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In this tutorial review, we will describe crucial aspects related to the application of machine learning to

help users avoid the most common pitfalls. The examples we present will be based on data from the

field of molecular electronics, specifically single-molecule electron transport experiments, but the

concepts and problems we explore will be sufficiently general for application in other fields with similar

data. In the first part of the tutorial review, we will introduce the field of single-molecule transport, and

provide an overview of the most common machine learning algorithms employed. In the second part of

the tutorial review, we will show, through examples grounded in single-molecule transport, that the

promises of machine learning can only be fulfilled by careful application. We will end the tutorial review

with a discussion of where we, as a field, could go from here.

Key learning points
(1) Machine learning methods for single-molecule transport data analysis.
(2) Common challenges when using machine learning to analyse single-molecule transport data.
(3) Importance of sharing source code and experimental data.
(4) Perspective for future use of machine learning in single-molecule transport studies.

1 Introduction

Today, machine learning (ML) is effectively running victory laps
in many areas of science, having given rise to new ways of
analysing data and synthesising knowledge. While the under-
pinnings of ML can be traced back to 1800 with the development
of the least-squares method and Bayes’ theorem, the advent of
high-performance computers and large data sets, has decidedly
provided a huge boost to the area in current years.

In particular, deep learning has provided a whole new way
of solving problems and profoundly changed fields such as
computer vision1 and natural language processing.2 The devel-
opment of such advanced models heralds a new era of data
analysis, but comes with the cost of increased obscurity as to

what the models have learnt in order to function so effectively.
Prediction alone does not grant us new insight.

Many fields, molecular electronics included, have seen an
increased interest in using ML to analyse data. Molecular
electronics, and specifically the field of single-molecule transport,
spawned from an interest in using the unique material properties
of organic molecules to solve challenges in conventional solid-
state electronics. The two most common methods to measure
single molecule conductance are the scanning tunneling
microscope-based break-junction (STM-BJ) and mechanically con-
trolled break-junction (MCBJ). Both methods form a nanogap by
breaking a metallic point contact, but they differ in their approach
to form the nanogap.

Briefly, the STM-BJ uses the existing functionality of a
scanning microscope to form the nanogap in one of three ways:
(1) the STM tip is held at a constant displacement from the
substrate and waits for a metal-molecule-metal junction to
form and break spontaneously; (2) the STM tip is brought into
contact with an adlayer of the analyte and retracted; or (3) the
STM tip is brought into contact with the substrate to form a
metal-metal contact and then retracted. In the latter two cases a
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metal-molecule-metal junction is formed prior to the rupture of
the junction and the process is repeated. The MCBJ forms and
breaks Au-Au bonds in a thin metal lead mounted on an
arching substrate.

While the field has come a long way towards making these
measurements routine, the variability between measured
samples tends to be high. Inherently, such variability is not
problematic, but it necessitates statistics on a population level
and makes it difficult to draw conclusions about the population
from individual samples. The high variability also makes it
difficult to discover and explore potential subpopulations in the
data. Therefore, the hope is that ML will enable a more fine-
grained analysis of the data from single-molecule transport
experiments.

Despite the seemingly perfect match between the large data
sets of single-molecule transport studies and the power of ML,
some fundamental questions stand in our way. Due to the
stochastic nature of the junction-forming process, we sample a

large variety of different events. For example, different confor-
mers of the molecule or samples where there is no measurable
molecule between the electrodes. For a well-behaved molecule
and with enough samples, we can estimate the average
conductance of that molecule. Yet, on a per-sample basis, it
is difficult to assign which event led to any particular sample.

From anecdotal experience, it is very common for a single
experiment to contain a mixture of signals in the data that
includes, at minimum, the following classes: traces in which no
molecule was contacted and measured; unstable traces due to
physical or electronic instabilities in the instrument; contaminant
traces which contain molecule-like features; molecular traces
from the analyte. It is also possible for the analyte to produce
substructure alone, for instance, 4,40-bipyridine.3

In Fig. 1, we show example traces from an experiment with a
molecule (top row, blue traces) and without a molecule (bottom
row, red traces). If we did not know which traces came from a blank
experiment, it might be difficult to say whether or not a molecular
signal is present in the red traces, although this is an area where
future developments might provide a means of separating such
traces. Compiling all our measured traces into 1D-histograms
(right-most column, black) reveals that it is, indeed, only the blue
traces that contain a molecular signal, seen as a peak in the
1D-histogram, but all information about each trace is now lost.

