Chem Soc Rev

View Article Online

CORRECTION

Check for updates

Cite this: Chem. Soc. Rev., 2022, 51, 10120

Correction: Recent advances and perspectives for solar-driven water splitting using particulate photocatalysts

Xiaoping Tao,^a Yue Zhao,^a Shengyang Wang,^a Can Li^{ab} and Rengui Li*^a

DOI: 10.1039/d2cs90098j

rsc.li/chem-soc-rev

Correction for 'Recent advances and perspectives for solar-driven water splitting using particulate photocatalysts' by Xiaoping Tao *et al., Chem. Soc. Rev.*, 2022, **51**, 3561–3608, https://doi.org/10.1039/d1cs01182k.

The authors regret that there were some errors in the references in Tables 1 and 2 in the original article. The corrected Tables 1 and 2 are presented here, and the additional references which should have been included (ref. 299–317) are provided below.

Table 1	Representative	particulate	one-step overall	water-splitting systems
---------	----------------	-------------	------------------	-------------------------

Photocatalyst	Absorption range/nm	Cocatalyst	Efficiency	Ref.
Ultraviolet light				
TiO ₂	<385 nm	Pt/RuO ₂	QE: 30 \pm 10% at 310 nm	299
SrTiO ₃ :Al	<390 nm	Rh/Cr ₂ O ₃ /CoOOH	AQE: 95.7% at 350 nm, 95.9% at 360 nm, 91.6% at 365 nm STH: 0.65%	179
La ₂ Ti ₂ O ₇ :Ba	<385 nm	NiO_x	QE: 35% (<360 nm)	300
Sr ₂ Nb ₂ O ₇	<300 nm	Ni	QE: 23% (<300 nm)	301
NaTaO3:La	<300 nm	NiO	AQE: 56% at 270 nm	84
Ga ₂ O ₃ :Zn	<280 nm	$Rh_{2-\nu}Cr_{\nu}O_{3}$	AQY: 71% at 254 nm	302
Polytriazine imides	<400 nm	Pt/Co	AQY: 7.9% at 365 nm, 6.2% at 380 nm, 0.26% at 405 nm	268
Visible light				
$(Zn_{0.12}Ga_{0.88})(N_{0.88}O_{0.12})$	<475 nm	$Rh_{2-\nu}Cr_{\nu}O_{3}$	AQE: 5.9% at 420-440 nm	264
GaN:Mg/InGaN:Mg	<475 nm	Rh/Cr_2O_3	AQE: 12.3% at 400-475 nm, STH: 1.8%	303
ZrO ₂ /TaON	<495 nm	RuO _x /Cr ₂ O ₃ /IrO ₂	AQE: <0.1% at 420 nm	304
LaMg _{1/3} Ta _{2/3} O ₂ N	<600 nm	Rh _{2-v} Cr _v O ₃ /TiO ₂ /SiO ₂	AQE: 0.18% at 440 \pm 30 nm	243
Ta ₃ N ₅	<590 nm	Rh/Cr_2O_3	AQE: 2.2% at 320 nm, 0.22% at 420 nm, 0.024% at 500 nm, STH: 0.014%	85
BiYWO ₆	<470 nm	RuO ₂	AQE: 0.17% at 420 nm	305
BiVO ₄ :In,Mo	<496 nm	RuO ₂	AQE: 3.2% at 420-800 nm	306
$Y_2Ti_2O_5S_2$	<650 nm	Rh/Cr ₂ O ₃ /IrO ₂	AQE: 0.36% at 420 nm, 0.23% at 500, 0.05% at 600 nm, STH: 0.007%	50
$g-C_3N_4$	<440 nm	Pt/CoO_x	AQE: 0.3% at 405 nm	267
$g-C_3N_4$ (nanosheet)	<410 nm	Co ₁ -phosphide	QE: 3.6% at 420 nm, 2.2% at 500 nm and 0.35% at 580 nm	307
CDots-C ₃ N ₄	<620 nm	- • •	AQE: 16% at 420 nm, STH: 2%	308

There was also a minor error in Fig. 3, where the vertical axis should have been labelled "Potential/vs. NHE (pH = 0)". The corrected Fig. 3 is also presented here.

