the bigQM7u dataset62

PM6

Equilibrium geometries (Å)
All molecular orbital energies (hartree)
Total electronic and atomization energies (hartree)

uB97XD/(3-21G, def2SVP, def2TZVP)

Equilibrium geometries (Å)
All molecular orbital energies (hartree)
Atomization energies (hartree)
All harmonic frequencies (cm�1)
Zero-point vibrational energy (kcal mol�1)
Mulliken charges, atomic polar tensor charges (e)
Dipole moment (debye)
Polarizability (bohr3)
Radial expectation value (bohr2)
Internal energy at 0 K and 298.15 K (hartree)
Enthalpy at 298.15 K (hartree)
Free energy at 298.15 K (hartree)
Total heat capacity (cal/mol/K)

ZINDO, TDuB97XD/(3-21G, def2SVP, def2TZVP, def2SVPD)

Excitation energy of all states (eV, nm)
Oscillator strengths of all excitations (dimensionless)
Transition dipole moment of all excitations (a.u.)

© 2022 The Author(s). Published by the Royal Society of Chemistry
OpenBabel.65 As a guideline for quantum chemistry big data
generation, a previous study proposed connectivity preserving
geometry optimizations (ConnGO) to eliminate structural
ambiguities due to rearrangements encountered in automated
high-throughput calculations.66 Accordingly, we used a 3-tier
ConnGO workow to generate geometries at the uB97XD61

DFT level using def2SVP and def2TZVP basis sets.67 Geometry
optimizations at the simpler levels such as PM6 and uB97XD/
3-21G were performed without ConnGO, directly starting from
the UFF structures. For uB97XD/def2SVP nal geometries, we
used HF/STO3G and uB97XD/3-21G as intermediate tier-1 and
tier-2 levels, respectively. Similarly, foruB97XD/def2TZVP, HF/
STO3G and uB97XD/def2SVP were lower tiers. In each tier,
ConnGO compares the optimized geometry with the covalent
bonding connectivities encoded in the initial SMILES and
detects molecules undergoing rearrangements. For this
purpose, we used the ConnGO thresholds: 0.2 Å for the
maximum absolute deviation in covalent bond length and
a mean percentage absolute deviation of 6%. In DFT calcula-
tions, tight optimization thresholds and ultrane grids were
used for evaluating the exchange–correlation (XC) energy. A
few molecules required relaxing the optimization thresholds
for monotonic convergence towards a minimum. All nal
geometries were conrmed to be local minima through
harmonic frequency analysis. For molecules that are highly
symmetric or with multiple triple bonds, converging to
minima was only possible with the very tight optimization
threshold and superne grids. At both uB97XD/def2SVP and
uB97XD/def2TZVP levels, 3 molecules with the SMILES O ¼
c1cconn1, N ¼ c1nconn1, O ¼ c1nconn1, failed the ConnGO
connectivity tests. Further investigation revealed these mole-
cules to contain an –NNO– substructure in a 6-membered ring
facilitating dissociation as previously noted in ref. 66. Aer
removing these molecules, the size of bigQM7u stands at
12 880.

We performed vertical excited-state calculations at Zerner's
intermediate neglect of differential overlap (ZINDO)68 and
Digital Discovery, 2022, 1, 689–702 | 691
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TDuB97XD levels. ZINDO calculations were done on PM6
minimum energy geometries, while TDuB97XD with 3-21G,
def2SVP, and def2TZVP basis sets, at the corresponding ground
state equilibrium geometries. We also performed TDuB97XD
calculations with the diffuse function augmented basis set,
def2SVPD, on uB97XD/def2SVP geometries. All electronic
structure calculations were performed using the Gaussian suite
of programs.69 The number of excited states accessible to the
TDDFT formalism is limited by the number of electrons and the
size of the orbital basis set. With the nite basis set used in this
study, the spectrum is practically discrete. To ensure that all the
singlet-type electronic bound states are calculated, we set an
upper bound of 10 000 for the number of states in the TDDFT
single point calculations with the keyword nstates ¼ 10 000. For
benchmarking the quality of TDDFT excitation spectra, we also
performed similarity transformed equation-of-motion coupled
cluster with singles doubles excitation (STEOM-CCSD)70 and the
aug-cc-pVTZ basis set as implemented in Orca.71,72
3 Machine learning modeling of full
electronic spectra

Kernel ridge regression (KRR) based ML (KRR-ML) enables
accurate predictions through an exact global optimization of
a convex model.13,14,73 In KRR-ML the target property, tq, of an
out-of-sample query, q, is estimated as the linear combination
of kernel (or radial basis) functions, each centered on a training
entry. Formally, with a suitable choice of the kernel function,
KRR approaches the target when the training set is sufficiently
large

tq ¼ lim
N/N

XN
i¼1

cik
�
dq � di

�
: (1)