This challenge of assignment has led to a concern that if
practitioners manually label samples, they might be at risk of
confirmation bias. Such problems are compounded by the fact
that it is relatively uncommon to make computational scripts
and raw data openly available with publication. In part, this
lack of sharing is due to a lack of metadata and formatting
standards facilitating easy sharing of single-molecule transport
data. Without open access to either the scripts or the data,
analysis cannot be independently replicated and reproduced.
Sharing, as we will argue, is also a way to minimise cognitive
biases such as expectation or confirmation bias. As we will
outline in this tutorial review, we have to be careful that ML
helps us refine our definitions of molecular traces instead of
cloud them.

Fig. 1 Illustration of a junction with and without a molecule bridging the
electrodes. The blue traces are from a mechanically controllable break
junction experiment with a molecule added and the red traces are from a
similar blank experiment where no molecule has been added. In the right
column, we show the full data set as 1D-histograms. Axes scales are
arbitrary units. Conductance is normally on the order of nano Siemens and
displacement is on the order of nanometers.
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We have structured the tutorial review according to the
following: in the next subsection, we outline the history of
single-molecule transport experiments to provide some intuition
for the use of ML in molecular electronics. Then, we give a short
introduction to common ML methods such as feature extraction,
supervised learning, and clustering. The section after dives into
the main problems associated with the use of ML. We start with
a discussion of bias and the different ways it shows up in data
analysis. Then, we move on to one of the most fundamental
problems of ML: overfitting. After that, we will discuss how to
build trust in the predictions of our ML model and how different
choices of metrics might impact subsequent analysis. Then, we
will talk about the use of unsupervised learning and its unique
set of problems. After that, we outline how feature filtering can
be used to optimise our models and gain a better understanding
of what they learn. Finally, we will discuss the need for sharing of
both source code and data. We end the tutorial review with a
discussion of where we, as a community of aspiring ML scientists,
might go from here.

1.1 Where is the field right now?

To understand where the field of single-molecule transport is
today, it is instructive to look back at where the field started
and how it has evolved. In the early days of the field of single-
molecule transport, experimentalists were accustomed to
designing, fabricating, and measuring ‘‘devices’’ that were hard
to make, fragile, short-lived, and tested in highly controlled
environments. In this paradigm, often only a handful of
measurements could be performed on a single device, and
comparisons between measurements were challenging. These
handfuls of traces were also inspected individually. This para-
digm informed the first attempts to measure single-molecule
conductance.4–6

Inspired by studies of atomic contacts,7 assembling multiple
traces into 1D-histograms lead to markedly improved signal-to-
noise ratio by accentuating the molecular signal.8,9 Another
important improvement was the use of 2D-histograms that
retained displacement information.10–12

Yet, as we illustrated in Fig. 1, assembling traces into 1D-
histograms comes at a cost. All time-dependent information is
lost and any substructure in the data is disguised. Constructing
2D-histograms improves upon this, though information is still
lost. For example, the contribution from each individual trace
to characteristics in the 2D-histogram is difficult to characterize.
Finally, it remained necessary, as with the individually inspected
traces, to remove noisy and uncharacteristic/bad traces from the
data set before analysis. For example, traces that only had a few
data points or that only consisted of noise. Anecdotally, this
filtering was often done by hand-selecting the ‘good’ traces.
The histograms permitted more traces to be studied but were
still limited by the number of traces an experimentalist could
reasonably assess individually.

Consensus by 2005 was that one major challenge facing
single-molecule electronics was experimental reproducibility.13

In subsequent years, incremental improvements of the
measurement system, the data acquisition protocol, and the

electronics were accomplished across the field in many
laboratories. These improvements permitted laboratories to
retain nearly all measured traces in analysis, removed the need
to individually inspect all traces, allowed more traces to be
retained, and increased the likelihood that more than a single
characteristic signal was observed in the data analysis. The
presence of different classes of trace in the data was better
observed with richer representations of the data, the most
common being 2D-histograms, that allowed for visualisation
beyond simply individual traces and 1D-histograms. These new
representations indeed revealed substructure in the data sets
stemming from the presence of the four classes mentioned in
the previous subsection.

