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mated screening of viscous
graphene suspensions with various surfactants for
optimal electrical conductivity

Daniil Bash, ab Frederick Hubert Chenardy,c Zekun Ren,d Jayce J Cheng,b

Tonio Buonassisi,de Ricardo Oliveira,f Jatin N Kumar b

and Kedar Hippalgaonkar *bc

Functional composite thin films have a wide variety of applications in flexible and/or electronic devices,

telecommunications and multifunctional emerging coatings. The rapid screening of their properties is

a challenging task, especially with multiple components defining the targeted properties. In this work we

present a platform for accelerated automated screening of viscous graphene suspensions for optimal

electrical conductivity. Using an Opentrons OT2 robotic auto-pipettor, we tested 3 most industrially

significant surfactants – PVP, SDS and T80 – by fabricating 288 samples of graphene suspensions in

aqueous hydroxypropylmethylcellulose. Enabled by our custom motorized 4-point probe measurement

setup and computer vision algorithms, we then measured the electrical conductivity of every sample and

identified that the highest performance is achieved for PVP-based samples, peaking at 10.8 mS cm�1

without annealing. The automation of the experimental procedure allowed us to perform the majority of

the experiments using robots, while the involvement of human researchers was kept to minimum.

Overall the experiment was completed in less than 18 hours, only 3 of which involved humans.
Introduction

In recent years, printable exible electronics have received
increasing attention.1–5 Specically, conductive inks and paints
have attracted much attention, as these materials show a wide
range of applications, for example, printed radio frequency
identication devices (RFIDs),6 surface heaters,7 wearable
printable sensors,8,9 IoT devices,10 conductive fabrics,11,12 etc.
One of the most explored additive for manufacturing conduc-
tive inks and paints is graphene10,12–18 due to its intrinsic high
electrical and thermal conductivity,19–21 chemical and thermal
stability,22–25 and a relatively low price. However, because it is so
chemically inert, graphene faces challenges when being made
into dispersions, as it has very low affinity to most solvents, and,
therefore, tends to aggregate and precipitate from the solution.

A common way to overcome this challenge is the use of
surfactants.4,12 Surfactants help to separate graphene akes
from each other and prevent their aggregating, while also
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signicantly increasing their affinity to the solvent.26,27However,
excessive quantities of surfactant drastically reduce the elec-
trical conductivity of the resulting device since individual gra-
phene akes are shielded by surfactant molecules and cannot
form an efficient path for charge carriers to ow through.28

Hence, nding an optimal type and concentration of the
surfactant is a key challenge for industry as these properties
have a critical impact on the performance of the nal device, bill
of materials (BOM), and overall cost of manufacturing. Several
studies have been carried out to identify the best surfactants for
graphene dispersion in various solvents.26,28–31

Surfactants like sodium dodecylsulphate (SDS), poly-
vinylpyrrolidone (PVP) and tween 80 (T80), among several
others, have been shown to have themost optimal properties for
graphene dispersion.32–35 Industrially, the optimization of gra-
phene–surfactant formulation is of major importance as
described above. To our knowledge, very few studies have
explored the parameter space of graphene–surfactant mixtures
in full or performed detailed characterization of the
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conductivity proles of the samples. This can partially be
explained by the fact that traditional manual methods of
sample preparation are inadequate for covering a large
parameter space. Therefore, we thought it necessary to develop
a robust high-throughput method for the automation of liquid
sample preparation, drop-casting and thin lm characteriza-
tion. The use of robotics and automation allows for highly
reproducible, systematic fabrication of hundreds and thou-
sands of samples with almost no human intervention.

In this work, we develop a methodology for the fabrication of
graphene–surfactant mixtures of various ratios in an automated
fashion, thin lm preparation and accelerated characterization.
To achieve that, we used an Opentrons OT2 auto-pipettor
(Fig. 1a) to perform an exhaustive search of the full parameter
space for ternary mixtures of graphene, hydrox-
ypropylmethylcellulose (HPMC) and each of the 3 surfactants:
PVP, SDS and T80. We used custom python-based soware to
generate the design of experiment (DoE) in csv format, which
was used to provide instructions for the auto-pipettor for mixing
and drop-casting.

