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of protein natural frequencies
using graph neural networks†

Kai Guo ab and Markus J. Buehler *acd

Natural vibrational frequencies of proteins help to correlate functional shifts with sequence or geometric

variations that lead to negligible changes in protein structures, such as point mutations related to disease

lethality or medication effectiveness. Normal mode analysis is a well-known approach to accurately

obtain protein natural frequencies. However, it is not feasible when high-resolution protein structures

are not available or time consuming to obtain. Here we provide a machine learning model to directly

predict protein frequencies from primary amino acid sequences and low-resolution structural features

such as contact or distance maps. We utilize a graph neural network called principal neighborhood

aggregation, trained with the structural graphs and normal mode frequencies of more than 34 000

proteins from the protein data bank. combining with existing contact/distance map prediction tools, this

approach enables an end-to-end prediction of the frequency spectrum of a protein given its primary

sequence.
Introduction

Enormous efforts have been devoted to investigate the structure
and functionality of proteins, the building blocks of life.1–3 An
important feature of proteins is their continuous motion or
vibration.4 Even sequence or geometric variations that lead to
negligible structural changes can affect the low-frequency
motions of proteins,5,6 and in turn, the vibrational modes can
be utilized to identify key mutations associated to drug design,7

diseases,8–10 or many other biophysical phenomena in living
organisms, and in biomaterials more broadly.11 As the imaging
resolution provided by the state-of-the-art technology is still
insufficient to measure the lowest natural frequency of most
protein structures, a computational approach called normal
mode analysis (NMA) is generally adopted to calculate the
vibrational modes if the high-resolution atomistic structures of
proteins and force elds that dene interatomic interactions
are available.4,12

Nevertheless, NMA calculation is quite time and memory
consuming, especially for large protein structures, andmachine
learning (ML) techniques can help to enable fast prediction of
protein natural frequencies.12 Recent development in ML has
driven great success in computer vision, natural language pro-
cessing and autonomous driving.13 Breakthroughs continue to
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be made in molecular and materials science,14–18 biology and
medicine,19,20 including design of composites and bio-inspired
materials,21–28 as well as protein design and sonication.29–34

To predict the natural frequencies of protein molecules, in
earlier work a data-driven model was proposed, based on
a feedforward neural network and trained the model with ve
structural features of protein molecules, including the largest
and smallest diameters as well as the contents of a-helix, b-
strand and 3–10 helix domains.12 These features can be
collected from experiments or computations, but it is chal-
lenging to obtain them from protein primary sequences only.
Therefore, this model has difficulties in identifying the direct
relationship between the primary sequences and natural
frequencies of proteins.

To overcome this limitation and thus enable an end-to-end
prediction of protein frequency spectrum, i.e., from primary
sequence to natural frequencies, we developed a computational
framework based on graph neural networks (GNNs). Unlike
standard neural networks that operate on Euclidean data (e.g.,
pixels in images and words in text), GNNs, as the name implies,
operate on graphs that consist nodes connected by edges
without natural orders, and hence form non-Euclidean data
structures.35 GNN models have been employed in materials
research tasks such as hardness prediction,36 and architected
dCenter for Materials Science and Engineering, 77 Massachusetts Ave, Cambridge,

Massachusetts 02139, USA
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materials design,37 and they have demonstrated outstanding
performance on learning molecular structures,38–40 and
designing proteins.41,42 In this work, a GNN model is developed
to predict protein frequencies from primary sequences and low-
resolution structural features such as contact or distance maps.
The integration of this model with one of existing contact/
distance map prediction tools43–45 gives, to the best of our
knowledge, the rst end-to-end approach to predict the natural
frequencies of a protein given its primary sequence.
Results and discussion