Beginning with work by Lemmer et al.,14 interest increased
in unsupervised methods in an attempt to tease out these
substructures. Individually, each of the richer representations
of the data mentioned above suggested the use of different
unsupervised methods: the parameterisation of data led to
vector-based reference parametrisation;15,16 correlation histo-
grams led to the use of principal component analysis (PCA) to
separate traces into different subgroups;17–19 finally, 2D histo-
grams led to the use of image recognition methods.20–22

The end goals for employing advanced data analysis methods
are based on two assumptions: (1) there are confounding signals
in the data set that are uniquely different from the molecular
signal, and therefore can be identified and removed in some
objective manner; and (2) the molecular signal itself may contain
multiple subclasses and these may also be grouped in some
objective manner. Historically, these different signals were sorted
by simple thresholding – either during pre- or postprocessing.

In Fig. 2, we illustrate some examples of how ML has been
used to analyse data from single-molecule transport experiments.
The input trace shown to the left is a typical measurement
obtained from an MCBJ experiment. In the top row of Fig. 2, we
provide a visual summary of what Bamberger et al.23 do. By
approximating each trace with a set of lines, they can cluster
these line segments using SOPTICS. This method allows them to
extract similar regions from each trace. In the middle row, we
illustrate the approach by Fu et al.22 Using a convolutional neural
network trained on two experiments with two different molecules,
they can separate samples from a single experiment with those
two molecules. In the bottom row, we show the approach by
Hamill et al.17 First, each trace is converted to a 1D-histogram and
then PCA is performed on the full data set. This allows for a
separation of the signals of two molecules from the same experi-
ment by projecting onto one of the first principal components and
assigning class labels based on whether the score is above or
below zero.

The goals of molecular electronics parallel the goals of other
fields, for example, analytical chemistry and computer vision.
In common with these other fields, our ability to generate large
amounts of data has surpassed our ability to adequately analyse
the data. Furthermore, ML and the use of advanced data
analysis in these fields have matured. These three examples
demonstrate the diverse use and potential of ML in single-
molecule transport. It is reasonable to assume that applying ML
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to data from single-molecule transport experiments will yield
fruitful results in general.

We have done our best to provide a condensed overview
of where single-molecule transport studies is coming from.
Inevitably, with such a rich field, we have felt it necessary to
exclude some references. For a more thorough introduction to
the field of single-molecule transport studies, we recommend
the excellent reviews that exist.7,24,25

2 Tools in the toolbox

This section introduces three overarching tools of ML: feature
extraction, supervised learning and unsupervised learning. The
purpose is to provide some common ground for all readers. We
include feature extraction in this part of the tutorial review as it
can make or break most ML algorithms.

Other areas that might be of interest to the community include
self-supervised learning26 or semi-supervised learning.27 We will
not discuss these hybrid techniques, but the reader should be
aware that they combine aspects of feature extraction, supervised
learning and unsupervised learning.

2.1 Feature extraction

Feature extraction is the process of creating derived features
from raw input that are informative and reduce redundancy.
The extent to which data needs to be represented in a new way
depends on the field, data and objective.

For example, to predict the concentration of a UV/Vis-active
molecule in an aqueous solution, the raw data is transformed

from transmittance to absorbance. This transformation is a
form of physics-guided feature extraction and is often enough
to provide reasonable performance with linear models.

The same type of physics guided feature extraction is used in
single-molecule transport experiments. Here, it is common to
take the logarithm of the raw data and only look at conductance
values between 1G0 and the noise floor of the instrument.