An advantage of our approach is the robustness of the system
for a varied range of viscous solutions. Specically, we used
HPMC, a common rheology modier, to mimic the viscosity and
the lm-formation characteristics of an ink/paint.36 Despite the
added complexity of our control soware, the auto-pipettor was
able to handle viscous liquids without affecting the quality of
the samples or the reproducibility of the experiment. Impor-
tantly, we signicantly improved the efficiency and the
throughput for the fabrication of the samples, which was less
than 2 minutes per sample, including mixing of the stock
solution to obtain the desired graphene–surfactant ratio, and
subsequent drop-casting, or approximately a 2-5-fold increase
of the throughput compared to the manual process (Fig. 1). The
involvement of human researchers was limited to loading
samples in and out of the autopipettor and checking the
Fig. 1 Schematic representation of the experimental workflow and distrib
using an Opentrons OT2 auto-pipettor (image credit: Opentrons); (b) im
setup; (d) samples labelled by the computer-vision algorithm. Time estim

140 | Digital Discovery, 2022, 1, 139–146
calibration during the fabrication stage and to positioning the
4pp tool above samples and post-processing the image recog-
nition data during the measurement stage.

The rapid fabrication of test samples without a robust meth-
odology for high-throughput characterization of these samples
would have little benet, especially for the use of supervised
learning algorithms. Therefore, we have developed automated
characterization techniques, which involve a 4-point probe (4pp)
for automated full IV measurement, as well as a computer vision-
based algorithm for thickness approximation (Fig. 1c and
d respectively). The automation of the 4pp measurement has an
added advantage of causing minimal damage to the samples and
is highly reproducible due to the computer vision-based indexing
of the samples' positions.

Traditionally, in manual measurements the probe is pressed
into the sample by hand and is held there by the researcher
until the measurement is done, which takes a few minutes, in
addition to positioning and setting up the instrument.
However, it is almost impossible to hold the probe at exactly the
same angle and at constant force during this procedure. Hence,
the samples could be damaged by probe slipping, and the
results of measurement might not be consistent. In contrast,
the automated manipulation of the probe allows us to always
apply uniform pressure and at exactly the right angle, mini-
mizing the damage to the sample and yielding highly repro-
ducible results, while freeing up the hands and mind of the
researcher. Some of the automated 4pp measurements involve
the use of refurbished 3D-printers with all open-source
components, described by Handy Chandra et al.;37 the use of
micro electro-mechanical system (MEMS) basedmicro- or nano-
4pp for in situ measurements of large material libraries, devel-
oped by Alfred Ludwig et al.;38 the use of an automated 4pp
stage for measuring the Hall effect, as described in work by
Rudolf Kinder et al.,39 among others.
ution of time spent by humans and by robots. (a) Fabrication of samples
age of drop-cast samples; (c) automated 4-point probe measurement
ations are provided per 96 samples, or one surfactant.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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In contrast, the advantages of our method of 4pp measure-
ments include the use of off-the-shelf components, which are
commonly in possession of research groups that are involved in
thin lm fabrication and characterization, and only minimal
requirement of coding or electrical engineering skills, as
compared to the majority of alternative approaches from the
literature. Our approach, on par with complementary tech-
niques, allowed us to increase the throughput to approximately
1 minute per sample, where a full wafer with 49 samples is
automatically characterized in �45 minutes including detec-
tion, alignment and measurement, which is 3–5 times faster
than manual measurements (Fig. 1c). The obtained IV curves
were then converted into sheet resistance and were used for
further processing in this study.

The next automation step of our methodology is the computer
vision-based thickness approximation algorithm. It was used for
detecting the exact outline of the sample for calculating its area in
pixels, which was then correlated with the true area of reference
samples – 2 black circles with a known area printed on A4 paper,
placed underneath the wafer (Fig. 1b and d, bottom right corner).
Thereaer, we were able to calculate the thickness of the samples,
based on known dispensed volume and concentration for every
sample. These thickness data, combined with sheet resistance
data, were used to calculate the property of interest – electrical
conductivity. Overall, the full workow, including the fabrication
and full characterization of all 288 samples, was completed in
�18 hours spread across 3 days, out of which�15 hours were fully
automated, thus taking a focused human time of only 3 hours. It
is worth mentioning that the majority of the fabrication time was
spent on programmed 3 seconds delays to let the viscous HPMC
to ow in and out of the pipette tip. When applied to non-viscous
solutions, the same protocol is completed within10 minutes,
compared to 3.5 hours for viscous ones.

