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iction of drug–target interaction
via machine learning based on the chemical
structure and protein sequence†

Yayuan Peng, Jiye Wang, Zengrui Wu, * Lulu Zheng, Biting Wang,
Guixia Liu, Weihua Li and Yun Tang *

Drug–target interaction (DTI) plays a central role in drug discovery. How to predict DTI quickly and

accurately is a key issue. Traditional structure-based and ligand-based methods have some inherent

deficiencies. Hence, it is necessary to develop a new method for DTI prediction that does not rely on

crystal structures of protein targets or quantity and diversity of ligands. In this study, we collected 40 898

DTIs with kd values from ChEMBL 27 to develop a prediction method. Through data standardization,

SMOTE sampling and pipeline techniques, among 30 models the Morgan-PSSM-SVM model (MPSM-DTI)

was demonstrated as the best one with ten-fold cross-validation (F1 ¼ 85.55 � 0.46%, R ¼ 84.89 �
0.62% and P ¼ 86.24 � 0.81%) and test set validation (F1 ¼ 85.11%, R ¼ 84.34% and P ¼ 85.90%). The

results in two external validation sets indicated that the MPSM-DTI model had satisfactory generalization

capability and could be used in target prediction for new compounds. Specifically, the F1, P and R values

were 83.27%, 85.21% and 81.41% in external validation set 1 and 86.45%, 87.50% and 85.42% in external

validation set 2. Via the latest literature evidence, we collected 100 new DTIs of eight GPCR targets to

prove that MPSM-DTI could predict compounds for protein targets without known ligands and crystal

structures. Compared with other DTI prediction methods, our method reached considerable accuracy

and addressed the dilemma of DTI prediction for brand new protein targets. Furthermore, we proposed

the pipeline encapsulation technique, which would avoid data leak and improve generalization ability of

the model. The source code of the method is available at https://github.com/pengyayuan/MPSM-DTI.
Introduction

Drug–target interaction (DTI) plays a central role in drug
discovery. For a known target, DTI could discover new drugs
binding to the target; whereas for a known drug, DTI could
identify its new targets and new usages. However, experimental
determination of DTI is costly and time-consuming. A variety of
computational methods are hence developed for DTI predic-
tion, and how to predict DTI quickly and accurately becomes
a key issue.

The traditional methods for DTI prediction are mainly
divided into two categories:1 structure-based and ligand-based.
In structure-based methods, molecular docking tools are
widely used to nd new ligands for a protein with a three-
dimensional (3D) structure, or identify new protein targets
with 3D structures for a known drug. In ligand-based methods,
genetic Techniques for Cell Metabolism,
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tion (ESI) available. See DOI:

the Royal Society of Chemistry
pharmacophore search and similarity search in 3D shapes,
substructures and physicochemical properties are usually
employed.2–5 Though these traditional methods have suc-
ceeded in many cases, there are still some inherent de-
ciencies. For structure-based methods, 3D structures of targets
are a must. However, most of the potential targets have no
known 3D structures yet, for example, only 60 GPCRs (G
protein-coupled receptors) have been determined structurally
among the total 800 members, which means that the structure-
based methods could not be utilized on those targets without
3D structures directly.6,7 For ligand-based methods, it is
impossible to search new ligands for those targets without
known ligands. Therefore, it is urgent to develop novel
methods for DTI prediction.8

Recently, a new type of method, named network-based
methods, were developed for DTI prediction. These new
methods do not rely on the 3D structures of targets. Instead,
they utilize a large number of known DTIs and multiple che-
mogenomic data to construct a DTI network for prediction of
potential DTIs. For example, Wu et al. developed network-based
inference methods SDTNBI and bSDTNBI to predict new DTIs
by introducing substructure information of ligands to a known
DTI network, which could be applied in target prediction for
Digital Discovery, 2022, 1, 115–126 | 115
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new chemical entities outside the DTI network.9–12 However,
these methods could not be used in nding potential ligands
for new targets outside the network.
Fig. 1 Overview of the workflow to construct the prediction model, inc