The workow of the approach for protein frequency prediction
using GNNs is schematically shown in Fig. 1. The inputs to the
GNN are graphs that represent proteins. In a supervised
learning task of frequency prediction, graphs in the training set
(denoted henceforth as training graphs) are labeled with natural
frequencies and are fed into the GNN for training. Then, the
trained GNN takes as input unlabeled graphs of test proteins
(denoted as test graphs) and outputs the prediction of the labels,
i.e., the natural frequencies of these proteins. Each training
graph consists of the following components: connectivity, node
feature, edge feature, and label. The connectivity stands for
Fig. 1 Schematic of the training and test processes of the graph neural n
structures from the Protein Data Bank (PDB) are represented as graphs in
the feature of the node, and two residues are connected by an edge if th
protein graph is labeled with a natural frequency corresponding to a no
protein graphs forms the training set of the GNNmodel, as ground truth.
graphs with natural frequencies. The trained model is able to predict the n
by the sequence and contact/distance map using the same graph repre

278 | Digital Discovery, 2022, 1, 277–285
a data structure that tells whether two nodes are connected or
not. In a protein graph, each node represents an amino acid
residue with its amino acid code dened as the node feature.
Two nodes are connected by an edge if the distance between the
Ca atoms of the residues that those two nodes represent is less
than a threshold value. According to the way we dene edges in
protein graphs, the adjacency matrix of a graph is in fact the
contact map of the corresponding protein (see Fig. S1 in ESI†). If
the distance map (or distance matrix) of a protein is known, we
can denote the Ca–Ca distance between a pair of residues as the
feature of the corresponding edge. To label the protein graphs,
we leverage a database of the rst 64 normal modes of more
than 100 000 protein structures from PDB.4 Each graph is
labeled with a natural frequency corresponding to one of the 64
normal modes. During the conversion of protein structure into
graphs, protein graphs that contains different numbers of
nodes in PDB and Dictionary of Protein Secondary Structure
(DSSP),46 isolated nodes, or outliers in the frequency distribu-
tion of the database are excluded to simplify data preprocessing
and to improve training speed and prediction accuracy. As
a result, more than 42 000 protein graphs are generated, and
they are randomly split into a training set of �34 000 graphs,
a validation set of �4000 graphs and a test set of �4000 graphs.
etwork (GNN) for protein frequency prediction. Protein sequences and
which each node denotes a residue with its amino acid code defined as
e distance between their Ca atoms is less than a threshold value. Each
rmal mode calculated from the normal mode analysis (NMA). Labeled
The GNN is trained to learn a graph embedding that correlates protein
atural frequency of a protein of which a test graph can be constructed
sentation as in the generation of training graphs.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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There may exist structural similarities among training, valida-
tion and test sets due to the random split, while its effect on the
model performance will be le to a future study. Fig. S2† shows
a comparison between the frequency distributions in the raw
database and in the preprocessed protein graphs. The pre-
processing here could benet the model performance as the
preprocessed dataset is less skewed than the raw database, and
proteins with extremely low 1st and 2nd natural frequencies are
excluded. Yet, a bias may still exist in the preprocessed dataset.
The impact of the skewed distributions can potentially be
reduced by techniques such as stratication, which will be
implemented in a future study. New test graphs can be con-
structed from sequences and distance or contact maps
following the same way.