The coefficients, {ci}, are obtained by regression over the
training data. The kernel function, k($), captures the similarity
in the representations of the query, q, and all N training
examples. For ground state energetics, the Faber–Christensen–
Huang–Lilienfeld (FCHL) formalism in combination with KRR-
ML has been shown to perform better than other structure-
based representations.22,74 However, for excitation energies
and frontier MO gaps, FCHL's performance drops compared to
the Spectral London-Axilrod-Teller-Muto (SLATM) representa-
tion.75 In this study, we compare the performance of FCHL and
SLATM for modeling the full-electronic spectrum. SLATM
delivers best accuracies with the Laplacian kernel, k(dq, di) ¼
exp(�jdq � dij1/s), where s denes the length scale of the kernel
function and j$j1 denotes L1 norm. For the FCHL formalism, we
found an optimal kernel width of s ¼ 5 through scanning and
a cutoff distance of 20 Å was used to sufficiently capture the
structural features of the longest molecule in the bigQM7u
dataset, heptane.

The kernel width, s, is traditionally determined through
cross-validation. For multi-property modeling s can be esti-
mated using the ‘single-kernel’ approach,16 where s is estimated
as a function of the largest descriptor difference in a sample of
692 | Digital Discovery, 2022, 1, 689–702
the training set, s ¼ max{dij}/ log(2). Previous works16,20,76 have
shown single-kernel modeling to agree with cross-validated
results with in the uncertainty arising due to training set shuf-
es, especially for large training set sizes. KRR with a single-
kernel facilitates seamless modeling of multiple molecular
properties using standard linear solvers

[K + zI][c1, c2, .] ¼ [p1, p2, .], (2)

where pj is j-th property vector and cj is the corresponding
regression coefficient vector. We use Cholesky decomposition
that offers the best scaling of 2N3/6 for dense kernel matrices of
size N.77 The diagonal elements of the kernel matrix are shied
by a positive hyperparameter, z to regularize the t, i.e., prevent
over-tting. We note in passing that conventionally the regula-
rization strength is denoted by the symbol l, which we reserve
in this study for wavelength. Another role of z is to make the
kernel matrix positive denite if there is linear dependency in
the feature space arising either due to redundant training
entries or due to poor choice of representations. Even though
we have ensured that our dataset is devoid of redundant entries,
and the representations used here accurately map to the
molecular structure, we cannot a priori rule out weak linear
dependencies arising from numerical reasons. Hence, we
condition the kernel matrix by setting z to a small value of 10�4.
We generated SLATM representation vectors and the FCHL
kernel using the QML code,78 and performed all other ML
calculations using in-house programs written in Fortran. All ML
errors reported in this study are based on 20 shuffles of the data
to prevent selection bias for small training set sizes. In all
learning curves the error bars due to shuffles are vanishingly
small for large training set sizes, hence the corresponding
envelopes are not shown. Further, both SLATM and FCHL
models were generated using geometries relaxed using UFF in
order for the out-of-sample querying to be rapid.

The property (pi vector in eqn (2)) modeled in this study
corresponds to sum of binned oscillator strength of electronic
transitions from the ground state. Conventionally, the band
intensity due to the k – th excitation is the molar absorption
coefficient that is proportional to the corresponding oscillator
strength, f~0k, denoted shortly as fk.79 In order to model a full
spectrum in a given wavelength range, one can consider each
value of fk (in atomic units, a.u.) as a separate target quantity.
However, the number of states is not uniform in a dataset such
as bigQM7u. Further, in practice, one is interested in an inte-
grated oscillator strengths within a small resolution, Dl. Hence,
we uniformly divide the spectral range in powers of 2, Dl ¼
lspectrum/Nbin, where Nbin ¼ 1, 2, 4,. is the number of bins. For
the small organic molecules such as those in bigQM7u, we set
spectral range to lspectrum to 120 nm capturing most of the
excitations. For wavelengths >120 nm the bigQM7u dataset
provides too few examples, hence, data in this long wavelength
domain is inadequate for MLmodeling. The target for ML is the
sum of fk in a bin

piðliÞ ¼
Xall states
k¼1

fkðlkÞ; (3)
© 2022 The Author(s). Published by the Royal Society of Chemistry
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where i is the bin index, and li is the central wavelength of the bin.
The oscillator strength of k-th excitation from the ground state
falls in the i-th bin if lk˛ (li� Dl/2, li +Dl/2]. Since we consider fk
in a.u., pi are also in the same units. We explore the performance
of ML models for various number of bins. For the limiting case,
Dl ¼ lspectrum, the target property is the sum of oscillator
strengths of all excitations in the selected spectral range, i.e., all
the intensities are in one bin. The maximum number of bins
explored is 128, which results in a spectral resolution of 0.94 nm
(¼120/128). In this case, Cholesky decomposition is performed
using equation eqn (2) with 128 columns on the right side, while
the number of rows correspond to the training set size.
3.1 Mean absolute error