116 | Digital Discovery, 2022, 1, 115–126
Meanwhile, machine learning methods are also used in DTI
prediction. For example, Lee et al. extracted local residue
patterns of protein sequences to predict novel DTIs using
luding data preparation, feature extraction and model construction.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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convolution neural network,13 which proved that protein
sequences could offer useful information in DTI prediction.
Mahmud et al. developed the iDTi-CSsmoteB webserver to
predict DTIs based on PubChem ngerprints and various
protein sequence features using XGBoost and oversampling
techniques.14 However, the data quality of the above-mentioned
methods was not satisfactory because the negative data were
selected arbitrarily. Several other studies also did so.15–17 Some
of them used random non-positive DTIs to act as negative
samples. However, non-positive DTIs are not denitely negative
because they are just not validated yet. Some of them might be
positive aer validation. Therefore, it is signicant to construct
predictive models using high-quality data.

In this study, we developed a machine learning model for
prediction of DTIs using chemical structures and protein
sequences as features. The pipeline technique was used to
encapsulate the feature data standardization, SMOTE sampling
process and machine learning estimator, which would avoid
overtting and improve model generalization. The whole work-
ow is shown in Fig. 1. In brief, over 40 000 DTIs with dissociation
constant (kd) values were collected from various sources. Five
types of molecular ngerprints and descriptors were calculated by
PaDEL-Descriptor and RDKit. The protein sequence features were
extracted through PSI-Blast and the POSSUM toolkit. 30 predic-
tion models were built for DTI prediction by 5 machine learning
methods and 6 feature representation approaches, among which
the Morgan-PSSM-SVM model (MPSM-DTI) was validated as the
best one. In case studies, the MPSM-DTI model exhibited satis-
factory capability in DTI prediction.

Materials and methods
Data collection and preparation

The original DTI data were extracted with kd values from
ChEMBL 27 (released in May 2020).18 kd ¼ 10 mM was set as the
threshold to identify whether the interactions were positive or
negative.19–21 When kd # 10 mM, the interactions were set as
positive; whereas if kd > 10 mM, the interactions were set as
negative. Here drugs refer to any chemicals with bioactivity data
including approved drugs.

The SMILES of all drugs were imported to Pipeline Pilot
Client (version 2017 R2) to clean chemicals with wrong struc-
tures, followed by a series of steps, including removing salt and
inorganics, standardizing SMILES and wiping out molecules
with molecular weight >1200 Da or <200 Da. Duplicated data
were then removed. To ensure clean data, the ambiguous DTIs,
the interactions being not only positive but also negative, were
removed. For proteins, if the protein sequences were not
available in UniProt, the corresponding interactions were
deleted, too. Aer that, the whole data were divided into
a training set and a test set in a ratio of 8 : 2.

Data of external validation set 1 were gathered from Bind-
ingDB (accessed in June 2020)22 and IUPHAR/BPS Guide to
PHARMACOLOGY (accessed in June 2020).23 All data were
prepared in the same way as those in the training set and test
set. Duplicates with those in the training set and test set were
removed, to keep external validation set 1 independent.
© 2022 The Author(s). Published by the Royal Society of Chemistry
To evaluate the capability of predicting targets for new
compounds, external validation set 2 was prepared, in which
the DTIs were not duplicated with those in the training set and
test set, but the compounds were brand new. Furthermore, to
verify whether the model can predict compounds exactly for
new targets, the experimentally validated DTIs were gathered
from a list of recent publications, in which the proteins were
completely new compared with proteins in the training set and
test set.
Chemical representation

Five types of molecular ngerprints, including Substructure
(FP4), MACCS, PubChem, Klekota-Roth (KR), and Morgan, as
well as molecular descriptors (Des) were used to depict the
features of drugs, respectively. The FP4, MACCS, PubChem and
KR ngerprints were calculated by PaDEL_Descriptor (version
2.2.1).24 The Morgan (1024 bit) ngerprint and molecular
descriptors were computed through RDKit, the open source
cheminformatics Python package.
Protein target representation