The GNN is trained with the training set to learn how to
translate protein graphs into a graph embedding that can be
used to predict protein frequencies. The GNN not only aggre-
gates the node and edge features through the connectivity of the
input graph, but also parses simple features into abstract
features. It might be difficult to explicitly interpret the physical
meanings of these abstract features. However, they form
a graph embedding that can represent implicit properties of
proteins, and the function of this graph embedding is similar to
that of the structural features, for example, the diameter of the
protein structure, adopted in a previous work.12 One of the
differences between the current approach and the previous
work lies in the extraction of the global features: the graph
embedding is learned from simple features using GNNs with
deep learning techniques, rather thanmanually selected. In this
regard, the performance of the feedforward neural network
adopted in the previous work and the GNN cannot be directly
compared since these two networks require different data
structures as input. To predict the frequencies of a test protein,
structural features such as the largest and smallest diameters,
the contents of a-helix, b-strand and 3–10 helix domains should
be obtained for the feedforward neural network in the previous
work, while the sequence and contact/distance map of the test
protein are needed for the GNN. The advantage of this input
data structure for the GNN is that there are existing contact/
distance map prediction tools, and we rely only on the GNN
to bridge the gap between the local structural information and
the global features that relate to natural frequencies, which is
one of the key tasks in our end-to-end approach for protein
frequency prediction. Frequency prediction is a graph regres-
sion task that poses particular challenges, and for which earlier
GNN architectures do not work well. In this work, we adopt
a GNN with a principal neighborhood aggregation graph
convolution operator (PNAConv),47 which has outperformed
many popular GNN models in the literature, such as GCN,48

GAT,49 GIN,50 and MPNN,39 on benchmark tasks for graph
regression. The improvement of the performance of the GNN is
attributed to the strategies of combining multiple aggregators
with degree-based scalers that amplify or attenuate signals in
the network according to node degree.

Fig. 2 illustrates the architecture of the GNN, where the node
feature of the input graph is rstly translated via a node
embedding layer, and then fed into a PNAConv layer along with
© 2022 The Author(s). Published by the Royal Society of Chemistry
the edge feature and connectivity of the graph. The PNAConv
layer outputs the hidden features of the nodes in the graph by
aggregating the information from the neighbors of each node. A
sequential block comprised of a PNAConv layer, a batch
normalization layer and a Rectied Linear Unit (ReLU) activa-
tion function is repeated 4 times to successively generate new
representations (or embeddings) for each node. A global pool-
ing layer outputs a graph-level embedding by adding node
embeddings across the node, and it is connected to a multilayer
perceptron (MLP) that returns a predicted natural frequency.
The entire GNN is trained from scratch using the training
graphs labeled with the rst natural frequency. Here we leverage
a transfer learning approach called feature extraction to accel-
erate the training of the networks for the prediction of the
frequencies that correspond to other modes. The pre-trained
GNN except the last MLP, for the prediction of the rst
natural frequency, serves as a feature extractor with the weights
for the network xed. The last MLP is then replaced with a new
one with randomweights, and only this newMLP is trained with
the training graphs labeled with the second or higher natural
frequency. The model for the rst natural frequency prediction
was chosen to be trained from scratch instead of other models
because we aim to obtain a slightly higher accuracy for the rst
natural frequency than others as it corresponds to the normal
mode with the lowest non-trivial frequency. In addition, better
performance might be achieved by slowly unfreezing pre-
trained GNN layers during transfer learning, which will be le
to a future study. More details about the layers in the model and
the training procedure are given in the Methods section.

The results from themodels for the prediction of the 1st, 2nd
or 64th natural frequency are shown in Fig. 3. The mean and
standard deviation of the frequency distribution in the training
set for the 64th frequency are obviously higher than those for
the rst two natural frequencies. The learning curves show the
evolution of the training loss, which is the mean absolute errors
(MAEs) between the ML-predicted frequencies (denoted as ML
frequencies) and NMA-calculated frequencies (denoted as NMA
frequencies) over the training set, as well as the evolution of the
MAEs over the validation set (denoted as validation MAE). The
model's hyperparameters were tuned to minimize the valida-
tion MAE. For the 1st natural frequency prediction, the nal
validation MAE is 0.357 cm�1 aer tuning, less than 1.36 cm�1,
the standard deviation of the frequencies in the validation set.
For the 2nd natural frequency, the nal validation MAE of the
model trained via transfer learning is 0.383 cm�1, slightly
greater than 0.356 cm�1, the nal validation MAE of the same
model trained from scratch (see the comparison in Fig. S3†), but
still less than 1.49 cm�1, the standard deviation in the valida-
tion set. For the 64th natural frequency, the nal validation
MAE elevates from 0.44 cm�1 for learning from scratch to
0.66 cm�1 for transfer learning, but it is much less than
5.75 cm�1, the standard deviation in the validation set. There-
fore, training via transfer learning does not sacrice too much
accuracy, and this technique offers great benets as it acceler-
ates the training process by�70% per epoch and consumes less
GPUmemory compared to training from scratch. The feasibility
of transfer learning demonstrates that the feature extractor has
Digital Discovery, 2022, 1, 277–285 | 279
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Fig. 2 GNN architecture. The node embedding, edge features and connectivity of protein graphs are input to a graph convolution operator
named PNAConv where the information from the neighbors of each node in the graph is aggregated to update the hidden features of the node.47

