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apes, masks, and properties of
materials inside transparent containers, using the
TransProteus CGI dataset†

Sagi Eppel, *ab Haoping Xu,bc Yi Ru Wange and Alan Aspuru-Guzik*abcd

We present TransProteus, a dataset, and methods for predicting the 3D structure, annotations and

properties of materials inside transparent vessels from a single image. Manipulating materials in

containers is essential in most areas of experimental chemistry and depends heavily on vision. Training

computer vision to recognize specific properties and shapes demands large annotated datasets.

Manually annotated datasets are limited in size and cannot accurately account for 3D structures and

continuous material properties (such as transparency). This work supplies a new procedurally generated

dataset consisting of 50k images of liquids and solid materials inside transparent containers. The image

annotations include 3D models, material properties (color/transparency/roughness.), and segmentation

masks for the vessel and its content. The synthetic (CGI) part of the dataset was procedurally generated

using 13k different objects, 500 different environments (HDRI), and 1450 material textures (PBR)

combined with simulated liquids and procedurally generated vessels. In addition, we supply 104 real-

world images of objects inside transparent vessels with depth maps of both the vessel and its content.

We demonstrate a net that uses a single image to predict the visual material properties. We propose

a method that predicts 3D models from an image as an XYZ map. This allows the trained net to predict

the 3D model as a map with XYZ coordinates per pixel without prior knowledge of the image source. We

use this to predict 3D models of the materials in the vessel and the vessel, using a single image.
1. Introduction

Handling materials inside transparent containers is essential
for most areas of experimental chemistry. Visual understanding
is essential for achieving such manipulation. Achieving this
demands visual recognition of the shape and physical proper-
ties of the material that can be liquid or solid with signicant
variability in shape, texture, and appearance.60 The lack of such
understanding makes many lab tasks impossible for robotic
and automatic systems and forces humans to spend consider-
able time on menial tasks. Creating a computer vision system
capable of human-level understanding of such systems can
gieppel@gmail.com; alan@aspuru.com
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dramatically accelerate material discovery. The modern
computer vision approach relies on training neural networks
using large annotated datasets with images and their proper-
ties. Manually creating such datasets is labor-intensive and
restricted to simple properties like material class (liquid/solid)
and region in the image (segmentation). However, 3D struc-
tures and continuous properties like color and transparency
level cannot be manually annotated with reasonable accuracy.
In addition, when viewing an object through a transparent
surface, considerable distortion occurs to the shape, which
cannot be fully accounted for by human annotators. An alter-
native approach is using computer-generated images (CGI). In
this approach, all the properties of the materials and the 3D
shape are generated by computer and therefore known with
absolute precision. However, the main challenge, in this case, is
creating images that are realistic and general enough to capture
the complexity of the real world. Visual properties of chemical
systems can be very complex. Therefore achieving such a photo-
realistic result is highly complicated and not always possible.
An alternative approach is to make the data highly diverse with
a large variety of shapes and textures. In this case, a net trained
on such a dataset will be forced to learn highly generalized
representations that will enable it to handle cases not seen in
the dataset. The annotation includes a 3D model of both the
transparent vessel and its content (Fig. 1), segmentation masks,
Digital Discovery, 2022, 1, 45–60 | 45
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Fig. 1 The TransProteus dataset contains images of liquids and objects in transparent containers for both simulated and real pictures. Depth
maps, 3D models, 2D annotations, and properties of the materials are supplied for the vessels and the materials and objects within them.
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and the properties of the materials that make up the vessel and
its content (color, transparency, reectance, roughness, etc.).
This work presents a new dataset focused on these tasks, which
combines computer-generated images (CGI) for training and
real-world photos for testing. The dataset was generated using
the Blender 3D soware4 with an emphasis on generality and
diversity. Over 500 high-denition backgrounds (HDRI)5 were
used, providing a wide variety of natural illumination and
environments. In addition, over 13 000 random objects6,7 were
used for both the background and the vessel content. Finally,
over 1400 material textures (PBRs)8 were used for the ground
plane. The vessels were procedurally generated with an unlim-
ited number of different curves, shapes, and materials. Two
types of content were generated inside the container. The rst
type is random objects taken from the ShapeNet dataset6,7 and
put inside the vessel (Fig. 3). The second content type was
liquids with various properties simulated using the Blender
MantaFlow9 tool with effects such as splashing, foam, and
bubbles (Fig. 3). Container shapes and materials for both
vessels and content were procedurally generated. Altogether,
this makes the TransProteus dataset one of the most diverse
synthetic datasets in terms of environment, illumination,
materials, objects, and setting (Fig. 3). For comparison, the
recently released ClearGrasp2 synthetic dataset for transparent
46 | Digital Discovery, 2022, 1, 45–60
objects contains 9 cad models, 33 HDRI lighting environments,
and 65 materials. In addition, we created a small dataset con-
taining 104 real-world photos with depth maps of both the
vessel and its content (Fig. 1 and 3); this set was created using
the RealSense depth sensor10 and used to test the net trained on
the synthetic CGI dataset (Fig. 3). We also introduce a new
model and training method for predicting a 3D model from
a single image as an XYZmap. The prediction is independent of
the camera type and image source. Previous work has already
addressed scale-invariant11–13 and unknown camera parame-
ters14–16 when predicting depth maps from images. We expand
upon this work by predicting the XYZ map instead of the depth
map.17 Hence each pixel in the prediction map contains the
X,Y,Z coordinates of a point instead of the distance to this point
(Fig. 2). This XYZmap is equivalent to the point cloud and does
not depend on camera parameters. A major issue with pre-
dicting the model as a XYZ map is that the coordinates depend
on the origin point, which cannot be deduced from the image.
Making the XYZ prediction independent of origin (translation
invariance) is achieved by using the distance between every two
points in the model as the loss metric instead of the absolute
XYZ coordinates (Fig. 4). The loss is simply the sum of the
absolute difference (L1) between the normalized predicted
distance and the Ground Truth (GT) distance between the same
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Depth prediction net versus XYZ prediction net. Depth maps give the distance of every pixel from the camera. Distance is encoded as the
pixel intensity/brightness. The XYZ net predicts for each pixel the XYZ coordinates as three values (three-layer map). Converting a depth map to
an XYZmap is only possible using known camera parameters. The XYZmap is equivalent to a 3Dmodel and does not require camera parameters.
The XYZ map is displayed as a BGR image with the blue, green, and red values of a pixel corresponding to the pixel's X, Y, and Z coordinates,
respectively. It can be split into three 2D maps for X, Y, and Z coordinates (where the pixel intensity corresponds to the coordinate value along
this axis).
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pixel pairs (Fig. 4). The net used for this task is a simple, fully
convolutional neural net (FCN) that outputs the XYZ map as an
image with three values per pixel (Fig. 2). Another method
demonstrated here is a net that receives the image and the
region of the vessel in the image and predicts the properties of
the materials inside the container and the vessel's material
properties (Fig. 5b).