This ability to perform experiments rapidly allows the use of
dispersions that are stable over a period of only a few hours,
which enables the researchers to broaden the parameter space
and go beyond the compositions of innitely stable dispersions.
This opens a plethora of opportunities to explore large param-
eter spaces of increasing complexity in a high-throughput
manner, enabled by a combination of automated mixing,
drop-casting, and testing systems.

Methods

The parameter space of graphene-to-surfactant ratios in HPMC
was sampled uniformly with 2% increments with 8 to 18%
surfactant for PVP and T80 samples, and 2 to 12% surfactant for
SDS, where graphene was varied from 0 to 30% also with 2%
increments, with the solution of HPMC lling the remaining part
of the composition. The higher initial ratio of surfactant for PVP
and T80 was dictated by the limitations of the stability of the stock
solution of the graphene, while dispersions with SDS were
comparatively stable at lower ratios of surfactant. The stock
solutions of graphene were prepared by probe sonication for 3
hours of a mixture of graphene and surfactant at the highest
graphene-to-surfactant ratio used for the given surfactant, so that
the total concentration of solids was kept constant at 1 mg ml�1.
© 2022 The Author(s). Published by the Royal Society of Chemistry
The stock solutions of HPMC and surfactants were prepared by
simply mixing with deionized water at 1 mg ml�1 concentration
and overnight stirring. As our experiment was not limited by the
throughput neither in experiments not in metrology, we had no
need to deploy an “intelligent agent” to select the next set of
parameters, since the full parameter space was accessible to us
through full-factorial design of experiments.

Experimental setup

The main tool used for the fabrication of the samples in this
work was an Opentrons OT2 auto-pipettor. Controlled by an
onboard Raspberry Pi, it received instructions in the form of
a .CSV le with volumes and positions for all operations. The
robot then automatically distributed required amounts of
ingredients into the corresponding wells of a 96-well plate,
using a new tip for each solution. Aer distribution, the robot
was programmed to repeatedly aspirate and dispense the
mixture in each well 10 times with varying heights to ensure
proper mixing and then drop-cast the resulting mixture onto
a pre-treated fused silica wafer. The tip was washed by 5
repeated aspirations and dispensing of water each in 3
consecutive vials before moving to the next sample.

While working with the HPMC solution, to account for its
high viscosity, the robot was programmed to take a 3 seconds
pause aer every aspiration and dispensing operation, to allow
the pressure in the pipette tip to stabilize. Another necessary
added process step was the dipping of the pipette tip into the
HPMC solution to a depth of <2 mm from the meniscus, to
minimize the HPMC's adhesion to the outer walls of the pipette
and prevent interference with the determined dispense volume.

Analytical setup

Aer deposition and drying, the samples were tested for their
electrical conductivity using a custom automated 4-point probe
measurement setup. The setup is equipped with a computer-
controlled XY-stage, the probe itself, which is connected to
a Keithley 2450, and an optical camera. Prior to measurements,
the camera takes a picture of the wafer with samples, to run an
image recognition algorithm. This algorithm detects the exact
contour of every sample, calculating its area in pixels and
coordinates of the center of mass, which is then used to index
the positions for the electrical measurements, as seen in Fig. 1d.
For each sample, we obtained a current–voltage (I–V) curve,
slope of which was then used to calculate the sheet resistance.
All measurements were done in a 4-point probe conguration,
to ensure maximum quality of the data and a linear slope. Aer
the sheet resistance was recorded, we calculated the true area of
each sample by relating themeasured area in pixels to an area of
2 reference samples of known sizes (eqn (1) and (2)). Here A is
the area of the sample and k is a calibration coefficient