The GNN is trained from scratch to predict the first natural frequency. A transfer learning technique is implemented to accelerate the training of
the networks for the prediction of other normal mode frequencies.
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successfully learned how to translate a protein graph into
a graph-level embedding vector that can be used to predict
natural frequencies corresponding to different normal modes.
Aer the GNN model is trained, it takes only about 30 seconds
to predict the natural frequencies of �4000 proteins in the test
set that has at least low-resolution structural features such as
contact/distance map. The GNN-based approach is much faster
than NMA, which takes about 80 min to calculate the frequency
spectrum of a single protein structure with �120 amino acids.
The comparison between the ML and NMA frequencies over the
test set is also shown in Fig. 3. Each point represents a test
protein with its ML and NMA frequencies denoted as the
vertical and horizontal coordinates of the point, respectively.
Most of the points are close to the diagonal line, especially in
the prediction of the 64th natural frequency, consistent with the
comparison between the nal validation MAEs and standard
deviations in the validation sets since the predictions of the
models over the validation and test sets give similar MAEs. A
possible mechanism to explain the higher accuracy in the
prediction of high-order natural frequencies is that the vibra-
tions of high-order normal modes are more localized in protein
280 | Digital Discovery, 2022, 1, 277–285
structures than those of low-order normal modes, and thus are
easier to be learned by the GNN architecture. Fig. S4† compares
the performance of the model on the proteins with different
numbers of amino acids in the test set. In comparison with
short (<100 amino acids) or long ($500 amino acids) protein
sequences, proteins with intermediate lengths achieve higher
accuracy in the natural frequency prediction. The deviation in
the accuracy with respect to the sequence length may be
attributed to few edges in the graphs of the proteins with short
sequences as well as a small fraction of very long protein
sequences in the training set. In summary, the model predic-
tion agrees very well with the ground truth if the graphs ob-
tained from accurate protein distance (or contact) maps are fed
as input.