The position specic scoring matrix (PSSM) was employed to
describe protein features in DTI pairs. To generate the PSSM of
a query protein, there are three major steps. Firstly, the PSI-
Blast procedure from Blast of National Center for Biotech-
nology Information (https://p.ncbi.nlm.nih.gov/blast/
executables/blast+/LATEST/) was downloaded and congured.
Simultaneously, Blast database and SwissProt were downloaded
via p from p://p.ncbi.nlm.nih.gov/blast/db/. Secondly, all
query protein sequences in FASTA format were obtained from
the UniProt database. Thirdly, the PSSM of each query protein
was generated separately with the parameters of PSI-Blast e-
value ¼ 0.001 and num_iterations ¼ 3. A PSSM for a query
protein is an L � 20 matrix P ¼ {Pij: i ¼ 1,2,3.L and j ¼
1,2,3.20}, where L is the length of the protein sequence and j
stands for the 20 different amino acids. While Pij means the
score of the ith position iterated by the jth amino acid, a larger
Pij means a higher conserved position. The PSSM cannot be
used directly for proteins with different L values. Therefore, we
used a bioinformatics toolkit POSSUM to transform PSSM from
an L � 20 matrix to a 400 dimensional vector.25

PPSSM ¼

2
6666666666664

P1/1 P1/2 . P1/20

P2/1 P2/2 . P2/20

« « « ⋱
Pi/1 Pi/2 . Pi/20

« « «
PL/1 PL/2 . PL/20

3
7777777777775
PCA analysis

Principal component analysis (PCA) was applied to decompose
the chemical and protein features to a lower dimensional space
Digital Discovery, 2022, 1, 115–126 | 117
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by the PCA module of scikit-learn. The parameter “n_compo-
nents” was set as “3”, which indicated that 3 components were
kept aer PCA decomposition.

Model construction

Five machine learning methods were used to build models for
DTI prediction, including decision tree (DT), bagging, gradient
boost decision tree (GBDT), k-nearest neighbors (k-NN), and
support vector machine (SVM). All these methods were realized
by scikit-learn (version 0.23), a prevalent open source Python
module for machine learning built on top of SciPy. The detailed
description of these methods is presented in the ESI.†

Pipeline building

Information leakage, a process that knowledge leaks from the
test data into the trained model in cross-validation, usually
shows excellent cross-validation results but poor generalization
ability. To avoid this, pipeline, a module of scikit-learn, was
used to chain multiple estimators into one, including feature
data standardization, SMOTE sampling and aforementioned
machine learning estimators. Most importantly, pipeline is an
encapsulated estimator, which could be introduced into Grid-
SearchCV to search over all parameters. Because of encapsula-
tion, pipeline provides a convenient and safe approach to
transform and resample training data.

Feature data standardization. In this study, molecular
ngerprints, such as FP4, MACCS, PubChem, KR, and Morgan,
are categorical features, while molecular descriptors and
protein PSSM features are continuous features. Categorical
features and continuous features need to be treated differently.
Therefore, ColumnTransformer was used to help performing
data standardization for heterogeneous features. For contin-
uous data, StandardScale was conducted to standardize features
by removing the mean and scaling to unit variance. For cate-
gorical features, they were kept as original data. In this way, all
feature data were standardized in foregoing models except k-NN
because data standardization is not suitable for k-NN.