In summary, the main contributions of this work are the
following:

(1) The rst method and dataset for predicting 3D shapes of
materials, liquids, and objects inside transparent vessels.

(2) A dataset and method to predict the properties of mate-
rials for both transparent containers and the things inside
them. These properties include color, roughness, transparency,
reectance, and many other visual properties.

(3) A novel method to predict a 3D model directly from an
image as an XYZ map. The prediction is independent of the
image's source and camera type and can be directly converted
into points cloud.
© 2022 The Author(s). Published by the Royal Society of Chemistry
(4) A demonstration of how environments and materials
repositories created for the CGI artist community can signi-
cantly increase the diversity of computer-generated synthetic
datasets.

2. Related work
2.1. Computer vision for materials handling in the
chemistry lab

Machine vision has been used for decades to recognize simple
properties like color, turbidity, and ll level for materials in
vessels for analytical chemistry.18–28,54–56 More advanced algo-
rithms based on methods such as graph-cut were used to
segment material with unpredictable surface shapes (like
solids) and multiphase materials. However, these approaches
are still limited to simple conditions with controlled environ-
ments and oen fail in complex real-world scenarios. Recently,
methods based on deep neural nets and convolutional neural
nets (CNNs) have proven signicantly more effective in
Digital Discovery, 2022, 1, 45–60 | 47
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performing all of the above tasks.29–33 Semantic and instance
segmentation allows one to nd the region and class of each
object andmaterial phase in general conditions. However, these
nets have been so far limited to 2D segmentation and cannot
predict continuous materials properties or accurately account
for distortions resulting from the vessel surface.31–33 On the
other hand, materials manipulated in the lab can have complex
3D shapes, textures, and visual properties. Understanding this
is essential for visual understanding and manipulating the
experimental system.

2.2. Predicting depth and 3D model from a single image

Extracting a 3D model from photos could be achieved using
a single image or multiple images covering different view-
points.11–16,34–36 The standard depth and 3D prediction methods
assume that light moves in straight lines,10,37 an assumption
that fails with transparent objects.1–3 As a result, standard
methods for extracting the 3D models from images like stereo
matching and structured light fail on transparent objects.58

Deep neural nets learn directly from data and therefore do not
rely on any assumptions. Neural nets for extracting 3D models
from images have mostly relied on using fully convolutional
nets (FCNs) that predict depth maps.11–16 The value of each pixel
in the depth map corresponds to the distance of this pixel from
the camera (Fig. 2). This approach is assumption-free and can
easily predict depth maps of transparent vessels from a single
image. With known camera parameters, it is possible to convert
the depth map into an XYZ map with the 3D position of each
pixel in the world (Fig. 2). However, without the parameters of
the camera used to take the image, it can be hard to convert the
depth map into a 3D model. To solve this, several methods for
extracting camera parameters from unfamiliar images were
suggested.14–16 However, this usually demands additional steps.
Directly predicting the XYZmap (3D coordinate per pixel) can be
achieved by the same methods used for the depth map but does
not demand camera parameters for creating the 3D model
(Fig. 2). Predicting a 3D model from a single image, as an XYZ
map, was done in previous work.17 However, in this case, the
loss function was based on converting the XYZ back to depth.
Since this conversion depends on camera parameters, this led
to the loss of the camera agnostic property of the net. Another
approach for extracting 3D models from images is based on 3D
convolutional nets that output a 3D grid of voxels that represent
the model. This approach is more robust and better matches
the problem of the 3D reconstruction. However, the extra
dimension of the net demands a signicant increase in memory
and computing resources. To deal with this, most such nets
work on low-resolution grids.59

2.3. CGI and real photo dataset creation

Deep learning approaches for computer vision are strongly
reliant on training data. Generating data for specic tasks
remains the main challenge in applying computer vision to new
elds and improving the performance of existing elds.
Creating a dataset can be done manually by collecting images
and using humans for annotation. This approach mainly
48 | Digital Discovery, 2022, 1, 45–60
applies to classication38 and segmentation29–33 but can also be
used for depth estimation by asking people to estimate the
relative distance to two objects.13 Other methods rely on meta-
data or sensor data from depth sensors, LIDAR, stereo, or
a structure from motion.34–36 These approaches fail on trans-
parent objects.1–3 Synthetic datasets use simulation and
computer-generated imagery (CGI) to create the training
data.3,39–42 The advantage of this approach is that it is not
limited by sensors and human perception and can work in any
case where the data can be simulated. However, training using
this dataset oen gives inferior results compared to training
from real data, mainly because the simulation oen misses
many of the complex visual features of the real world. Such
datasets have been created for autonomous driving, transparent
objects, liquid dynamics, and material properties.3,39–42