^b University of Chinese Academy of Sciences, China

Open Access Article. Published on 30 November 2022. Downloaded on 8/13/2025 9:59:07 PM.

^a State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Zhongshan Road 457, Dalian, 116023, China. E-mail: rgli@dicp.ac.cn

Correction

 Table 2
 Representative particulate Z-scheme overall water-splitting systems

HEP	OEP	Electron mediator	Efficiency	Ref.
Soluble electron mediator				
$Pt/SrTiO_3(Cr,Ta)$ (<700 nm)	PtO_x/WO_3 (<450 nm)	IO_3^{-}/I^{-}	AQE: 0.1% at 420 nm	271
$Pt/ZrO_2/TaON$ (<500 nm)	PtO_x/WO_3 (<600 nm)	IO_{3}^{-}/I^{-}	AQE: 6.3% at 420 nm	273
$Pt/MgTa_2O_{6-x}N_{\nu}/TaON$ (<570 nm)	PtO_x/WO_3 (<600 nm)	IO_{3}^{-}/I^{-}	AQE: 6.8% at 420 nm	274
$IrO_2/Sm_2Ti_2S_2O_5$ (<590 nm);	$PtO_x/H-Cs-WO_3$ (<450 nm)	I_3^{-}/I^{-}	STH: 0.003%	309
$Pt/La_5Ti_2CuS_5O_7$ (<650 nm);				
$Rh/La_6Ti_2S_8O_5$ (<630 nm)				
Dye-adsorbed $Pt/H_4Nb_6O_{17}$ (<700 nm)	$IrO_2/PtO_x/WO_3$ (<450 nm)	I_3^{-}/I^{-}	AQE: 0.05% at 480 nm	310
Ru/SrTiO ₃ :Rh (<520 nm)	$BiVO_4$ (<520 nm)	$Fe^{3^{+}}/Fe^{2^{+}}$	AQE: 4.2% at 420 nm, STH: 0.1%	311
$Ru/SrTiO_3:Rh$ (<520 nm)	Bi_4NbO_8Cl (<498 nm)	$Fe^{3^{+}}/Fe^{2^{+}}$	AQE: 0.4% at 420 nm	76
$Rh_{\nu}Cr_{2-\nu}O_3/ZrO_2/TaON$ (<530 nm)	$Ir-FeCoO_x/BiVO_4$ (<530 nm)	$[Fe(CN)_6]^{3-/4-}$	AQE: 12.3% at 420 \pm 10 nm,	275 and
			STH: 0.6%	298
Pt/SrTiO ₃ :Rh (<520 nm)	BiVO ₄ (<520 nm)	$[Co(bpy)_3]^{3+/2+}$ or	AQE: 2.1% at 420 nm	312
		$[Co(phen)_3]^{3+/2+}$		
0.5 wt% Ru/SrTiO ₃ :Rh (<520 nm)	Photosystem II	$[Fe(CN)_6]^{3-/4-}$	STH: 0.012%	282 and
	(400–520 and 600–700 nm)			313
Ru/SrTiO ₃ :Rh (<520nm)	PtO_x/WO_3 (<450 nm)	$[SiW_{11}O_{39}Mn_{H}^{III}(H_2O)]^{5-/}$	AQE: 0.24% at 400 nm (H_2 evolution)	314
		$[SiW_{11}O_{39}Mn^{11}(H_2O)]^{6-}$	AQE: 0.36% at 400 nm (O ₂ evolution)	
Solid-state electron mediator				
$Ru/SrTiO_3:Rh (<520 nm)$	$BiVO_4$ (<520 nm)	None	AQE: 1.7% at 420 nm, STH: 0.12%	277
$Pt/g-C_3N_4$ (nanosheet) (<450 nm)	Co(OH) ₂ /B doped	None	STH: 1.16%	276
	$g-C_3N_4$ (nanosheet) (<900 nm)			
$Ru/SrTiO_3:La,Rh (<520 nm)$	CoO_x/Ta_3N_5 (<600 nm)	Ir	AQE: 1.1% at 420 nm, STH: 0.037%	315
$Ru/SrTiO_3:Rh (<520 nm)$	$BiVO_4$ (<520 nm)	RGO	AQE: 1.03% at 420 nm	316
$ZnRh_2O_4$ (<1030 nm)	$Bi_4V_2O_{11}$ (<750 nm)	Ag	AQE: $\sim 0.003\%$ at 740 nm	317
$Pt/TiO_2/CdS/(ZnSe)_{0.5}(CuGa_{2.5}Se_{4.25})_{0.5}$	$BiVO_4:Mo (<520 nm)$	Au	AQE: 1.5% at 420 nm	281
(<720 nm)				