SMOTE sampling. An imbalanced data problem can lead to
the learning phase and subsequent prediction of machine
learning algorithm biased. Therefore, we used the Synthetic
Minority Oversampling Technique (SMOTE) method to do
oversampling through the imbalanced-learn (version 0.7.0)
python package. SMOTE generates a new sample xnew by
considering k nearest neighbors of sample xi in the minority
class.26

Grid search for hyper-parameters

Usually, parameter optimization would provide the best gener-
alization of a model. However, it is difficult for most data sets
and estimators to tune the hyper-parameters. In this study, we
used GridSearchCV to optimize parameters for each machine
learning method and the k value of the SMOTE sampling
approach. GridSearchCV can consider all parameter combina-
tions exhaustively with a given parameter grid. In this way, all
possible values for different parameters would be explored,
which could provide all models with optimal parameters.
118 | Digital Discovery, 2022, 1, 115–126
Performance assessment of models

In order to evaluate different models, ten-fold cross-validation,
test set validation and external validation were performed
successively. In ten-fold cross-validation, the DTIs in the
training set were divided into ten parts randomly and equally.
One part served as the validation set, while the remaining nine
parts were used to build the model and predict the validation
set. This process was repeated ten times to allow each part be
validated in turns. Through ten-fold cross-validation, different
models with different parameters would be assessed and then
the optimal models would be obtained. In addition to ten-fold
cross-validation, we also applied the test set to assess the
models by splitting the training set and test set in a ratio of 8 : 2.

The external validation set is independent of the training set
and test set. The external validation data were divided into four
different groups to assess the ability of classiers to predict new
DTIs for new compounds and new proteins. The statistical
numbers of DTI samples are shown in Table 1.

The following performance metrics were used as evaluation
indicators: F1, recall (R) and precision (P) to assess each
prediction model. See below equations:

F1 ¼ 2TP

2TPþ FNþ FP
(1)

R ¼ TP

TPþ FN
(2)

P ¼ TP

TPþ FP
(3)

where TP is the number of true positives, FN is the number of
false negatives, and FP is the number of false positives. Recall
(R) indicates the ability of classiers to nd all the positive DTI
samples. Precision (P) measures the ratio of true positive DTI
samples in all predicted positive DTI samples. F1 can be inter-
preted as a weighted average of the precision and recall. The
relative contribution of P and R to F1 is equal. F1 can also be
expressed as: 2 � (P � R)/(P + R). For an unbalanced binary
classication problem, F1 is an unbiased evaluation indicator
because both P and R are embedded. For the three parameters
F1, P and R, the best value is 1 and the worst value is 0. Other
evaluation indicators, such as ACC (accuracy), NPV (negative
predictive value) and SP (specicity), were deciphered in the
ESI.†
Results
Data collection and analysis

From ChEMBL 27, we collected 40 898 DTI samples with kd
values in total, among which the numbers of positive and
negative DTIs were 17 320 and 23 578, respectively. The ratio of
negative and positive data is 1.36 : 1 approximately. Obviously,
the data set is not balanced to some degree. All DTIs were then
split into a training set and a test set randomly in a ratio of 8 : 2.
In the training set, there were 7445 drugs, 888 targets, 13 858
positive interactions and 18 859 negative interactions. The test
set contained 2268 drugs, 720 targets, 3641 positive interactions
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Statistics of the compounds, targets, and positive and negative DTI samples in all data setsa

Data set Nd NT NP NN Total samples Data sources

Training set 7445 888 13 858 18 859 32 717 ChEMBL
Test set 2268 720 3641 4719 8180
External validation set 1 987 625 1152 869 2021 BindingDB, IUPHAR/BPS guide

to PHARMACOLOGYExternal validation set 2 853 604 1014 818 1832

a Nd: number of drugs; NT: number of targets; NP: number of positive DTI samples; NN: number of negative DTI samples.
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and 4719 negative interactions. To better evaluate the model
generalization, we gathered 2021 DTIs with kd values from
BindingDB and IUPHAR/BPS Guide to PHARMACOLOGY to
serve as external validation set 1, which contained 1152 posi-
tives and 869 negatives. In external validation set 2, there were
1832 DTIs with kd values, among which 1014 ones were positive
and 818 were negative. The details of all the data sets are
summarized in Table 1.

In addition, 100 DTIs collected from the latest literature were
used in the case study and summarized in Table S1,† which
enclosed eight functional GPCR (G-protein coupled receptor)
proteins covering some principal biological pathways and
complex diseases.