An example of such a lightly preprocessed sample is shown
in the middle of Fig. 3. But, as shown by Fu et al.,22 such
transformed data is often still too complex for linear models to

Fig. 2 Three distinct ways to use ML to analyse single-molecule transport data. The first two examples uses unsupervised methods and the last one uses
a supervised method. Top row: Each trace is parameterised by a series of linear segments that best describe each trace and subsequently a clustering
algorithm is used to produce a hierarchical clustering structure where the linear segments that cluster together can be extracted.23 Middle row: By
converting each trace to a 1D-histogram, principal components analysis (PCA) can be applied to the full data set. By then projecting each sample onto
one of the first principal components, traces from two different molecules can be distinguished in an experimental mixture.17 Bottom row: The raw trace
is pushed through a 1D-convolutional neural network trained on synthetic mixtures of two molecules. Traces from an experimental mixture of the same
molecules can then be separated by the network.22

Fig. 3 Examples of different ways to extract features from a conductance
trace. Starting from the top right and going clockwise: Length of the
molecular plateau; the mean of the conductance values; the median of the
conductance values; 1D-histogram of conductance values; 2D-histogram
of conductance values; approximating the conductance trace with several
linear segments;23 a question mark to represent that, depending on the
problem at hand, other features might have to be generated.
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achieve good performance. Thus, further feature extraction may
be required for good performance.

Six different examples of ways to summarise a sample
are shown around the trace in Fig. 3. The three methods
(length, mean, and median) to the right summarise the trace
with a single number, whereas the three methods to the left
(1D-histogram, 2D-histogram and linearisation) are ensemble
methods. The question mark symbolises that there are many
more ways to extract features than depicted here.

Feature extraction can be valuable for several reasons: It can
lower the computational cost of training; fewer parameters
leads to a lower risk of overfitting; and it, potentially, makes
it easier to understand what the model has learned. Feature
extraction can also help remove irrelevant information. Even
neural networks, which generally show good performance on
raw data, benefit from a curated feature set.

Parallel, and arguably with some overlap, to the discussion
of feature extraction is the discussion of data preparation.
Decisions such as whether to normalize the data, how much
of the noise floor to retain, or how to handle samples with a
varying amount of data points all impact the performance of a
model and any later analysis.

2.2 Supervised

Supervised learning is the task of training a computer algo-
rithm to classify new, unknown samples based on training with
a set of known samples.

Given a set of training data,{(x1,y1),(x2,y2),. . .,(xn,yn)} where
each (xn,yn) is a pair from X � Y, the task of supervised
learning is to learn a function g that maps from input space,
X, to output space, Y, i.e., g: X - Y. Note that we will only be
talking about supervised learning in a classification setting
such that Y = {1,2,. . ., K} with K being the number of classes we
wish to predict.

Many methods exist to generate labelled training data for a
supervised classification algorithm. In computer vision, datasets
are often annotated by people as humans are excellent at
recognising objects in an image. While time-consuming,
CAPTCHAs (Completely Automated Public Turing-test to tell
Computers and Humans Apart) are an elegant solution to
distribute the workload among a large number of people.

In single-molecule transport, we rarely have such a luxury.
As explained in the introduction, a fundamental challenge is
knowing what event a given experimental trace corresponds to.
The community has come up with smart ways to generate training
sets.17,18,22 For example, by performing separate experiments,
though this is limited to distinguishing between individual
molecules and cannot be used to extract subpopulations arising
from the same molecule. It is also likely contaminated by tunnel-
ling traces.

One of the key defining features of a supervised learning
algorithm is whether its decision boundary is linear or non-
linear. In Fig. 4, we show three different decision boundaries on
three different synthetic data sets. In the left plot, we have a
linearly separable data set as we can draw a straight line that
perfectly separates all the green samples from the orange samples.

In 2D, this decision boundary is a straight line but generalises to a
hyperplane in higher dimensions. In the middle and right plots,
we show examples of two non-linear decision boundaries.

Clearly, models with a non-linear decision boundary can
classify more complex data than models with a linear decision
boundary, though the ability to model complex data is not free.
Simple linear methods often allow for easy visualisation and
interpretation of their estimated parameters, but such insight
tends to be diminished as the complexity of the model
increases. In many cases, even in situations where we primarily
care about predictive performance, it is crucial that we can
understand our model. For example, understanding allows us
to draw conclusions about the data generating process and
enables us to check that our model does not rely on spurious
correlations. It also allows us to understand why a model might
perform poorly and act accordingly. It even allows us to verify
that the model is adequate for the specific sample at hand.