However, as far as we know, no such dataset was suggested for
materials and objects inside transparent containers. Another
issue with existing synthetic datasets is the use of a small,
limited set of objects and environments. For example, the
ClearGrasp2 synthetic dataset for transparent objects contains 9
cad models, 33 HDRI lighting environments, and 65 materials.
This makes nets trained on these datasets very limited in terms
of the domain in which they can be used. Recently projects like
Poly-Haven,5 ambientCCG,8 and ShapeNet6,7 created huge
repositories for objects, environments, andmaterial textures for
the CGI artist community, with thousands of diverse and free
samples. Using these can dramatically increase the diversity of
synthetic datasets.
2.4. Transparent object datasets

Datasets for the segmentation of transparent objects in real-
world images have been mostly created by manual annotation
and image mating.43–46,57 The largest of these datasets is
Trans10k,45 with 10k images in which the region of the trans-
parent object is marked. The LabPics dataset contains 8k
images of mostly transparent vessels in labs, hospitals, and
other settings.31,32 The vessel's content and transparent regions
are manually annotated. For 3D and depth maps of transparent
objects, there is still a limited number of datasets. The Clear-
Grasp dataset contains mostly simulated 3D data for trans-
parent objects but with no content.3 This dataset also collected
3D scans of real transparent objects sprayed with opaque spray
and then scanned with a RealSense depth sensor. Both
approaches are used in this work as well.
3. Dataset generation

The goal of the TransProteus dataset is to allow the prediction of
the 3D shapes, segmentation maps and properties of materials,
liquids, and objects inside vessels regardless of the application.
However, the large number of research elds, industrial appli-
cations, and everyday life activities for which this problem is
relevant means that it's impossible to simulate all the different
objects and materials that can occur within the vessel, even for
a specic eld like experimental chemistry. To address this, we
try to make the dataset as general as possible, assuming that if
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Example of simulated images for liquids and objects in vessels and real-world photos of things in containers. Each line contains the same
scene, with the vessel and without the vessel (exposed content). (a) CGI images of simulated liquids. (b) CGI images of objects in vessels. (c) Real-
world images of objects in vessels.

© 2022 The Author(s). Published by the Royal Society of Chemistry Digital Discovery, 2022, 1, 45–60 | 49
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the dataset contains diverse enough examples, any network
trained on this dataset will be able to generalize to new and
unfamiliar systems. This means that instead of narrowing down
the generated data to be as realistic as possible for a given use
case, we try to make it as diverse as possible, even if many of the
examples are unlikely to exist in reality. For example, the envi-
ronments for both the real and simulated datasets include
a large variety of backgrounds, including elds, parking lots,
and many other locations that are not usually used to handle
transparent containers (Fig. 3). In addition, the content of each
vessel was chosen to be a random object or liquid with random
properties. Many of these examples are very unlikely to appear
in reality (Fig. 3). However, the variability and diversity of the
dataset mean that any network that will learn to predict the
shape and properties of all of these different cases will have to
be highly generalized and work in almost any case. Since the
goal of the dataset is to train machine learning systems, we take
generality and diversity and not realism as the main focus. Code
for generating the dataset is supplied in the ESI.†

3.1. Computer-generated environments

The simulated dataset was generated using Blender. Creating
background and illumination for the scenes was done using
high dynamic range images (HDRI). These high-denition
images completely surround the scene, providing background
and full natural illumination from all directions. Five hundred
HDRIs were downloaded from the Poly Haven project. The
HDRI environments include indoor and outdoor settings in
cities, nature, and other environments (Fig. 3). To further
increase diversity, the HDRIs were rotated, and their intensity
increased or decreased randomly for every image. To make the
scene even more diverse, we use the objects from the ShapeNet
dataset. We used 13k different objects from a large number of
categories. Up to 10 random objects were randomly scattered in
every scene, with random scale position and rotation. A ground
plane was generated by creating a simple plane below the
objects and assigning random physically based rendering
(PBR)47 materials to this plane.3 These PBR materials contain
realistic complex textures, displacements, and other properties
of real-world materials. About 1445 different material textures
were downloaded from the ambientCG project. We note that the
steps taken so far are not specic to this dataset and can be used
to create a general setting and environment in any synthetic
dataset. They can greatly benet synthetic datasets that tend to
use a limited set of environments and settings. Generating the
synthetic data was done using scripts that create random pro-
cedurally generated scenes that are different in every image.

3.2. Procedurally generating vessels

Glassware shapes vary widely between different use cases.
However, almost all glassware tends to have cylindrical or
symmetric shapes (from a top view). Hence, we can describe
every vessel's top view as a circle or other symmetric shape, and
the vessel curvature (prole) is some 2D function (Fig. 3). The
curvature (prole) was generated by randomly combining
linear, polynomial, and sinusoidal functions to create the vessel
50 | Digital Discovery, 2022, 1, 45–60
curvature derivative, leading to a random but mostly smooth 2D
function. This leads to a wide range of shapes that seem to cover
any vessel we encounter in the real world (Fig. 3).

3.3. Generating liquids and objects for vessel content

The contents of the vessel were generated using one of three
methods. The rst approach was to take a set of random objects
from the ShapeNet dataset and randomly position them inside
the vessel. This is by far the most diverse method for lling the
vessel but the least realistic (Fig. 3, center). The second approach
was to create a random blob of liquid inside the vessel. The
liquid was given a random shape, properties, and initial velocity
and was simulated using the MantaFlow module of Blender.
Images were captured in various steps of the simulation. This
creates a wide variety of shapes associated with liquid splashing,
spilling, and sticking, which covers the wide range of liquid
behaviors in the real world (Fig. 3, top). The MantaFlow liquid
simulation also contains tools for simulating foam, and bubbles,
which were used. The nal approach for content creation is to
represent the static liquid as a mesh with a at surface that lls
the bottom part of the vessel (Fig. 1, top). No actual liquid
simulation is needed in this case. This is the most common way
liquid will appear in vessels, but it has the least diversity.