Model building and pipeline to avoid data leaking

By applying molecular descriptors (Des) and ve types of
molecular ngerprints (FP4, KR, MACCS, Morgan, and Pub-
Chem) to represent the features of compounds and PSSM to
decipher the features of protein targets, ve machine learning
methods (Bagging, DT, GBDT, k-NN, and SVM) were used to
construct models, which resulted in 30 different models. Aer
feature data standardization, SMOTE sampling and grid search,
the optimal hyper-parameters were obtained for each of the 30
models by ten-fold cross validation. All optimal hyper-
parameters are summarized in Table S3.†

Through a pipeline approach, the feature data standardi-
zation, SMOTE sampling process and machine learning esti-
mator were encapsulated as a unitive estimator. The
superiority of the pipeline approach is to avoid data leaking.
Fig. 2 shows the DF1, DP and DR values of 30 models with and
without pipeline encapsulation. DF1, DP and DR stand for the
differences of F1, P and R between test set validation and ten-
fold cross-validation. From Fig. 2, we could see that all the DF1,
DP and DR values of models without the pipeline strategy were
much larger than those with pipeline. The larger DF1, DP and
DR values reected that the models could achieve better
performance in ten-fold cross-validation but poor perfor-
mance in test set validation, i.e. overtting. Therefore, the
pipeline strategy is effective in avoiding data leaking and
overtting.

Performance evaluation of the models

Fig. 3 shows the ten-fold cross-validation results of the 30
models. The detailed results are listed in Table S4,† in which the
six models highlighted in bold were the best ones, each from
one of the six types of chemical features. From Fig. 3, we could
© 2022 The Author(s). Published by the Royal Society of Chemistry
see that the F1, R and P scores of major machine learning
methods were greater than 80% and for some excellent models
the scores were close to 85%, except those built by DT. The
ensemble methods, including Bagging and GBDT, all per-
formed better than DT. Furthermore, GBDT and SVM out-
performed Bagging, DT and k-NN. It is clear that the R and P
scores of DT and SVM were balanced relatively. In Bagging and
GBDT models, the P scores were greater than the R scores. In
contrast, in k-NN models the P scores were much lower than the
R scores.

As for the chemical features, from Fig. 3 we found that
models with FP4-PSSM performed worse than the others, which
indicated that FP4 could not represent the features of chemical
structures well. Meanwhile, models with Descriptor-PSSM, KR-
PSSM, MACCS-PSSM, Morgan-PSSM, and PubChem-PSSM
exhibited comparable performance, and models with Morgan-
PSSM outperformed slightly. Especially, the Morgan-PSSM-
SVM model (MPSM-DTI) performed the best among all 30
models, with ten-fold cross-validation results as F1 ¼ 85.55 �
0.46%, R ¼ 84.89 � 0.62% and P ¼ 86.24 � 0.81%.

Besides ten-fold cross-validation, test set validation was also
employed for the comparison of different models. Fig. 4
displays the test set validation results. The detailed values of
evaluation indicators for all 30 models are shown in Table S5.†
The results of test set validation were similar to those of ten-fold
cross-validation. The F1, R and P scores of test set validation for
most models also exceeded 80%. From Fig. 4, we could see that
all SVM models performed better than those of Bagging, DT,
GBDT, and k-NN. Furthermore, MPSM-DTI was also tested as
the best model among all 30 models, with test set validation
results as F1 ¼ 85.11%, R ¼ 84.34% and P ¼ 85.90%.
Evaluation of model generalization capability

Aer evaluation by ten-fold cross-validation and test set vali-
dation, MPSM-DTI (namely the Morgan-PSSM-SVM model) was
selected as the best prediction model among the 30 models. To
further assess the generalization capability of the model, two
additional external data sets were utilized.