Often, it is difficult, or impossible, to gain insight into what
a non-linear classifier has learned. It is a nontrivial task, in part
because concepts such as ‘interpretable’, ‘explicable’ and
‘transparency’ are ill-defined. While the ML community is
continually developing new methods to explain models,28 other
researchers question the approaches taken and whether it is
even necessary to explain our models. It is out of scope for this
tutorial review to dive into the particularities of this discussion
but we refer to the existing literature on the topic.29–34

2.2.1 Linear. In the following, we make an explicit distinction
between linear and non-linear classifiers. This distinction is here
based on whether the decision boundary of a classifier decision
is linear or non-linear. Though common, this distinction is
somewhat arbitrary. While a linear classifier can be considered
well-defined, a classifier can be non-linear in many ways; e.g. non-
linear transformations of input variables, non-linear decision
boundaries and variations thereof.

Linear classifiers are typically the simplest models and their
decision boundaries are always linear (see left column of Fig. 4).
In the left column of Table 1, we list a few of the most common
linear classifiers. At the bottom, we have listed support vector

Fig. 4 Illustration of three different decision boundaries in synthetic data.
Points from the same class have the same colour and the red dashed lines
correspond to hypothetical decision boundaries. Left: Linear decision
boundary which, here in 2-D, consists of a line. Middle and right: Examples
of non-linear decision boundaries.
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machines (SVM) as both a linear and a non-linear classifier
depending on the chosen kernel.

Linear classifiers are often chosen as the baseline when
comparing with other, more complex, methods. While non-
linear methods often out-perform linear classifiers, it is not
always the case if given structured data with meaningful
features35–37 or if the samples do not adequately support a
more complex model; e.g. if there are too few samples. While
simple, many things – such as outliers and extreme inliers – are
often easy to detect and diagnose for linear classifiers. There is
also a notion of transparency as to what the model has learned.

With all classifiers, assumptions about the data are built
into them. This is a prerequisite most commonly referred to as
the ‘‘no free lunch’’-theorem.38 Essentially, this theorem states
that if no prior assumptions are made about the data we wish to
predict, the average performance of our model will be equal to
random guessing.

The assumptions can be rather general – such as the model
being continuous, or similar samples originating from similar
classes – or they can be strict. For example, linear discriminant
analysis (LDA) behaves particularly well under the following
conditions:

(1) Normally distributed samples. The class conditional
variable, x, is sampled from a (multivariate) Gaussian
distribution.

(2) Identical covariance matrices between each class, i.e., the
classes have to be homoscedastic; yet with different means.

If we only care about predictive performance, it is acceptable
to apply a model on a data set where some, or all, of the
assumptions are violated as long as we still obtain acceptable
performance.39 If, on the other hand, we wish to infer some-
thing about the data generating process, we need to be more
careful and use an appropriate model on a given data set.

2.2.2 Non-linear. At times, a linear decision boundary does
not cleanly separate the data. Then, it is reasonable to try a non-
linear classifier if the data quality supports it as these models
are more expressive in the boundaries they can model. Two
examples of data that cannot be linearly separated are shown in
the middle and right column of Fig. 4 along examples of non-
linear decision boundaries. We list a few common non-linear
classifiers in the right column of Table 1. Their greater ability to
model complex interactions comes with a trade-off. For example,
exactly due to their powerful modelling capabilities, they are
prone to overfitting.

The use of more complex models can also come at the cost of
transparency, though this is not always the case. For example,
Gaussian process regression (or Kriging) is a commonly used
non-linear model that originates from geostatistics. In Bayesian

statistics, a Gaussian process prior can be used to build a
regression model with continuous varying effects that can model
data with non-linear effects. If an appropriate covariance matrix
is chosen, it is possible to obtain a model that has good
predictive performance. The estimated parameters can subse-
quently be used to infer characteristics about the data set and
the population it has been drawn from.40

We also include neural networks (NNs) that are known as
universal function approximators.41 While a necessary and
crucial statement, it is of little practical use. If an NN has
an infinite number of neurons, with an infinite number of
connections between them, the network can approximate any
function. In other words, if you can identify an unlimited
number of lines in a picture, you can distinguish between all
objects in that picture. We note that polynomial functions and
the Fourier transform possess the same property of being
universal function approximators.

NNs are an extremely powerful form of supervised learning,
yet it is still an open question why they work so well.42,43 We
have only listed a small selection of common NN-architectures
in Table 2, but the literature is replete with different NN-
architectures. NNs are the ultimate black-box ML algorithms;
their predictive power is only rivaled by how difficult it is
understand what they have learned.