3.4. Generating and assigning materials

Materials for both the vessel and its contents were generated
using the principled BSDF material48 shader in Blender. This
tool enables the control of all the visual properties of the
material, including color, transmission (transparency), metallic
(reection), IOR, roughness, luminescence, and many others.
The materials generated by this tool are uniform, and unlike
PBR materials, they do not have complex textures (Fig. 3).
However, glass vessels and liquids tend to be very homogenous
anyway. The advantage of BSDF materials over PBR materials is
that all the visual properties are given as a list of numbers with
constant length.48 This can be saved and later predicted by the
net. For the case of objects inside the vessels, the objects are
already supplied with materials and textures (from the Shape-
Net dataset). Therefore, the materials of objects inside the
vessels were kept as they are for 50% of cases and replaced by
uniform principled BSDF materials in the remaining 50%. For
liquids and the vessel, randomly generated BSDFmaterials were
used for all cases. It should be noted that liquid splashing,
foam, and bubbles effects also inuence the liquid material
textures. These properties are not described by the BSDF shader
and cannot be predicted using the dataset.

3.5. Creating a real-world image dataset

Generating real-world images and 3D scans of transparent objects
and their content is challenging for two main reasons. First,
standard depth sensors like LIDAR and structure light (RealSense10

and Kinect) do not work on transparent vessels. Second, scanning
the depth map of the vessel content requires a method to remove
the vessel without moving its content or the sensor (because depth
sensors can't penetrate the vessel surface). The problem of 3D
scanning transparent vessels was solved by rst taking an image of
© 2022 The Author(s). Published by the Royal Society of Chemistry
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the vessel and then spraying it with opaque spray without moving
the vessel or the sensor, similar to the method used in the Clear-
Grasp dataset.3 Removing the vessel without moving or changing
its content is a more challenging task. To achieve this, the vessel
was put upside down over an object, scanned, and then removed
without moving the object or sensor (Fig. 3, bottom). This
approach is clearly valid only for solid content. In addition, it relies
on the ability of the nets to work with an arbitrary orientation of
the vessel. The images were taken in various buildings, parking
lots, and yards, with a large set of random vessels and objects (14
locations, 20 vessel types, and 25 different objects inside the
vessels). The real sense D435 depth sensor was used for scanning,
and AESUB blue spray was used for painting the vessels. This
procedure is time-consuming. Therefore, only 104 images were
collected and used for testing the dataset. The annotation of the
vessel and content masks was done manually on the images of the
vessel and exposed content. The RealSense10 depth data is very
noisy. The depth map was cleaned by removing points that are
more than 10 cm from the object center. Since all the vessels used
are smaller than 10 cm, a distance of more than 10 cm from the
center implies an error in measurement.
4. Predicting 3D model as an XYZ
map

Predicting the 3Dmodel as an XYZmap can easily be done using
a fully convolutional neural net (FCN) that receives an image
and predicts the XYZ map as a three-layer image (Fig. 2).
4.1. Translation invariance loss

Since the coordinates of the XYZ points have an arbitrary origin
point (assuming camera parameters are unknown), it is neces-
sary that the loss will be independent of the origin point
(translation invariant). Translation invariant loss can be ach-
ieved by using the distance between points in the model as the
metric instead of the point's X,Y,Z coordinates (Fig. 4b). This is
because the distances between two points in the model do not
depend on their absolute coordinates or the origin point.

This is illustrated in Fig. 4b: assume that the vertical axis is
some line in the image plane (in pixels) and the horizontal axis
is the Z coordinates in cm. The predicted map is translated
relative to the GT map, leading to completely different Z coor-
dinate values for GT and predicted maps, even when the shapes
are similar (Fig. 4b). However, the difference in Z coordinates
(Dz,1) between two points (p1, p2) is independent of origin.
Therefore similar GT and predicted shapes should have the
same Dz value (Fig. 2b).

If DGT
z,i ¼ ZGT

1 � ZGT
2 is the difference between the Z coordi-

nates in pixels 1 and 2 in the GT map (Fig. 4b), and D Prd
z,i ¼

Z Prd
1 � Z Prd

2 is the Z difference between the same two pixels in
the predicted XYZ map, then jDPrd

z,i � DGT
z,i j is the translation

independent error/loss.
The loss function is, therefore, the absolute mean of differ-

ences between these distances, along each of the axes and for
every pair of pixels in the object:
© 2022 The Author(s). Published by the Royal Society of Chemistry
Loss ¼ mean(jDGT
a,i � DPrd

a,i j)

i ˛ all pairs of pixels inside the objects, a ˛ X,Y,Z axes.
4.2. Scale-invariant loss

The above loss is translation invariant but still scale-dependent.
This means that if the predicted model has the same shape but
a different scale than the GT model, the error will be high. In
our case, the scale of the 3Dmodel cannot be extracted from the
image. We, therefore, want the loss to be independent of the
predicted model scale. This can be solved by adding a scale
normalization constant to the predicted distance (Fig. 4). This
basically means nding the scale difference between the pre-
dicted and GT models and rescaling the predicted model to
match the GT model's scale.

Finding the scale factor (K) could be done by taking the ratio
between the sum absolute distances (D) between every pair of
points (and along each axis) in the GT and predicted XYZmaps:

K ¼
mean

����DGT
a;i

���
�

mean
����DPrd

a;i

���
� :

i ˛ all pairs of pixels inside the objects, a ˛ X,Y,Z axes.
This leads to a scale-invariant loss function:

Loss ¼ mean(jDGT
a,i � K$DPrd

a,i j).

Note that this was done only to positive distance ratios
DGT
a;i

DPrd
a;i

. 0. The scale factor (K) is calculated once for the entire

image and multiplied by the predicted distances to match them
to the GT distances. In addition, we want to avoid relative scales
(K) which are too big or small. This is because very large or small
relative scales cause the training loss to explode or get stuck.