In this study, our target property is the TDuB97XD-level binned
oscillator strength dened in eqn (3). Given reference-level
TDuB97XD spectra, the error in the spectra predicted with
another model (different theory or ML) can be quantied using
the standard metric, mean absolute error (MAE):

MAEðDlÞ ¼ 1

Nmol

XNmol

a¼1

XNbin

i¼1

��pref:a;i � p
pred:
a;i

��; (4)

where Nmol is the number of molecules under consideration. For
a given resolution (i.e. bin width), Dl, the error per molecule is
dened by summing the absolute deviations over all bins. For
properties such as atomization energy, the desired target accu-
racy in MAEs is well-established to be 1 kcal mol�1. However, for
oscillator strengths of the entire spectra such an accuracy
threshold is not established. Further, relative/percentage errors
cannot be dened for oscillator strengths because of the possi-
bility of vanishing denominators. Similarly, a correlation metric
such as the Pearson-r is not dened for comparing spectra at the
limiting case of one bin as it is unreliable for comparing spectra
with fewer bins. Hence, we introduce a new accuracy metric to
compare normalized pi across two methods and quantify the
prediction score on a scale similar to that of percentage error.
3.2 Accuracy metric for normalized spectra

For the a-th molecule, ~pi,a is the normalized oscillator strength
for the i-th bin dened as ~pi;a ¼ pi;a=

P
i
pi;a. For two spectra

binned at a common resolution, Dl, the accuracy metric for
normalized spectra (F) is given by:

FaðDlÞ ¼ 100�
"
1�

XNbin

i¼1

���~pref:i;a � ~ppred:i;a

���
#
: (5)

When the reference and target property vectors are the same,
the accuracy is maximum, F ¼ 100. For a sample with Nmol

molecule, an overall prediction accuracy (F�) can be obtained as
an average

�
F ðDlÞ ¼ 1

Nmol

XNmol

a¼1

FaðDlÞ: (6)
© 2022 The Author(s). Published by the Royal Society of Chemistry
4 Results and discussions
4.1 TDDFT modeling of excited states

A prerequisite for ML modeling is the availability of training
data generated with accurate theoretical levels for the properties
of interest. In practice, it is also desirable that the theoretical
levels offer a sustainable high-throughput rate for data gener-
ation. The more recent ‘mountaineering efforts’ have reported
extended excited states benchmarks of highly accurate wave-
function methods for carefully selected sets of few hundred
molecules.80–82 Another popular dataset for benchmarking
excited state properties was developed by Schreiber et al.83 These
studies have explored a wide range of correlated excited state
methods including the very accurate fourth-order coupled-
cluster (CC4) method that approaches the full conguration
interaction limit very closely. However, even for the lower order
methods such as third-order coupled-cluster (CC3), excited state
modeling becomes challenging for a large set of molecules.

For the low-lying excited states of small molecules,
equations-of-motion coupled cluster with singles doubles
(EOM-CCSD)84 and approximate second-order coupled-cluster
(CC2) deliver a mean error of 0.10–0.15 eV compared to
higher-level wave function methods.59,80–82,85–88 While these
methods can bemademore economical by using the resolution-
of-identity (RI) technique, as in RICC2 (ref. 89) or domain-based
local pseudo-natural orbital (DLPNO) variant of EOM-CCSD,90

they have known limitations when modeling the full electronic
spectra of thousands of molecules. Formally, the total number
of electronic states accounted for by these wave function
methods scales as O (N2

oN
2
v), where No and Nv are the numbers of

occupied and virtual MOs. Even for a small molecule such as
benzene with a triple-zeta basis set, the size of the resulting
electronic Hamiltonian is of the order of millions. It is well
known that the iterative eigensolvers used for such large scale
problems converge poorly for higher eigenvalues restricting
their usage only to the lowest few electronic states.91 Hence, as
of now, large scale computations of full electronic spectra
across a chemical space dataset are amenable only at the time-
dependent (TD) DFT-level92,93 that show an O (NoNv) scaling.