When the accurate contact or distance maps of test proteins
are not available, a contact/distance map prediction tool can be
leveraged to get the structural features that are needed to
construct protein graphs. Here we combine our GNN model
with an open-source protein distance prediction network,
ProSPr,43 for an end-to-end prediction of the frequency spec-
trum of a protein given its primary sequence. Fig. 4 shows the
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Frequency distribution in the training set (left), learning curve (middle), and comparison between the ML-predicted and NMA-calculated
frequencies of proteins in the test set (right) for the (a) 1st, (b) 2nd, (c) 64th natural frequency.
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1st–8th and 61–64th frequencies of three proteins (PDB IDs:
1QLC, 2DFE, and 4AZQ) in the test set. The primary sequence of
each test protein is fed as input to ProSPr, and the distance map
predicted by ProSPr along with the sequence are the features
needed to construct a test graph that can be fed into our GNN
models to predict the normal mode frequencies. It is shown that
the ML frequencies obtained using this end-to-end approach
agree well with the corresponding NMA frequencies. This is
attributed to the high accuracy of the frequency prediction
model using GNN as well as the accurate distance map
prediction by ProSPr on these test proteins (Fig. S5†). The ML
frequencies may deviate from the NMA frequencies when the
distance map predicted by ProSPr is not sufficiently accurate
(Fig. S6†), but this issue could be addressed if more accurate
protein distance prediction methods are available. We also test
our GNN model with the distance maps predicted by AlphaFold
© 2022 The Author(s). Published by the Royal Society of Chemistry
1.44 Although it is difficult to test any protein sequence of
interest since the feature generation code of AlphaFold 1 is not
open-sourced, AlphaFold 1 provides the input features of the
CASP13 targets,51 and thus we can get the distance maps of the
CASP13 targets predicted by AlphaFold 1, which are further fed
as input to our GNN model. It is worth pointing out that the
structures of the CASP 13 targets were published later than the
generation of the database of protein natural frequencies that
we used to construct the training, validation and test sets in this
work. Again, the performance of the protein frequency predic-
tion relies on the accuracy of the distance map prediction
(Fig. S7†). The frequencies predicted by the GNN model agree
well with the NMA frequencies when AlphaFold 1 predicts
a sufficiently accurate distancemap (see Fig. S7a†). We note that
the ML frequency does not always increase monotonously with
the number of the normal mode in Fig. 4. This might be
Digital Discovery, 2022, 1, 277–285 | 281
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Fig. 4 PDB structure (left), distance map predicted by ProSPr (middle),43 and the 1st–8th and 61–64th frequencies (right) of a test protein with
a PDB ID of (a) 1QLC, (b) 2DFE, (c) 4AZQ. The PDB structures of the proteins are shown here for demonstration purposes. Only the primary
sequence is input to ProSPr to predict the distance map that is used to construct the test graph. The natural frequencies predicted by the GNN
model using these test graphs are compared with the corresponding frequencies calculated from NMA.
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resolved by training a single model that can predict a mono-
tonically increasing frequency spectrum by adding a penalty
term in the loss function, and it deserves a study of its own
right. Our model is able to provide a good estimation of the
frequency corresponding to each normal mode of a test protein
from its primary sequence only.

Conclusion

We developed a computational framework based on GNNs,
trained with more than 34 000 protein graphs, to output the
natural frequencies of proteins from primary amino acid
sequences and low-resolution structural features such as
contact or distance maps. Integration of the GNN model with
282 | Digital Discovery, 2022, 1, 277–285
a protein distance prediction network provides an end-to-end
approach to predict protein frequencies given primary
sequences. The frequency spectrum predicted by the ML
models shows good agreement with that obtained from NMA.
Moreover, the standalone GNN model can be utilized as a quick
screening tool to identify key point mutations that can signi-
cantly affect protein vibrational behaviors, which deserves
a study of its own right and will be le to a future study. It has
been demonstrated that GNNs are very powerful in learning
useful embeddings from graph representation of proteins, and
thus would be important tools to predict protein-level proper-
ties in graph regression tasks, such as natural frequencies in
this work. In addition, GNNs can be utilized to solve node
© 2022 The Author(s). Published by the Royal Society of Chemistry
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regression tasks in order to predict residue-level properties of
proteins. Rapid development in ML techniques is offering
exciting pathways to bridge the gaps among protein sequences,
structures and properties, and would revolutionize the way we
understand and design proteins.
Methods
Data preparation

The atomic coordinates in the proteins are extracted to compute
contact/distance maps using the PDB and DSSP modules in
Biopython.52 Fig. S1† shows the graphs and the corresponding
adjacency matrices of an example protein (PDB ID: 4R80) with
different threshold distances. It should be pointed out that the
atomic coordinates in the proteins are not assigned as node
features and are not utilized to train the models. We use the
Cartesian coordinates of Ca atoms just to schematically plot the
graphs of the example protein. A threshold distance of 12 Å is
adopted to dene edges in protein graphs used in our compu-
tational experiments as it gives low mean absolute error (MAE),
as shown in Fig. S8,† and does not exceed the memory limit of
the GPU during training. In the database of the normal modes
of protein structures, the last 64 normal modes amongst the 70
generated are selected to train themodel as the rst 6modes are
so-called trivial modes with zero frequency, corresponding to
rigid-body translation and rotation. A bash script, including
a block normal mode method53,54 in CHARMM for NMA on each
protein structure, was used to automatically download, clean
and analyze protein structures. In the database, there are
110 511 protein structures that are composed of standard
amino acids only from the Protein Data Bank at the time of
database construction.4
Graph neural networks (GNNs)