Atrue ¼ kApixel (1)

k ¼ 1

2

 
A1

ref

A1
pixel

þ A2
ref

A2
pixel

!
(2)
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The obtained coefficients were averaged and applied to the
rest of the samples on the wafer to obtain the value of the true
area. Then, combining it with a known dispensed volume of
each sample, we calculated the thickness of the samples. To
make this link a few key assumptions are made: (1) the volume
of the drop-cast samples is identical for all samples, down to the
technical limitations of the Opentrons; (2) every sample has an
identical total concentration of solids, down to the technical
limitations of analytical balances and neglecting minute errors
during the transference of solutions; (3) the surfaces of the
samples are at and uniform, acknowledging that this
assumption is the biggest source of error, but still accurate
enough to be used for screening purposes. It is worth
mentioning that the calculated densities of all samples were
found to be identical down to the second signicant decimal
point. We then compared our calculated thickness data to those
of randomly selected 7% of samples, measured on a surface
proler. Note that the surface prolometry has its intrinsic
errors, since it requires manual ‘scratching’ in the center of the
sample and is by nature a single-line measurement, which is
then extrapolated to the whole lm. The mean absolute
percentage error (MAPE) between the calculated thickness
using the above assumption andmeasured thickness was found
to be within 7–11% (Fig. 2), hence supporting the feasibility of
this method for high-throughput screening of thickness for
large quantities of electronic composites.

An integral component of the optical thickness measure-
ment technique is the implementation of computer vision-
based (OpenCV) algorithms. The OpenCV pipeline consists of
a chain of algorithms including segmentation and contour
detection as well as data processing of the individual sample
area. A graphical user interface (GUI) was built in Python using
the PySimpleGUI library, to allow exible, real-time tuning of
the key parameters, such as the segmentation threshold value,
noise removal iterations, and distance transform mask size, to
optimize the work of these algorithms.

Following the segmentation and detection of the lms, each
sample is index-labelled with an integer value, which is sorted
from top-le to bottom-right. The contour features and
moments of each lm are then analyzed to produce the area
data in pixels.
Fig. 2 Comparison of the calculated thickness and that measured using p
(c) for T80-based samples. Each figure also shows the value of the Mea

142 | Digital Discovery, 2022, 1, 139–146
Based on the area pixel values, the thickness of a given lm
can be calculated by relating to the pixel values of 2 reference
samples of known sizes (see eqn (1) and (2)). To quantify the
error between the calculated thickness and thickness obtained
from the surface proler, we t the calculated thickness to the
area data and compute the MAPE for thickness values between
the tted sample and prolometry measured samples with
different surfactants (PVP-based, SDS-based, and T80-based). As
shown in Fig. 2, for all 3 cases, the MAPE is below 11%, which is
acceptable for the high throughput proxy measurements. We
use a Gaussian Process (GP) model to reproduce the equation
that relates area to thickness values. The GP model is chosen as
it can account for potential white noise errors that could arise
from the computer vison algorithm and gives an uncertainty
estimate. The GP kernel implemented here consists of a Radial
Basis Function (RBF) kernel and a Whitenoise Kernel.

Results and discussion

The mechanism of conductivity in graphene-based composites
is typically explained by percolation theory,40–43 according to
which individual sheets of graphene form a connected network,
allowing the ow of the charge carriers. However, when the
concentration of graphene is low, below a percolation
threshold, a fully connected network cannot be formed, and the
charge carriers hop between the islands of graphene clusters via
tunneling, which signicantly decreases the conductivity of the
composite.

The results of our study show that lms made using PVP as
the surfactant are the most conductive, with the highest value of
conductivity of 10.8 mS cm�1 (Fig. 3a), which is at least 2 orders
of magnitude higher the current state of the art for similar
material systems.44 Interestingly, the conductivity of PVP-based
lms does not show dependence on the concentration of PVP,
unlike lms made with other surfactants. SDS-based lms show
low conductivity values under most of the tested conditions,
except for the samples with a high concentration of graphene,
as seen in Fig. 3b. The concentration of SDS showed no
signicant inuence on the device performance. The worst
conductivity values were observed for lms made using T80,
where the highest observed conductivity was only 0.06mS cm�1,
as shown in Fig. 3c, which is about 3 orders of magnitude lower
rofilometry. (a) for PVP-based samples, (b) for SDS-based samples, and
n Absolute Percentage Error (MAPE).

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 (a–c) Conductivity in mS cm�1 vs. graphene ratio in % vs. surfactant ratio in %. Here, the percolation threshold is seen to be (a) �15% for
PVP and (b) �20% for SDS, (c) while it is not reached for T80. The conductivity is highest for (a) PVP, followed by (b) SDS, while the (c) Graphene-
T80 film doesn't conduct.
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than that for PVP-based samples. The majority of the measured
T80-based samples show conductivity values too low to be
distinguished from instrument noise.