While DFT offers a suitable high-throughput data generation
rate, its accuracy for geometries and properties is dependent on
the exchange-correlation (XC) functional. The chemical space
dataset, QM9, was designed using the hybrid generalized
gradient approximation (hGGA), B3LYP, with 6-31G(2df, p) basis
set because of their use in the Gn family of composite wave-
function methods.94 For thermochemistry energies, B3LYP has
an error of 4–5 kcal mol�1.95 A recent benchmark study96 has
shown the range-separated hGGAs from the uB97 family61 to
have errors in the 2–3 kcal mol�1 window; their performance is
second only to the Gn methods. While curating the QM9 data-
set, the dispersion corrected variant of uB97, namely uB97XD,
predicted high-veracity geometries less prone to rearrange-
ments in automated high-throughput workows.66 Hence, we
resort to uB97XD for geometry optimization and its time-
dependent variant for modeling the complete electronic exci-
tation spectra.
Digital Discovery, 2022, 1, 689–702 | 693
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The electronic excitations of the molecules in our dataset are
predominantly in the deep-ultraviolet (deep-UV) to X-ray region.
Since the popular avors of TDDFT depend on the adiabatic
approximation where the orbitals are relaxed to rst-order as
a linear response, they oen fail to describe the electronic
wavefunction of high-lying excited states that can substantially
differ from that of the ground state.97 Such effects may be
anticipated especially for excitations of long-range charge-
transfer character, Rydberg-type98 or excitations of core elec-
trons.99 Additionally, electronic states of doubly excited char-
acter are not accessible to the linear-response formalism of
TDDFT.100 However, as yet, remedies for improving TDDFT for
pathological situations have not been tested over chemical
space datasets. Furthermore, some of the new methods such as
the orbital optimized DFT also suffer from algorithmic errors
resulting in variational collapse to a low-lying state.97

To probe the effect of basis sets on the TDDFT-level excited
state properties, we selected the smallest 33 molecules with up
to 3 heavy atoms as a benchmark set. Accurate modeling of
oscillator strengths and high-lying electronic states require
basis sets augmented with diffuse functions in order to achieve
semi-quantitative accuracy. Hence, in Fig. 2, we explore
uB97XD's performance for excitation properties computed at
def2SVP (SVP), def2TZVP (TZVP), def2SVPD (SVPD), and
def2TZVPD (TZVPD). We use the lowest two excitation energies
(E1 and E2) and the corresponding oscillator strengths (f1 and f2)
with the accurate STEOM-CCSD/aug-cc-pVTZ method as the
reference. Unsurprisingly, def2SVP has the largest errors across
all excitation properties followed by def2TZVP, def2SVPD, and
def2TZVPD. Including diffuse functions results in errors that
are almost half of those from basis sets devoid of diffuse
functions. The errors for all four properties obtained with the
def2SVPD basis set are very similar irrespective of whether the
corresponding geometries were determined with def2SVP or
def2TZVP basis sets. Even though def2TZVPD offers the best
accuracies, we nd the computational cost for determining the
full spectra of all molecules in bigQM7u to be very high. Hence,
we resort to the def2SVPD basis set that is cost-effective for the
Fig. 2 Errors in TDuB97XD predictions of the lowest two excitations,
with various basis sets, compared to STEOM-CCSD/aug-cc-pVTZ.
Results are presented for the smallest 33 molecules in bigQM7u with
up to three CONF atoms. Mean absolute errors (MAEs) are reported for
excitation energies (E1, E2) in the top panel, and oscillator strengths (f1,
f2) in the bottom panel. The basis sets combination are denoted as:
(TDDFT single point)@(DFT structure relaxation).

694 | Digital Discovery, 2022, 1, 689–702
excited state calculations. The nal target-level data used for
training ML models were obtained at the TDuB97XD/def2SVPD
level using geometries calculated at the uB97XD/def2SVP level.
While TDuB97XD/def2SVPD level excitation spectra is by no
means quantitatively accurate, for high-throughput explora-
tions of medium-sized molecules, it still preserves broad trends
that can be learned through structure–property relationships.

We also compare the performance of different methods for
predicting the Thomas–Reiche–Kuhn (TRK) sum,

P
kfk. For an

exact excited state method, this sum according to the TRK
theorem must converge to the number of electrons.79 In
quantum chemistry, unfortunately, this condition is satised
only at the full-CI limit, when all excitations (singles, doubles,
triples, and so on) are accounted for at the basis set limit.
ZINDO and the TDuB97XD methods are not expected to satisfy
the TRK limit. We illustrate this aspect in Fig. 3 where the TRK-
sum is plotted as a function of total number of states accessible.
ZINDO deviates the most from the TDuB97XD/def2SVPD target
because the number of excited states available is limited by two
factors. Firstly, core electrons are not included in ZINDO.
Secondly, semi-empirical models are implicitly based on
a minimal basis set.