The GNN model is developed based on the deep-learning
framework PyTorch55 and its geometric extension library
PyTorch Geometric.56 In the GNN architecture, the node
embedding layer has a dictionary size of 20 (i.e., the number of
the types of standard amino acids) and outputs each embed-
ding vector with a size of 75. If distance map is known, the edge
feature can be represented by the value of the Ca–Ca distance,
the reciprocal of the distance, or the distance embedding. For
the distance embedding, a distance range of 2–12 Å is equally
divided into 10 bins, and the bin number of the distance is
input to an edge embedding layer that outputs each embedding
vector with a size of 50. If contact map is known but the values
of Ca–Ca distances are not available, the edge feature vector is
lled by zeros as placeholders, denoted as “no edge feature”.
Fig. S9† shows that different representations of edge feature
give no signicant difference in the nal validation MAE. In
other words, training with distance maps and training with
contact maps have similar performance. The GNN models
presented in this paper are trained using the value of the Ca–Ca
distance as the edge feature.
© 2022 The Author(s). Published by the Royal Society of Chemistry
The PNAConv layer is a GNN layer where the Principal
Neighborhood Aggregation (PNA) operator is embedded within
the framework of a message passing neural network:39

Xi
ðtþ1Þ ¼ U

�
Xi

ðtÞ;4j˛N ðiÞM
�
Xi

ðtÞ;Ej;i;Xj
ðtÞ�� (1)

where Xi
(t) is the feature of the node i at time step t, Ej,i is the

feature of the edge (j, i),M and U denote MLPs, N ðiÞ is the set of
indices of the neighbors of the node i, and 4 represents the
PNA operator.47 In our work, the PNA operator includes 3 scalers
(identity, amplication, attenuation) and only 2 aggregators
(mean, std) instead of all of the 4 aggregators proposed in
original PNA paper47 because the removal of the other 2 aggre-
gators (max, min) gives better performance in our preliminary
computational experiments (Fig. S10†). The sizes of each input
and output sample of the PNAConv layer are equal to 75.

The last MLP that returns the predicted natural frequency
has a structure of an input layer of size 75, a hidden layer of size
50, another hidden layer of size 25, and an output layer of one
neuron. ReLU is adopted as the activation function in this MLP.
We adopt default weight and bias initialization of all of the
layers in the model dened by PyTorch Geometric.
Model training and testing

During training, we minimize the MAE between the model
output and the target. Themodels were trained with a batch size
of 32 using the Adam optimization method,57 for 100 epochs
when training from scratch, or for 50 epochs when transfer
learning is used to train the last MLP. Early stopping is not used
here but it may result in a slightly better performance. Training
starts with a learning rate of 0.001, and a dynamic learning rate
scheduler named ReduceLROnPlateau reduces the learning rate
by half if no improvement is seen for 10 epochs to minimize the
validation MAE. We trained and tested the GNN models on
a single NVIDIA Quadro RTX 4000 graphic card with 8 GB
memory on a local workstation, or on a single NVIDIA Tesla
V100 graphic card with 32 GB memory in a cluster.
Data availability

The data le, the code for data pre-processing and model
training, and the trained models for testing new proteins in this
study are available at GitHub, https://github.com/lamm-mit/
ProteinMechanicsGNN and Zenodo for the dataset: DOI:
10.5281/zenodo.6346661.
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