We, therefore, add a scale controlling term to the loss
function that is used only if the scale factor (K) is larger than ten
or smaller than 0.1. If K > 10, this term is mean(K), which causes
the scale ratio to decrease, while if K < 0.1, we add the term
�mean(K) to the loss function, which forces the prediction scale
(K) to increase. This extra loss element guarantees that the scale
factor (K) will always be in the range of 0.1–10.
5. Predicting material properties

The material properties are given as a list of numbers that
include RGB color, transmission (transparency), roughness,
metallic (reectiveness), IOR, and others (Fig. 5b). Standard
convolutional neural nets for image classication can easily be
modied to predict these values by using the nal output vector
of the net to represent these properties (Fig. 5b). This was done
for the material properties of both the vessel and its content.
The vessel region was added as an input for the net by pro-
cessing it using a single convolutional layer and adding the
result to the rst layer of the convolutional net (Fig. 5b). The
training was done using standard ResNext49 training methods.
Digital Discovery, 2022, 1, 45–60 | 51
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Fig. 4 Predicting 3D model as XYZ map and difference-based loss function. (a) Cross-section of the predicted map along one image column
(blue line). (b) Profiles of the predicted and GTmaps in the Z coordinates. The predicted and GTmaps' translation and scale are inconsistent with
each other. Therefore, the distances between the points (Dx, Dy, Dz) are used for the loss function instead of the absolute x,y,z coordinates of the
points (making the translation irrelevant). (c) Loss display on the 2D XYZ images. The distances (Dz,Dy,Dx) refer to the difference between the two
points in the x, y, and z coordinates, respectively (and NOT to the distance in pixels between the two points on the image plane).

52 | Digital Discovery, 2022, 1, 45–60 © 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Structure of neural nets. (a) XYZ prediction net is a simple FCN that produces the XYZmap as a three-layer map with X,Y,Z values per pixel.
The objects' masks are predicted as two-channel probability maps with two values per pixel (belongs/does not belong to the object). (b) The
material property prediction net is a simple convolutional net (Resnext) that receives the image and the vessel mask (region) and predicts the
properties of the vessel and content materials as a vector.
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The loss function was the sum of the absolute difference
between the predicted and GT vectors.
6. Training with additional datasets

To improve results on real-world images, we also use vessel
mask and content regions from the LabPics dataset as addi-
tional training data for vessel and content mask prediction.
These were applied in 30% of the training steps (the XYZ map
loss was set to zero in this case).
7. Evaluation
7.1. 3D model evaluation

Evaluation of the XYZ map prediction was done by modifying
three standard metrics. The mean absolute error (MAE)11 takes
the mean Euclidean distance between the predicted and GT
points for every pixel belonging to the object:

MAE ¼ mean(D(pGT
i ,pPrdi ))

where D is the Euclidean distance between the points
pGTi , pPrdi for the same pixel (i) on the GT and predicted XYZ
maps and i ˛ all the pixels in the object region.

In addition, since scales are arbitrary, the MAE value has
little meaning. We, therefore, normalized the MAE by
dividing it by one of two values: the mean absolute deviation
(MAD) is the mean distance between points in the GT object
and the GT object's center, was used as the rst normaliza-
tion factor:

MAD ¼ mean(D(pGT
i ,cGT))

where, cGT is the center (average) of the GT points.
In addition, we use the maximum distance between two

points in the GT object (MaxDst) as a second normalization
factor for the MAE:
© 2022 The Author(s). Published by the Royal Society of Chemistry
MaxDst ¼ max(D(pGT
i ,pGT

j ))

i,j ˛ all pixels in the object region.
An additional metric is the standard R-squared, which uses

the sum of the squared Euclidean distances between the pre-
dicted and GT points for every pixel divided by the sum of the
mean squared distance between the GT points and the GT
object's center:

R2 ¼ 1� RSS

TSS
; with RSS ¼

Xn

i

D
�
pGT
i ; pPrdi

�2
; and TSS

¼
Xn

i

D
�
pGT
i ; cGT

�2

An additional metric is the Chamfer distance,53 which is
calculated by nding for each point in the GT object the closest
predicted point (Euclidean distance) and nding the mean of
this distance:

dcdðS1;S2Þ ¼
X
x˛S1

kmin
y˛S2

ðDðx; yÞÞk þ
X
x˛S2

kmin
y˛S1

ðDðx; yÞÞk;

where S1,S2 4 R3 for the predicted and GT point clouds,
respectively.

Note that the Chamfer distance ignores the position of the
points on the image grid and uses only their XYZ position. As in
the case of the MAE, the distance was normalized by both the
mean deviation (MAD) and the maximum deviation (MaxDst)
between points on the GT object.
7.2. Effect of scale and translation on error

The predicted XYZmap is scaled and translated to match the GT
object (Section 4). This normalization removes two types of
errors (scale and translation) and leaves only the errors result-
ing from the object shape. However, the scaling and translation
factors are found using the vessel object and apply to the
content object. Therefore, the content prediction still contains
Digital Discovery, 2022, 1, 45–60 | 53
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both scaling and translation errors. In principle, this is not
a problem since we expect the scale and translation factors of
the vessel and content to be the same (otherwise, the content
will be out of proportion and position to the vessel containing
it). However, it's also interesting to isolate the shape error of the
content. To achieve this, we also calculate the scale and trans-
lation factors using the content object (instead of the vessel)
and use these to scale and translate the predicted content object
to match the GT content.
7.3. Evaluating material properties prediction

Since every property of the material is represented as one or
more numbers, the prediction accuracy was evaluated using
the mean absolute error (MAE) between the predicted and GT
material properties. This is simply the mean absolute differ-
ence between the predicted and GT values. Note that all the
predicted properties have a value ranging between 0 and 1.
Hence, the MAE could also be considered as the difference
between the predicted and real values by percentage. It was
not possible to collect these material properties from real
images; therefore, the evaluation is based on the CGI images
only.
Table 2 Results for XYZ net on content 3Dmodel prediction (Section 7.1)
normalized to match GT content objecta