TDDFT modeling with 3-21G improves
P

kfk and the total
number of states compared to ZINDO. With the def2SVP and
def2SVPD basis sets,

P
kfk quantizes at even numbers with

a separation of about 2. For the large basis set, def2SVPD, the
number of accessible states increases, while the TRK-sum drops
below the def2SVP values. We investigated the reason for this
Fig. 3 Basis set effect on oscillator strength sums for bigQM7u
molecules at TDuB97XD. Sum of oscillator strengths of all states is
plotted against number of allowed excitations from the ground elec-
tronic state with 3-21G, def2SVP and def2SVPD basis sets. ZINDO
values are also shown for comparison. Horizontal lines mark the
Thomas–Reiche–Kuhn limit an exact excited state method must
coincide with. The inset shows the distribution of deviation of oscil-
lator strength sums from total number of electrons.

© 2022 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d1dd00031d


Paper Digital Discovery

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

8 
A

ug
us

t 2
02

2.
 D

ow
nl

oa
de

d 
on

 1
0/

26
/2

02
5 

2:
40

:1
1 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
trend using methane and found the def2-basis sets to show
somewhat oscillatory convergence with the basis set size. For
methane, the def2SVP/def2SVPD values are 8.78/8.12, the larger
basis set value agreeing better with the aug-cc-pV5Z basis set
limit value of 7.82. Residual errors in ZINDO/TDDFT TRK-sums
from total number of electrons are shown in the inset to Fig. 3.
Fig. 4 Accuracy metrics for binned oscillator strengths in the l #

120 nm range for all molecules in bigQM7u: (a) mean absolute error,
MAE(Dl), in atomic units (a.u.) as defined in eqn (4), (b) mean accuracy
metric for normalized spectra, F� (Dl), as defined in eqn (6). Results are
shown for ZINDO, uB97XD/3-21G and uB97XD/def2SVP for approx-
imating uB97XD/def2SVPD level values.
4.2 Resolution-vs.-accuracy trade-off

Typically, uncertainties of hybrid-DFT approximations
compared to higher-level wavefunction methods are used as
threshold accuracies for gauging the performance of ML
models. For the bigQM7u dataset, along with the conventional
MAE metric, we also explore a dimensionless accuracy metric
for normalized spectra, F (see eqn (5)) and its average. Even
though the electronic spectra of molecules in bigQM7u span
a wavelength range until 850 nm, >99% of the spectra lie in the
deep UV to X-ray range (10–120 nm). Such a trend has been
noted before for small organic molecules.101 Hence in this
study, we x the spectral range (lspectrum) to 0–120 nm and bin
oscillator strengths at various wavelength resolutions (Dl)
according to eqn (3). For a given Dl, we compare MAE and F� of
predictions from ZINDO, uB97XD/3-21G, or uB97XD/def2SVP
levels with that of the uB97XD/def2SVPD values (see Fig. 4).
For atomization energies and low-lying excitation energies,
these values are 3–4 kcal mol�1, and 0.2–0.3 eV,82 respectively.
For oscillator strengths, such a threshold has not been estab-
lished, especially for chemical space datasets.

In Fig. 4a, the MAE of ZINDO shows a smaller variation with
Dl. For the extreme case of Dl ¼ 120 nm, where the oscillator
strengths of all states are summed in a bin, ZINDO's MAE
saturates to about 27.5 a.u implying a systematic error in
ZINDO. For the desired resolution of 0.94 nm, ZINDO's error
increases only slightly. The MAEs improve for the spectra
calculated with uB97XD/3-21G. For the single bin case, the 3-
21G results also indicate a systematic error albeit of a smaller
magnitude compared to ZINDO. The errors are further
quenched for the def2SVP basis set, which for a resolution of Dl
¼ 0.94 nm has an MAE of about 20 a.u. Overall, the MAE-vs-Dl
dependency becomes stronger in the order: ZINDO <uB97XD/3-
21G < uB97XD/def2SVP. This trend is in agreement with the
magnitude of TRK-sum as predicted by these methods, see
Fig. 3. In general, a similar trend is noted also for individual
oscillator strengths.