Before the assessment, to see if the external data sets were
located within the applicability domain of the model, the PCA
analysis was performed to reduce the dimensionality of the
chemical and protein features on all four data sets into a 3D
chemical space. As shown in Fig. 5A, it is easy to see that the
distributions of features in the four data sets were covered
well in the 3D space aer PCA dimensionality reduction.
Fig. 5A indicates that the two external data sets were suitable
Digital Discovery, 2022, 1, 115–126 | 119
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Fig. 2 Comparison of (A) DF1, (B) DP and (C) DR values among 30models by two approaches. DF1¼ F1,10-fold cross validation� F1,test set validation, DP¼
P10-fold cross validation � Ptest set validation, and DR ¼ R10-fold cross validation � Rtest set validation. Turquoise: models with the pipeline process; pale red:
models without pipeline encapsulation.

120 | Digital Discovery, 2022, 1, 115–126 © 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Comparison of F1, P and R values in ten-fold cross-validation among 30 models with different DTI features, (A) descriptor-PSSM, (B) FP4-
PSSM, (C) KR-PSSM, (D) MACCS-PSSM, (E) Morgan-PSSM, and (F) PubChem-PSSM. F1: turquoise; P: pale red; R: dark orange.
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for assessment of the generalization capability of the model.
The evaluation results of the four data sets via the MPSM-DTI
model are shown in Fig. 5B and Table 2. From Fig. 5B, we
could see that the external validation set 1 and external
© 2022 The Author(s). Published by the Royal Society of Chemistry
validation set 2 achieved quite similar results in comparison
with ten-fold cross-validation and test set validation. Speci-
cally, for external validation set 1, the F1, P and R scores were
83.27%, 85.21% and 81.41%, respectively, while for external
Digital Discovery, 2022, 1, 115–126 | 121
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Fig. 4 Comparison of F1, P and R values in test set validation among 30 models with different DTI features, (A) descriptor-PSSM, (B) FP4-PSSM,
(C) KR-PSSM, (D) MACCS-PSSM, (E) Morgan-PSSM, and (F) PubChem-PSSM. F1: turquoise; P: dark cyan; R: pale red.
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validation set 2, the three evaluation indicators exceeded
external data set 1 to some extent with F1 ¼ 86.45%, P ¼
87.50% and R ¼ 85.42%.
122 | Digital Discovery, 2022, 1, 115–126
From the above analysis, it is obvious that the MPSM-DTI
model achieved high-quality generalization capability in two
different external sets. Moreover, from the results of external
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 (A) Scatter diagram of data among the training set, test set, external validation set 1 and external validation set 2 in 3D PCA analysis with
Morgan-PSSM features. (B) Comparison of F1, P and R scores in ten-fold cross-validation, test set validation, external validation 1 and external
validation 2.

Table 2 Evaluation values of F1, P and R in ten-fold cross validation, test set validation, external validation 1 and external validation set 2 by the
MPSM-DTI model. All values are in percentage

Evaluation indicators
Ten-fold cross
validation Test set validation

External validation
set 1

External validation
set 2

F1 85.55 � 0.46 85.11 83.27 86.45
P 86.24 � 0.81 85.90 85.21 87.50
R 84.89 � 0.62 84.34 81.41 85.42
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validation set 2, we could see that the model obtained ideal
results on known DTIs with new compounds.
Case study

It is usually difficult to identify potential ligands for new targets,
especially for those targets without crystal structures and known
ligands. To show the capability of the MPSM-DTI model in
predicting ligands for new targets, we collected 100 experi-
mentally validated DTIs from the latest literature. The 100
known DTI data contained 100 different compounds with eight
new targets, including DHCR7, HTR1F, LTB4R, CYSLTR2,
GRIK3, GPER1, PTGIR, and SIRP5. The eight targets belong to
the GPCR superfamily, and have no crystal structures yet.
Table 3 The predictive results of the MPSM-DTI model for the eight
GPCR targets

No. Target name Correctly predicted All predicted Recall score

1 DHCR7 7 7 100%
2 HTR1F 14 14 100%
3 LTB4R 14 14 100%
4 CYSLTR2 11 15 73.30%
5 GRIK3 5 8 62.50%
6 GPER1 10 10 100%
7 PTGIR 16 16 100%
8 S1PR5 12 15 80%