Test data Net/training

Content XYZ (normalized to c

MAE/
MAD

MAE/
MaxDist

Chamfer/
MAD

Real images XYZ net (with
LabPics)

21.9% 2.8% 30.1%

Object vessels
(RealSense)

XYZ net (only
TransProteus)

22.8% 3.0% 30.8%

Simulated liquid in
a vessel

XYZ net (with
LabPics)

18.7% 2.3% 17.5%

Simulated object in
a vessel

XYZ net (with
LabPics)

36.0% 3.6% 36.0%

a MAE:mean absolute Euclidean distance between GT and predicted point
Euclidean distance between points on the GT object and the GT object cent
points on the GT object. Chamfer distance: mean Euclidean distance betw
Euclidean distance between each point on the predicted object and the c

Table 1 Results for XYZ net on vessel 3D model prediction (Section 7.1)

Test data Net/training MAE/MA

Real images XYZ net (with LabPics) 12.1%
Object vessels (RealSense) XYZ net (only TransProteus) 14.6%
Simulated liquid in a vessel XYZ net (with LabPics) 7.3%
Simulated object in a vessel XYZ net (with LabPics) 8.0%
Vessel opening plane XYZ net (with LabPics) 11.7%

a MAE:mean absolute Euclidean distance between GT and predicted point
Euclidean distance between points on the GT object and the GT object cent
points on the GT object. Chamfer distance: mean Euclidean distance betw
Euclidean distance between each point on the predicted object and the c

54 | Digital Discovery, 2022, 1, 45–60
7.4 Evaluation of 2D instance and semantic segmentation

For evaluating the segmentation of the regions belonging to the
content, vessel, and opening in the image, we choose the stan-
dard IOU metrics. The intersection over union (IOU) is the main
metric used to evaluate semantic segmentation and is calculated
separately for each object. The intersection is the sum of the
pixels that belong to the object according to both the net
prediction and the dataset ground truth (GT), while the union is
the sum of pixels that belong to the object based on either the net
prediction or the GT. The IOU is the intersection divided by the
union. The recall is the intersection divided by the sum of all
pixels belonging to the object according to the GT annotation,
while precision is the intersection divided by the sum of all pixels
belonging to the object based on the net prediction.
8. Results
8.1. Results for 3D model prediction

The results for the 3D model XYZ prediction appear in Tables 1
and 2 and Fig. 6. It can be seen from Table 1 that the net ach-
ieves good accuracy for predicting the 3D shape of the vessel for
both real and simulated pictures. This is true even when the net
for predicted content scale/translation normalized by vessel object and

ontent scale) Content (normalized to vessel scale)

Chamfer/
MaxDist R2

MAE/
MAD

MAE/
MaxDist

Chamfer/
MAD

Chamfer/
MaxDist R2

3.9% 0.89 52.7% 2.9% 74.8% 6.5% 0.27

4.0% 0.87 54.0% 6.6% 76.0% 9.4% 0.36

2.0% 0.82 21.8% 2.5% 20.0% 2.2% 0.78

3.6% 0.73 38.5% 3.6% 45.2% 4.3% 0.62

s on the same pixel pairs. MAD: mean absolute deviation of the GT. Mean
er (X,Y,Z average). MaxDist: maximal Euclidean distance between any two
een each point on the GT object and closest predicted point, plus mean
losest GT point.

a

D MAE/MaxDist Chamfer/MAD Chamfer/MaxDist R2

2.5% 15.9% 3.3% 0.96
2.9% 17.4% 3.5% 0.94
1.2% 7.6% 1.2% 0.97
1.7% 9.5% 1.7% 0.97
1.5% 9.8% 1.2% 0.95

s on the same pixel pairs. MAD: mean absolute deviation of the GT. Mean
er (X,Y,Z average). MaxDist: maximal Euclidean distance between any two
een each point on the GT object and closest predicted point, plus mean
losest GT point.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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is trained only on CGI images and tested on real photos
(Table 1). Training with additional real images (LabPics dataset)
gives only a minor advantage in this case. For content
Fig. 6 Results of the neural net prediction for XYZ map and segmentati

© 2022 The Author(s). Published by the Royal Society of Chemistry
prediction in real-world images (Table 2), the net gives good
accuracy for predicting the 3D shape of the object in the vessel
(Section 7.2). However, when the scale and translation are
on map for simulated and real images.

Digital Discovery, 2022, 1, 45–60 | 55
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Table 3 Material properties prediction mean absolute error (MAE) for content and vessel surface (Section 7.3)

Property

Mean absolute error (MAE)

Content liquid Content object Vessel surface

Transmission/transparency 2.1% 5.6% 0.5%
Color (RGB) 10.7% 4.1% 4.6%
Metallic/reectiveness 2.9% 4.8% 0.7%
Roughness 5.3% 3.9% 0.6%

Table 4 Results of semantic segmentation on real images and simulated images (Section 7.4) for net training on only TransProteus, and for a net
trained on TransProteus combined with the LabPics dataset (real photos)

Evaluated on Net/training

Vessel segmentation Content segmentation

mIoU Precision Recall mIoU Precision Recall

Real images XYZ InNet (with LabPics) 87% 90% 96% 55% 70% 71%
Object vessels (RealSense) XYZ net (only TransProteus) 80% 90% 87% 52% 68% 69%
Simulated liquid in a vessel XYZ net (with LabPics) 98% 99% 98% 84% 87% 96%
Simulated object in a vessel XYZ net (with LabPics) 96% 98% 98% 63% 74% 81%
Vessel opening plane (CGI) XYZ net (with LabPics) 94% 96% 98%