As pointed out in Section-3, for the limiting case of Dl ¼
120 nm, when all oscillator strengths are summed in one bin,
the F is 100 for ZINDO, uB97XD/3-21G, and uB97XD/def2SVP
methods compared to the target uB97XD/def2SVPD (see
Fig. 4b). With increasing resolution, the methods diverge from
the target, ZINDO showing the largest deviation from uB97XD/
def2SVPD. For a desirable resolution of 1% of lspectrum, Dl z
1 nm, 3-21G and def2SVP predictions result in Fs of 30–50
compared to the target, while ZINDO has a worse score z10.
The reason for poorFs of ZINDO predictions at small resolution
is because core states are absent in ZINDO, limiting the spectral
range to >19.8 nm. In contrast, the density of the states at the
target TDuB97XD level is high in the short wavelength domain.
© 2022 The Author(s). Published by the Royal Society of Chemistry
Applying bin-specic systematic corrections can improve both
the accuracy metrics for all three methods: ZINDO, uB97XD/3-
21G, and uB97XD/def2SVP. However, such corrections may
not result in uniform improvement throughout the spectral
range. For instance, at short wavelength regions where the
TDuB97XD spectra are sharp, ZINDO lacks these lines.
However, systematic corrections may result in vanishing MAE
for the wrong reason. On the other hand, the effect of such
corrections will be less severe for the normalized metric, F� .
Hence, we do not apply bin-specic systematic corrections in
this analyses. Overall, at the desired resolution of 0.94 nm,
among the methods inspected here, the one with larger MAE
has the smaller accuracy metric, F� and vice versa.
Digital Discovery, 2022, 1, 689–702 | 695
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4.3 Reconstruction of electronic spectra with ML models

In Fig. 5, we report learning rates based on MAE and F for
predicting binned oscillator strengths (dened in eqn (3)) using
KRR-FCHL and KRR-SLATM models for various training set
sizes and spectral resolutions. For poor resolutions, we nd
small MAEs and largeFs already at the offset of learning curves.
For large training set sizes and at all resolutions FCHL slightly
outperforms SLATM. While the SLATM model saturates to an
MAE of z7.5 a.u. and F�z 80 for 0.94 nm resolution FCHL
model shows improved learning rates, suggesting its scope for
modeling full-electronic spectra of larger datasets. These nd-
ings indicate that it is possible to employ ML modeling for
reconstructing electronic spectra at a high-resolution. Since the
ML models were trained on pi (binned oscillator strengths), the
predicted spectra can be compared with the reference
TDuB97XD spectra similarly binned. The prediction error of the
reconstructed spectrum may be quantied either as a sum of
absolute differences, or using the accuracy metric upon
normalizing the binned intensities. The denitions of the error
Fig. 5 Learning rates based on accuracy metrics for out-of-sample pre
#120 nm region) for the bigQM7u dataset: Panel a reports MAE in a.u. and
using the single-kernel approach with SLATM (left) and FCHL (right) repr

696 | Digital Discovery, 2022, 1, 689–702
metric do not inuence the ML-reconstruction of the spectra,
but they serve merely to quantify the mean prediction accuracy.

The spectra reconstructed with these models do not contain
any state-specic information, but rather indicate the intensity
of dipole absorption in a nite wavelength window. At the limit
of very small Dl, these bins will correspond to individual tran-
sitions. It is worth noting that for a resolution of 0.94 nm,
TDuB97XD/def2SVP spectra agree with that of the target-level
only with a score of z47. The F drops even further for
TDuB97XD/3-21G (z29) and ZINDO (z9) levels. The learning
rates in our evaluatory D-ML17 calculations using ZINDO,
TDuB97XD/3-21G, or even TDuB97XD/def2SVP baseline
spectra were inferior than modeling directly on the TDuB97XD/
def2SVPD target. Hence, all ML models were trained directly on
the target.

In Fig. 6, we present the entire spectrum of an out-of-sample
molecule, cyclohexanone, reconstructed using FCHL-ML
models with 1 k training examples at three different wave-
length resolutions �3.75 nm, 1.88 nm, and 0.94 nm. Since the
dictions of uB97XD/def2SVPD level binned oscillator strengths (in the
Panel b reportsF� as functions of training set size for MLmodels trained
esentations generated using UFF-level geometries.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 Electronic excitation spectrum of cyclohexanone, recon-
structed at 3.75 nm, 1.88 nm, and 0.94 nm resolutions using a 1 k
FCHL-KRR-ML model trained on binned oscillator strengths (pi in eqn
(3)) at the TDuB97XD/def2SVPD target-level. Accuracy metric for
normalized spectra, F, compared to TDuB97XD reference values
calculated according to eqn (5) are also given.