© 2022 The Author(s). Published by the Royal Society of Chemistry
Table 3 briey shows the predictive results of the MPSM-DTI
model for the eight new GPCR targets. It is straightforward to
see that the MPSM-DTI model obtained a considerable recall
rate with 90 correct predictions among all 100 experimentally
validated DTIs. Fig. 6 illustrates the results clearly with DTI
networks. From Fig. 6, we learn that all the DTIs of DHCR7,
HTR1F, LTB4R, GPER1, and PTGIR, were predicted correctly,
while a small portion of DTIs were predicted incorrectly for
CYSLTR2, GRIK3 and SIPR5. The detailed prediction results are
listed in Table S1† and the SMILES of all compounds are shown
in Table S2.†
Discussion

In this study, we proposed a machine learning model for the
prediction of DTIs. Five types of ngerprints (FP4, MACCS,
PubChem, KR, and Morgan) and molecular descriptors (Des)
were used to represent the chemical features, respectively. A
kind of protein sequence-based feature, PSSM, was utilized to
describe the protein targets. Then the chemical features and
PSSM characteristics were joined together to manifest the DTIs.
Five types of machine learning algorithms (DT, bagging, GBDT,
k-NN, and SVM) were employed to build the predictive models.
The models were further validated comprehensively by ten-fold
cross-validation, test set, and two external validation sets. By
means of pipeline encapsulation, the data leaking problem of
Digital Discovery, 2022, 1, 115–126 | 123
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Fig. 6 The literature validation results of MPSM-DTI on known interactions between eight GPCR targets and 100 compounds. The blue dia-
monds indicate targets, red circles represent compounds, solid lines indicate correctly predicted DTIs, and dotted lines indicate wrongly pre-
dicted DTIs.
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the models was avoided and the overtting issue was also pre-
vented to some degree. Finally, the MPSM-DTI model was
selected as the best one among the 30 models and showed
satisfactory generalization capability. In a case study, the
MPSM-DTI model correctly predicted potential ligands for new
targets without crystal structures and known ligands.

In comparison with other similar models, the MPSM-DTI
model possesses several advantages. Firstly, the data quality
was greatly guaranteed by gathering rst-hand DTI data.
However, in some reported DTI prediction models, the
threshold to discriminate positive and negative DTI data was
oen incorrect; sometimes unconrmed interactions were
regarded as negative DTI data in some research studies, which
would lead to inaccurate models and mislead false predic-
tions.14,17 Secondly, the MPSM-DTI model could predict targets
for new compounds outside the DTI network. From the results
in external validation set 2, we could see that the MPSM-DTI
model would correctly predict potential targets for brand new
compounds. Thirdly, the MPSM-DTI model could predict
124 | Digital Discovery, 2022, 1, 115–126
compounds for new targets outside the DTI network. From the
results of the case study, the MPSM-DTI model could correctly
predict 90 percent of DTIs for those eight new GPCR targets and
achieve a relatively decent performance. In theory, our MPSM-
DTI model could predict potential ligands for any new targets
as long as the target sequence could be obtained.

At present, there are several published methods for the
prediction of DTIs, such as SwissTarget,3 SDTNBI,27 bSDTNBI,27

and ChemMapper.5 These methods are widely used as free
webservers in drug discovery. SwissTarget is a ligand-based
method for target prediction, established based on a combina-
tion of 2D and 3D similarity with a library of 370 000 known
actives.3 ChemMapper is also a kind of ligand-based approach,
which is based on the concept that compounds sharing high 3D
similarities may have relatively similar target association
proles.4,5 SDTNBI and bSDTNBI are two network-based
methods for target prediction. SDTNBI uses a network-based
inference method to recommend targets for compounds,
which relies on source propagation on the substructure-drug–
© 2022 The Author(s). Published by the Royal Society of Chemistry
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target network,9 while bSDTNBI is the upgraded version of
SDTNBI by adding three parameters to adjust the network
weights.10 SDTNBI and bSDTNBI methods could be reached by
the NetInfer (http://lmmd.ecust.edu.cn/netinfer/) webserver.27