Table 5 Comparison of method for XYZmap prediction vs. depthmap
prediction on the SUN3D dataset

Net/training

MAE Chamfer

R2MAD MaxDist MAD MaxDist

Depth net 12.7% 3.8% 11.2% 3.6% 0.920
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included in the error, the accuracy of the prediction is signi-
cantly lower (Table 2). This can be explained by the fact that the
exact position and scale of the object in the vessel are oen hard
to determine from the image (Fig. 3, 6), while the object's shape
is usually clear. The net achieves good accuracy in predicting
the shape of liquids inside the vessel even when including
translation and scale errors (Table 2, Fig. 6). This can be
explained by the fact that liquids tend to either completely ll
the bottom portion of the vessel or stick to the vessel surface
(Fig. 3). In both cases, the position (translation) inside the
vessel is clear. For simulated objects inside vessels, the net
achieves medium accuracy for shape prediction (Table 3, Fig. 6).
However, adding translation and scale errors did not signi-
cantly affect the accuracy (Table 3). This can be attributed to the
signicant variance in the shape of the object used (Fig. 3). The
vessel opening plane was predicted with high accuracy (Fig. 1,
Table 1), similar to the vessel shape predictions. This makes
sense, given that the vessel opening can be viewed as the top
part of the vessel.

8.1.1. Evaluation on real photos of liquids in vessels. The
main limitation of the evaluation set is the lack of real images of
vessels containing liquids. Since it's not possible to remove the
vessel while keeping the liquid in the same place, it's not actually
possible to get a 3D scan of the liquid inside the vessel. However,
it is possible to run the net on real images of vessels containing
liquids and qualitatively evaluate the results. We supply several
videos of models generated from real images of liquids as ESI† in
this URL: https://zenodo.org/record/5697212. It can be seen that
the net results are visually similar even for complex cases like
a liquid in the state of pouring. We also note that predicting the
3D shape of objects inside transparent vessels is much harder
than for liquid, which, when static, has a very limited range of
shapes. This can be seen by comparing the net result on the
simulated images of liquids inside vessels which gives far better
accuracy compared to simulated objects inside vessels (Table 2).
56 | Digital Discovery, 2022, 1, 45–60
Hence, the result of the net on real images of objects inside
transparent vessels can be viewed as the lower bound for accu-
racy that can be expected for real images containing liquid.

8.2. Results for material properties prediction

The results of material properties prediction are given in Table
3. It can be seen that the net achieves good accuracy with
a mean absolute error of less than 10% for all properties. The
vessel material is also predicted with high accuracy (Table 3),
but in that case, the range of the material properties of the
vessel surface is narrow, making the prediction relatively easy.
For the content material properties, the variance in the gener-
ated materials is high in all properties (color, transparency/
transmission, roughness, and metallic/reectiveness). Also,
the difference in illumination and vessel surface reection is
quite signicant (Fig. 3). Even so, the net achieves good accu-
racy for all properties, implying that it learns to compensate for
background illumination and the vessel surface.

8.3. Segmentation results

The results for the segmentation of vessels and content are
given in Table 4 and Fig. 6. The net predicts the vessel region
with high accuracy (IOU > 80%) and the content region with
medium accuracy (IOU > 50%) for real and simulated images
(Fig. 6). Training the net using a combination of the virtual
XYZ net 15.0% 4.5% 12.5% 3.9% 0.904

© 2022 The Author(s). Published by the Royal Society of Chemistry
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TransProteus images and the real images of the LabPics dataset
gave a 7% improvement for the vessel 2D segmentation in the
real photos but only a 3% improvement for the vessel content
for the same photos (Table 4). It should be noted that the task of
the 2D segmentation of transparent containers and their
content is also covered by the LabPics dataset. However, the
LabPics dataset predicts the shape of the content as it is viewed
through the vessel's transparent surface (distorted shape). On
the other hand, the TransProteus dataset predicts the undis-
torted content shape, which is the region of the object as it
would be viewed if the vessel was not in the way (Fig. 1).
8.4. Comparing results of XYZmap prediction vs. depth map
prediction

Predicting depth map is the main method used to extract 3D
model for image,11 and while this approach demands camera
parameters in order to extract 3D model from the image, it is
interesting to compare it to XYZmap on a standard dataset. We
use the SUN3D dataset,61 which contains RGBD images and
depth scans of various indoor scenes. Unlike the Transproteus,
the camera parameters of this dataset are the same between the
test set and train set. The net that was used was the same as the
XYZ net, with the nal layer replaced with depth map predic-
tion. The loss function was the standard scale-invariant depth
prediction.11 The output of the depth net was transformed into
XYZ coordinates using the known camera parameters. The
results were compared to that of the net train on predicting the
XYZ map in the same dataset. Both the XYZ and depth predic-
tion nets were trained in the same way, with only the nal layer
and loss function differing. The results are given in Table 5. It
can be seen that the depth map prediction gives about 10–20%
better results, suggesting that for known camera parameters
predicting the model as a depth map is still preferable over
predicting the 3D model as an XYZ map.
9. Conclusion

This work demonstrates the rst method and dataset for pre-
dicting the 3D shape and properties of materials, liquids, and
objects inside transparent containers. The nets achieve good
results for simulated and real-world images, but considerable
challenges remain in terms of prediction accuracy and evalua-
tion methods. We also introduce a simple method to predict
a 3D model from an image using a neural net that is indepen-
dent of camera parameters and can work with images from
unknown sources. For the creation of the dataset, we use
existing methods for rendering and simulation. However, we
combine this with large textures repositories and HDRI repos-
itories used by CGI artists. These repositories are relatively
unutilized in the machine learning community, and using them
dramatically increases the diversity and generality of the data-
set, making it one of the most general synthetic datasets in
terms of environments, materials, and objects. As a result, the
net trained on this synthetic data alone achieves good results on
3D and 2D shape prediction for real-world complex images. As
a result, the net trained on this synthetic data alone achieves
© 2022 The Author(s). Published by the Royal Society of Chemistry
good results on 3D and 2D shape prediction for real-world
complex images, as well as material properties of CGI images.
To conclude, the TransProteus dataset solves two of the main
problems in the visual understanding of chemistry. It supplies
an unlimited amount of training data and allows the annotation
of properties that cannot be accurately quantied or described
by humans. A main limitation of the dataset is the fact that
current CGI tools cannot capture the visual complexity of
chemical systems. Future challenges include expanding the
dataset for multiphase materials systems (phase separating
liquids, suspension), simulating more complex chemical
systems, and increasing the prediction accuracy.
10. Appendix
10.1. Implementation details