Fig. 3 Mechanism of photocatalytic water splitting on a semiconductor-based photocatalyst.

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

8

References

- 299 D. Duonghong, E. Borgarello and M. Graetzel, J. Am. Chem. Soc., 1981, 103, 4685-4690.
- 300 J. Kim, D. W. Hwang, H. G. Kim, S. W. Bae, J. S. Lee, W. Li and S. H. Oh, Top. Catal., 2005, 35, 295-303.
- 301 A. Kudo, H. Kato and S. Nakagawa, J. Phys. Chem. B, 2000, 104, 571-575.
- 302 Y. Sakata, T. Hayashi, R. Yasunaga, N. Yanaga and H. Imamura, Chem. Commun., 2015, 51, 12935–12938.
- 303 M. G. Kibria, F. A. Chowdhury, S. Zhao, B. AlOtaibi, M. L. Trudeau, H. Guo and Z. Mi, Nat. Commun., 2015, 6, 6797.
- 304 K. Maeda, D. Lu and K. Domen, Chem. Eur. J., 2013, 19, 4986-4991.
- 305 H. Liu, J. Yuan, W. Shangguan and Y. Teraoka, J. Phys. Chem. C, 2008, 112, 8521-8523.
- 306 W. J. Jo, H. J. Kang, K.-J. Kong, Y. S. Lee, H. Park, Y. Lee, T. Buonassisi, K. K. Gleason and J. S. Lee, *Proc. Natl. Acad. Sci. U. S. A.*, 2015, **112**, 13774–13778.
- 307 W. Liu, L. Cao, W. Cheng, Y. Cao, X. Liu, W. Zhang, X. Mou, L. Jin, X. Zheng, W. Che, Q. Liu, T. Yao and S. Wei, *Angew. Chem., Int. Ed.*, 2017, 56, 9312–9317.
- 308 Z. Kang, Science, 2015, 347, 970-974.
- 309 G. Ma, S. Chen, Y. Kuang, S. Akiyama, T. Hisatomi, M. Nakabayashi, N. Shibata, M. Katayama, T. Minegishi and K. Domen, *J. Phys. Chem. Lett.*, 2016, 7, 3892–3896.
- 310 R. Abe, K. Shinmei, N. Koumura, K. Hara and B. Ohtani, J. Am. Chem. Soc., 2013, 135, 16872–16884.
- 311 H. Kato, Y. Sasaki, N. Shirakura and A. Kudo, J. Mater. Chem. A, 2013, 1, 12327-12333.
- 312 Y. Sasaki, H. Kato and A. Kudo, J. Am. Chem. Soc., 2013, 135, 5441-5449.
- 313 W. Wang, Z. Li, J. Chen and C. Li, J. Phys. Chem. C, 2017, 121, 2605-2612.
- 314 K. Tsuji, O. Tomita, M. Higashi and R. Abe, ChemSusChem, 2016, 9, 2201-2208.
- 315 Q. Wang, T. Hisatomi, S. S. K. Ma, Y. Li and K. Domen, Chem. Mater., 2014, 26, 4144-4150.
- 316 A. Iwase, Y. H. Ng, Y. Ishiguro, A. Kudo and R. Amal, J. Am. Chem. Soc., 2011, 133, 11054-11057.
- 317 R. Kobayashi, T. Takashima, S. Tanigawa, S. Takeuchi, B. Ohtani and H. Irie, Phys. Chem. Chem. Phys., 2016, 18, 27754–27760.