We speculate that PVP shows the best results due to the
higher affinity of its aromatic benzene rings to the aromatic
rings of graphene, as compared to other surfactants used.45

Also, due to its polymer nature as compared to SDS, PVP could
promote better alignment of graphene sheets and, therefore,
increase the overall conductivity of the sample. SDS, on the
other hand, despite showing mediocre conductivity results,
could stabilize the dispersion at 4 times lower concentration
compared to the other tested surfactants. This feature could be
Fig. 4 SEM images of selected samples: 5k magnification of high grap
magnification of high graphene load samples, (d–f) untreated (left), (p–r)
(g–i) untreated (left), (s–u) annealed (right); 50k magnification of medium

© 2022 The Author(s). Published by the Royal Society of Chemistry
signicant for specic industrial applications, e.g. high
conductivity (10�1 to 102 S cm�1) for paint-on sensors or low
conductivity (10�8–10�4 S cm�1) for anti-static coatings, as it
could provide signicant cost savings.

We explain the poor performance of the T80-based samples
not by the inherit incompatibility of this surfactant as a stabi-
lizing agent for graphene dispersions, but by excessively
aggressive sonication parameters. The conditions used to
sonicate the dispersions could have damaged the polymer
chains to the point that the T80 lost most of its properties as
a surfactant. The backbone of T80 is comprised of ester C–O
bonds, which are weaker in nature, in contrast to C–C bonds in
hene load samples, (a–c) untreated (left), (m–o) annealed (right); 50k
annealed (right); 5k magnification of medium graphene load samples,
graphene load samples, (j–l) untreated (left), (v–x) annealed (right).

Digital Discovery, 2022, 1, 139–146 | 143

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d1dd00008j


Digital Discovery Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

7 
Ja

nu
ar

y 
20

22
. D

ow
nl

oa
de

d 
on

 1
0/

21
/2

02
5 

12
:2

0:
52

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
PVP. Future experiments will aim to investigate this assump-
tion, by using a series of more mild sonicating conditions with
T80-based composites.

Further analysis of the surface of the composites using
Scanning Electron Micrographs (SEMs) revealed that the
distribution of graphene inside the HPMC matrix is relatively
uniform at the lowest surfactant load and highest and medium
graphene loads (Fig. 4a–l respectively), suggesting the effec-
tiveness of our dispersion and fabrication procedures. The
scanning electron microscopy (SEM) images reveal that the
graphene islands inside the composites are relatively dense;
however, to test how much impact the separation of these
islands by HPMC inside the composite has on the performance
of the composites, we decided to anneal the samples beyond the
decomposition temperature of HPMC and repeat the electrical
measurements and SEM characterization.

The same samples used for SEM imaging of samples without
any post-processing were used to test the effect of annealing.
The annealing was done in a vacuum furnace. First, the samples
were brought from room temperature to 250 �C at 10 �C min�1,
and then from 250 �C to 500 �C at 1 �Cmin�1 and held at 500 �C
for 120 min to completely burn off the HPMC binder.

Aer annealing, the thickness and sheet resistance of the
samples were measured again. We observed a conductivity
increase up to 7 orders of magnitude, suggesting that with the
removed polymer matrix, graphene akes came into close
contact with each other to form a dense percolation network.
The highest increase in conductivity is observed for, expectedly,
T80-based samples, because they were barely conductive prior
to annealing, while for SDS-based samples the increase in
conductivity is the lowest, most likely due to the lower inuence
of annealing on the stability of the surfactant molecule. As seen
from the images in Fig. 4(m–x), the morphology of the annealed
samples does not seem to depend on the surfactant, nor on the
initial concentration of graphene inside the composite, as
compared to untreated samples.

In principle, image analysis with computer vision algorithms
can be performed on these SEM images to extract features that
could be linked to electrical conductivity. However, a large
number of images would have to been taken to provide
a comprehensive dataset and hence we did not attempt this in
the current manuscript. Although, one could envision under-
taking such analysis in future work.

We also speculate that the introduction of simple automa-
tion into sonication and annealing processes could unlock
another vast and sparsely sampled parameter space for studying
the performance of composites that are made from dispersions.
The slow and sequential nature of these steps was the main
limiting factor for us not to try various sonication or annealing
conditions. The community would greatly benet from devel-
opments in automation protocols for these key processes.