The XYZ net was implemented using a standard FCN (Deep-
Lab)50,51 with Resnet101 (ref. 49) encoder, ASPP dilated convo-
lution decoder, and three layers of skip connection +
upsampling (UNet hourglass structure52). The nal layer of the
net was split into predicting the XYZ maps of the vessel, the
vessel content, and the vessel opening (Fig. 5a). Each of these
maps includes three layers which give the X,Y,Z coordinates for
each pixel (Fig. 5a). The loss for each map was calculated as
described in Section 4, only for the region of the object as given
by the GT mask. In addition, the regions of the vessel opening
and vessel content in the image were predicted as 2D masks
(Fig. 5a). Each mask was predicted as a two-layer probability
mask (pixel belongs/does not belong to the object). The loss for
each mask was calculated using the standard per pixel cross-
entropy function. The net was trained on a single RTX 3090
GPU. The training and net structure were the same as for
a standard FCN for semantic segmentation. The PyTorch
implementation and trained models have been made available.
Image augmentation included resizing, centered cropping,
blurring, decoloring, and adding white noise but NOT mirror
reecting and rotation. The net was trained once for all content
types, with 40% of the training steps using simulated objects as
the vessel content, 40% using simulated liquids as the vessel
content, and the remaining 20% using liquids with a at surface
(Section 3.3).
10.2. Hierarchical loss for vessel and content 3D shape

We want to predict the XYZmap for the vessel and its content as
well as the vessel opening surface (Fig. 5a). They can be
considered as 3 different overlapping objects. Predicting XYZ
maps for these three objects independently using the loss
function in Section 4.2 will lead to different scales and trans-
lations for each object. To solve this, we calculate the scale
factor (K) for the vessel and use it for the vessel content and
opening. However, since the loss function is translation
invariant, this will lead to different translations for different
objects. To solve this, we subtract the XYZ map of the content
and the vessel in every pixel in which the vessel and the content
overlap. The L1 distance of this property (between prediction
Digital Discovery, 2022, 1, 45–60 | 57
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and GT) is used as a consistency loss that promises a similar
translation for all objects.

Translation consistency loss ¼ mean(jpvessel,GT
a,i � pcontent,GT

a,i +

pvessel,Prda,i � pcontent,Prda,i j)

where pa,i is the coordinate of the point in pixel i on axis a. i ˛
all the pixels in the image where the vessel and content
overlap. a ˛ X,Y,Z axes. Prd and GT are the predicted and
ground truth, respectively. Vessel, content, refers to the type of
object the point in pixel i belongs to (note that only pixels
where the content object and vessel object overlap are used for
this loss).
10.3. Efficient calculation of distances and loss using dilated
convolution

The difference between the XYZ coordinates for two pixels in the
XYZ map can be easily calculated using a convolutional opera-
tion with a lter [1,�1]. Calculating the distance between far-
away pixels can be done using dilated convolution with the
distance as dilation [1,0,0,.,�1]. This enables the calculation
of both the loss and the scale constant as convolutional oper-
ations, which signicantly improves the running time.
10.4. Generating images, annotation, and depth maps using
Blender

Images were created using Blender cycles, a ray-tracing
rendering tool (Fig. 1 and 3). Depth maps and normal maps
for vessels and content were generated using Blender rendering
tools and saved as .exr les. Depth maps for content were
generated by simply removing the vessel from the scene,
leaving its interior exposed (Fig. 1 and 3). The region of the
vessel and content objects we're given by the vessel and content
masks (Fig. 1). These masks were generated by comparing the
scene depth maps with and without the object and marking the
regions that changed (by subtracting the depth maps). In
addition, the vessel opening plane was saved as a depth map
and mask (Fig. 1). This is not an actual object but identifying it
is important for many applications. In order to diversify scenes,
the camera position and rotation, and parameters were
changed randomly for each scene and are supplied in the
dataset.
Data availability

Subset of the dataset can be found in this URL:
https://zenodo.org/record/5508261#.YUoZL3tE1H4
The full dataset (over 100 GB), can be download from either

of these URLS:
https://e.pcloud.link/publink/show?

code¼kZfx55Zx1GOrl4aUwXDrifAHUPSt7QUAIfV
https://icedrive.net/1/6cZbP5dkNG
Code for generating the dataset can be nd in these URLS:
https://github.com/sagieppel/

Procedural_Annotated_Images_Generation_Liquid_Transpere
nt_Vessel
58 | Digital Discovery, 2022, 1, 45–60
https://zenodo.org/record/5511208#.YUodY3tE1H4
Code for predicting 3D model as XYZ from anq image can be

found in these URLs:
https://github.com/sagieppel/Predicting-3D-shape-of-liquid-

and-objects-inside-transparent-vessels-as-XYZ-map-from-a-
single-image

https://zenodo.org/record/5511198#.YUoamHtE1H4
Code for predicting material properties from an image can

be found in these URLs:
https://github.com/sagieppel/Predicting-Material-

properties-of-objects-and-liquids-inside-transparent-vessels-
from-image

https://zenodo.org/record/5511206#.YUocHntE1H4
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