Fig. 7 Electronic excitation spectrum of three randomly selected
molecules—(3Z)-5-fluoro-4-methylpenta-1,3-diene, 1-fluoropentan-
3-ol, and 5,5-dimethyl-4,5-dihydro-1H-pyrazole—reconstructed at
0.94 nm resolution using a 1 k FCHL-KRR-ML. The model was trained
on TDuB97XD/def2SVPD electronic spectra in the l # 120 nm
wavelength range. Accuracy metric for normalized spectra, F,
compared to TDuB97XD reference values calculated according to eqn
(5) are also given.
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ML models were trained using geometries at the UFF level,
these out-of-sample predictions were performed with in
a matter of seconds. As a part of the supplementary material, we
provide a sample code for generating the spectrum using
a trained FCHL models (see Data Availability). For Dl ¼
3.75 nm, the ML-reconstructed spectrum agrees with the target
TDuB97XD spectrum with a F of 86.5. This accuracy drops for
higher resolutions due to the ne details present in the target
spectrum. Also, with increase in resolution we note a reduction
in the spectral heights in order to conserve the total area under
the spectrum. For the desired value of Dl ¼ 0.94 nm, the
spectrum of cyclohexanone is reconstructed with a score of 72.6
which is slightly lower than the mean score reported for out-of-
sample predictions in Fig. 5.

Further, for the highest resolution explored here, we present
the ML reconstructed spectra for three more randomly drawn
out-of-sample molecules in Fig. 7. For all these molecules, the
prediction is better than for cyclohexanone and are illustrative
of the model's mean out-of-sample performance. While the
reference TDuB97XD-level binned oscillator strengths are
always >0, the predicted values are not bound, hence, we notice
small negative intensities for 5,5-dimethyl-4,5-dihydro-1H-pyr-
azole. For all four out-of-sample molecules considered here, the
spectral intensities are low for l > 100 nm because of the cor-
responding excitations in this region is sparse. We believe that
ML strategy for spectral reconstruction reported in this study
© 2022 The Author(s). Published by the Royal Society of Chemistry
will hold even at the interesting long-wavelength domain when
these models are trained on adequate examples.
5 Data-mining in MolDis

The dataset collected in lieu of this study, justies an endeavor
to make it accessible to the wider community. While unstruc-
tured datasets require an additional step of data extraction,
a data-mining platform allows us to rapidly perform multi-
property querying and screening. Our data-mining platform
MolDis102 is well-suited to cater to such requirements and
hence, we are hosting property-oriented mining platforms for
minimum energy ground-state structures of 12 880 molecules
obtained at the uB97XD/def2SVP & uB97XD/def2TZVP levels at
https://moldis.tifrh.res.in/datasets.html with both ground-state
and excited-state properties.

In Fig. 8, we present a representative property query in the
MolDis platform and the corresponding results. On accessing
the def2SVP tab in the bigQM7u Datasets page, we arrive at the
corresponding query page. As noted in Fig. 8a, there are 11
ground state properties—dipole moment, polarizability, EHOMO,
ELUMO, ELUMO–HOMO, zero-point vibrational energy, zero-Kelvin
internal energy (U0), room temperature internal energy (U),
room temperature enthalpy (H), room temperature Gibbs free
energy (G), and constant volume heat capacity (Cv)—with
Digital Discovery, 2022, 1, 689–702 | 697
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Fig. 8 Screenshots of the web-based data-mining platform for querying the bigQM7u dataset: (a) query page and (b) results page. The example
shows how to query the HOMO–LUMO gap and room temperature atomization enthalpy of hydrocarbons with the C7H16 stoichiometry.
Separate links are provided at https://moldis.tifrh.res.in/datasets.html for accessing minimum energy geometries, ground state properties, and
vibrational spectra at the uB97XD/def2SVP and uB97XD/def2TZVP levels. Electronic spectra calculated at the TDuB97XD/def2SVPD are also
provided.
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available property ranges reported next to them. For a query,
users need to enter values with in the property range with
appropriate units selected and click on the Query button. The
search can be further customized upon including multiple
properties in the query and display them in ascending or
descending order with respect to any property from the corre-
sponding drop-down window. We have also enabled an option
to query based on composition. In the bottom half of Fig. 8a,
users can select either a set of atoms or any valid stoichiometry
as listed on the right side of the query page. Upon making
a successful query, users are presented with results (Fig. 8b),
698 | Digital Discovery, 2022, 1, 689–702
where the Cartesian coordinates, vibrational and electronic
spectra are provided along with the magnitudes of queried
properties in desired units. A JSMol applet enables visitors to
visualize the structures on their browser upon clicking the
“View in JSMol” button. Further, upon a fruitful query, both
ground-state and excited-state properties for every molecule is
presented to the visitor as downloadable les on the results
page (Fig. 8b). This platform allows access to ab initio properties
collected via high-throughput chemical space investigations to
the community in a user-friendly fashion, hence, widening the
applicability scope of the bigQM7u dataset.
© 2022 The Author(s). Published by the Royal Society of Chemistry
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6 Conclusions