Conclusions

In this work, we demonstrated a high-throughput methodology
for automated mixing and drop-casting of graphene-based
composites followed by their electrical conductivity
144 | Digital Discovery, 2022, 1, 139–146
measurement. We used a robotic auto-pipettor to explore more
combinations of parameters (288 unique conditions tested) in
10� less time, as compared to traditional procedures, even
using viscous liquids. The distribution of all ingredients, mix-
ing and subsequent drop-casting of all samples were done
within 12 hours, almost fully autonomously. In addition, when
applied to electrical measurements, automation not only
improves the throughput of the experiments, but also increases
the reliability and reproducibility of the measurements, as every
sample is precisely indexed and is measured with minimal
damage to the lm. We also show the utility of our method for
rapid screening of thickness for thin-lm samples, relying only
on computer vision algorithms and the precision of the auto-
pipettor to drop-cast exact volumes. Amongst all lms
prepared, the graphene dispersions made with PVP as the
surfactant have the highest conductivity values as compared to
samples made with SDS and T80, with the best result of 10.8
mS cm�1. We also identied that the relative concentration of
the surfactant plays a minimal role in the overall performance
of the composite, suggesting that the load of the graphene plays
the most signicant role.

In conclusion, using this approach, we fabricated 288
samples in this study, with a goal to identify the best surfactant
to be used for graphene dispersions, in less than a week of
experimental work, most of which was done by robots. Hence,
we demonstrate the viability and applicability of automation
tools to scientic experiments, especially the ones which rely on
many repetitive operations and exploration of vast parameter
spaces. These techniques can free up most of the human
workhours from the experiments, and delegate the tedious work
to robots. Our work demonstrates the push towards automation
in science laboratories, where human researchers are engaged
in creative scientic work and planning of experiments, while
execution is delegated to robots, machine learning algorithms
and efficient high-throughput experimentation and analytical
tools.
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Accelerated-automated-screening-of-graphene-suspensions-
with-surfactants-for-optimal-conductivity
Author contributions

The author contributions are provided in CRediT format. D.
Bash – conceptualization, investigation, methodology, formal
analysis, soware, validation, writing original dra, and visu-
alization; F. H. Chenardi – soware, writing original dra, and
visualization; Z. Ren – formal analysis and visualization; J.
Cheng – soware and methodology; T. Buonassisi – conceptu-
alization and project administration; R. Oliveira – conceptuali-
zation, resources, and writing review and editing; J. Kumar –

conceptualization, project administration, and supervision; K.
Hippalgaonkar – conceptualization, project administration,
© 2022 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d1dd00008j


Paper Digital Discovery

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

7 
Ja

nu
ar

y 
20

22
. D

ow
nl

oa
de

d 
on

 1
0/

21
/2

02
5 

12
:2

0:
52

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
supervision, funding acquisition, resources, and writing review
and editing.

Conflicts of interest

The graphene sample for this study was provided by the
company 2DM free of charge. Some of the authors own equity in
companies applying machine learning to materials
development.

Acknowledgements

We'd like to thank Patrick Teyssoneyre for his effervescence and
the members of the AMDM and Xinterra teams for discussions.
J. J. C., J. N. K. and K. H. acknowledge funding from the
Accelerated Materials Development for Manufacturing Program
at A*STAR via the AME Programmatic Fund by the Agency for
Science, Technology and Research under Grant No.
A1898b0043. Z. R. and T. B. are supported by the National
Research Foundation, Prime Minister’s Office, Singapore under
its Campus for Research Excellence and Technological Enter-
prise (CREATE) program through the Singapore Massachusetts
Institute of Technology (MIT) Alliance for Research and Tech-
nology’s Low Energy Electronic Systems (LEES) research
program.

Notes and references

1 L. Grande, V. T. Chundi, D. Wei, C. Bower, P. Andrew and
T. Ryhaenen, Particuology, 2012, 10, 1–8.

2 S. Ligati, A. Ohayon-Lavi, J. Keyes, G. Ziskind and O. Regev,
Int. J. Therm. Sci., 2020, 153, 106381.

3 D. S. Saidina, N. Eawwiboonthanakit, M. Mariatti, S. Fontana
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