Compared with these published methods, our MPSM-DTI
model showed better prediction accuracy with a higher recall
rate than the others. Fig. 7 displays the prediction results of
these methods, including MPSM-DTI, SwissTarget, SDTNBI (top
20), SDTNBI (top 50), bSDTNBI (top 20), bSDTNBI (top 50), and
ChemMapper. All predictions were performed through corre-
sponding webservers and the correct recall numbers and false
recall numbers were counted by Python scripts. From Fig. 7, it is
easy to see that MPSM-DTI achieved the best results with 90%
correctness for the aforementioned eight GPCR targets. Swis-
sTarget ranked the second with 61% correctness. bSDTNBI
outperformed SDTNBI, which was conrmed by the previous
studies.7,10,20 The prediction ranking top 20 or top 50 of
bSDTNBI did not inuence the ultimate results a lot. The
detailed prediction results for each DTI of these methods are
shown in Table S1,† and the SMILES for the 100 compounds are
listed in Table S2.† If somebody is interested in some of the
targets, they could use those data in their studies.

The MPSM-DTI model also exhibited two more advantages.
First, MPSM-DTI could predict potential ligands for new protein
targets especially for those without crystal structures and known
ligands, whereas the other methods could not do that. Second,
MPSM-DTI runs very fast and only needs a few seconds.
However, ChemMapper would take a much longer time (usually
more than 24 hours) because it identies potential compounds
via 3D similarity calculations. SwissTarget takes 5–10 minutes
aer submitting a query for small molecule.

Anyhow, there is still some space to improve MPSM-DTI. For
example, we did not use deep learning methods to construct the
model, because we are short of gigantic DTI data and plentiful
computational resources to support vast data calculation. At
present, deep learning does not improve model performance
but takes too much computation resource in comparison with
ordinary machine learning methods. Meanwhile, a webserver
might be very helpful for others to use it friendly elsewhere, for
instance, to do virtual screening or lead discovery for targets
without known ligands and crystal structures. Nevertheless,
Fig. 7 Comparison of prediction accuracy for 100 literature-validated
DTIs among eight targets and 100 compounds by seven methods,
including our MPSM-DTI model, SwissTarget, SDTNBI (top 20),
SDTNBI (top 50), bSDTNBI (top 20), bSDTNBI (top 50) and Chem-
Mapper. Red: number of true positives; grey: number of false positives.

© 2022 The Author(s). Published by the Royal Society of Chemistry
MPSM-DTI might have a profound signicance on drug
discovery and development.
Conclusions

It is important to develop novel and accurate tools for identi-
cation of DTIs, especially for those targets without known
ligands and crystal structures. In this study, we developed
a machine learning model named MPSM-DTI for the prediction
of DTIs, in which chemical Morgan ngerprints and protein
sequence PSSM features were used to characterize the DTIs. The
main advantage of MPSM-DTI is the pipeline encapsulation
technique, which reduced overtting signicantly and
enhanced the generalization ability of the model distinctly by
encapsulating the feature data standardization, SMOTE
sampling process and SVM estimator. The MPSM-DTI model
was evaluated by ten-fold cross-validation, test set and two
external validation sets. Moreover, 90% of 100 real DTIs for
eight GPCR targets were correctly predicted by MPSM-DTI in
a case study, which demonstrated the superiority of our method
in DTI prediction. Compared with SwissTarget, SDTNBI,
bSDTNBI, and ChemMapper, our MPSM-DTI model could
achieve a higher recall rate with less time consumption.
Therefore, MPSM-DTI would be a powerful tool for DTI
prediction and have a wide range of applications. The source
code of MPSM-DTI is available at https://github.com/
pengyayuan/MPSM-DTI.
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