In this work we present the new chemical space dataset,
bigQM7u, containing 12 880 molecules with up to 7 atoms of
CONF. Geometry optimizations of the bigQM7umolecules have
been performed with the ConnGO workow ensuring veracity in
the covalent bonding connectivities encoded in their SMILES
representation. Minimum energy geometries and harmonic
vibrational wavenumbers are reported at the accurate, range-
separated hybrid DFT level uB97XD using def2SVP and
def2TZVP basis sets. This level was selected because it has been
previously shown to result in efficient geometry predictions for
chemical space datasets.66 We report electronic excited state
results at the TDuB97XD level using the def2SVPD basis set
containing diffuse functions that are necessary for improved
modeling of oscillator strengths, and high-lying states in
general. Even for the low-lying excited states of the bigQM7u
molecules, we found TDuB97XD/def2SVPD to deliver more
accurate results than the uB97XD/def2TZVP combination when
benchmarked against STEOM-CCSD/aug-cc-pVTZ reference
values. For all molecules, full electronic spectra are calculated
covering all possible excitations allowed by the TDuB97XD
framework. For the small molecules H2O, NH3, and CH4 the
resulting number of excited states modeled amounts to 188, 156
and 136, respectively, while for large molecules such as toluene
or n-heptane the total number of excited states reported is 3222
and 5258, respectively. Our preliminary ndings have shown
that generating the TDuB97XD results with the even larger
basis set def2TZVPD to require several-fold increase in CPU
time. However, when aiming at only a few low-lying states, our
results can be improved when using approximate correlated
methods such as DLPNO-STEOM-CCSD(T) or RI-CC2.

For ML modeling of the full electronic spectra, we propose
an approach using locally integrated spectral intensities at
various wavelength resolutions. We illustrate the existence of
a resolution-vs.-accuracy dilemma for comparing full electronic
spectra from different methods. The mapping between the
electronic spectra and the global molecular structure-based
representations improves only when the intensities are bin-
ned at a nite resolution. Semi-quantitative agreement between
methods is reached only at the expense of resolution. Compared
to this, ML models deliver better accuracies at a sub-nm reso-
lution when training on fraction of the dataset. For accurate
reconstruction of full electronic spectra across chemical space
with a resolution of <1 nm, we recommend FCHL-KRR-ML.
Further, it may be possible to improve the ML model's perfor-
mance in the long wavelength region using varying resolutions
at different spectral regions. However, testing this idea requires
new datasets comprising adequate data at the desired wave-
length domain.

Our goal is to provide a proof-of-concept for ML modeling of
binned electronic spectra and demonstrate accurate spectral
reconstruction. Unfortunately, the size of the dataset limits the
rigor of quantum mechanical methods and basis sets used to
estimate the target spectra for MLmodels. While we used range-
separated hybrid DFT with moderately large basis sets
© 2022 The Author(s). Published by the Royal Society of Chemistry
containing diffuse functions, inherent deciencies in the
method challenge the accuracy of the target. Further, the small
size of the molecules in bigQM7u implied excitations modeled
are in the far UV region. However, ML modeling reproduced
target spectra at accuracies lower than that arising from de-
ciencies in the quantum mechanical methods. This suggests
that replacing the target with properties estimated from high-
delity methods will be adequately captured through ML
modeling.

Improvements of ML modeling of excited state requires
development of new local descriptors that can map to the
chromophores responsible for excitation. For this, an auto-
mated protocol to characterize electronic excited-states should
be developed for high-throughput chemical space design
frameworks. This allows the opportunity to explore chemically
diverse photochemically interesting molecules, such as dyes,
active in the UV/visible domain and investigate chromophore's/
auxochrome's inuence on spectra. Another possibility is to
cluster the electronic spectral data according to chromo-
phores33,51 or by unsupervised learning.103 However, one must
ensure that for generating accurate models, each cluster must
be adequately represented in the training set. In order to facil-
itate further studies, we provide all data generated for this study
in public domains.
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Rev. B, 2020, 102, 235130.
48 J. Westermayr and R. J. Maurer, Chem. Sci., 2021, 12, 10755–

10764.
© 2022 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d1dd00031d


Paper Digital Discovery

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

8 
A

ug
us

t 2
02

2.
 D

ow
nl

oa
de

d 
on

 1
0/

26
/2

02
5 

2:
40

:1
1 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
49 R. Ramakrishnan, P. O. Dral, M. Rupp and O. A. von
Lilienfeld, Sci. Data, 2014, 1, 1–7.

50 Z. Liu, L. Lin, Q. Jia, Z. Cheng, Y. Jiang, Y. Guo and J. Ma, J.
Chem. Inf. Model., 2021, 61, 1066–1082.
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