2.3 Clustering

Clustering is concerned with grouping similar entities together.
These methods tend to be used in two slightly different
contexts:

(1) As part of an exploratory analysis where the goal is e.g. to
discover potential patterns, spot anomalous data points or
explore hypotheses about the data. This is an informal
approach where we try to ‘‘let the data speak’’.

(2) In a more rigorous setting where we already have an idea
of the number of clusters yet, we have no labels on any samples.

In the single-molecule transport community, there is a hope
that clustering can lead to a more unbiased analysis of our
data.16,20,21,23,44–48 In Table 3, we list a few, common clustering
techniques though many more exists.

The practicality and usefulness of clustering is undeniable,
but it has proven difficult to develop a precise, theoretical
definition of clustering.49 The first challenge is how to define
a cluster. Imagine the simplest definition of clustering with two
requirements: dividing a data set into groups such that.

(1) Similar elements belong to the same group and;
(2) The members of each group are all similar.
While such a definition is intuitive, it is problematic.

Table 1 A selection of common supervised algorithms

Linear Non-linear

Linear discriminant analysis Random forest
Partial least squares-DA Gaussian process
Logistic regression k-Nearest neighbor
SVM SVM

Table 2 A selection of common neural network architectures

Neural network architectures

Feed-forward neural network
Convolutional neural network (CNN)
Recurrent neural network (RNN)
Autoencoder (AE)
Generative adversarial network (GAN)
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Imagine a list of elements placed equally along a line.
Upholding the first requirement that similar elements belong
to the same cluster requires that every element goes into the
same cluster. However, by doing that, we immediately violate
the second requirement that every element of a group is
similar.50 Such an impossibility theorem for clustering has
been presented more formally by Kleinberg.51

In practice, unsupervised algorithms are still useful, but
importantly it illustrates that these algorithms do not free us
from making – potentially biased – assumptions about our data.

Most clustering algorithms favor internal homogeneity and
external separation52 (also known as between-group and within-
group variation, respectively). The fundamental question of ‘‘what
defines a cluster? ‘‘ is a domain-specific requirement, not a
statistical question. Hence, to perform meaningful clustering
requires that domain insight guides the selection of appropriate
clustering parameters.

This mainly means choosing what constitutes sample similarity.
The model needs a measure of how similar two samples are before
it can determine whether or not they belong in the same cluster.
In certain situations, a physically motivated argument can be given
for choosing a specific similarity score, but it is often difficult.
Different definitions of similarity can have a considerable impact
on the clustering result as we will show later. Simple testing of ‘all’
possible measures risks leading to selection bias, hence it is highly
recommended to use domain knowledge for this.

Another challenge in clustering is that the user typically has
to select the number of clusters. In most cases, this is a user
choice rather than a fundamental property of the data; hence,
the user has relatively free choice.

The single-molecule transport community has chosen several
approaches: manual inspection looking e.g. for clustering
with large inter-cluster distances or where each cluster has a
significant difference in mean conductance,20,21,23,45 determining
the number of clusters using statistical tools for internal
validation14,46,47 or by using a clustering algorithm that automa-
tically determines the numbers of clusters.16,44

Evaluating the quality of a given clustering structure against
an external validation set is problematic. For one, we rarely
have the ground truth labels. Even if we did, those labels imply
that there is only one correct way to partition our data.

In contrast to external validation, internal validation uses
only information already present in the data set. This is
potentially also problematic as it does not evaluate the veracity
of our clusters. Rather, the internal validation index compares
which model (i.e. which clustering result) groups data points
that are most similar, as defined by that particular internal
validation index. For example, if we use an index that assumes a

convex data set, it might be inappropriate if the data set is non-
convex. A comprehensive analysis of internal validation indices
has been performed by Arbelaitz et al.53

We note that the mere use of a clustering algorithm tends to
assume the existence of more than one cluster. Why else would
we reach for a clustering algorithm? Most algorithms can
technically handle the possibility of a single cluster, but if the
practitioner is hoping to find more than one cluster, the data
might be represented in a way that emphasises more than one
cluster – whether real or not.

3 A road lined with pitfalls

In this section, we dive into the use of machine learning in an
applied setting and how to confidently draw conclusions from
what our algorithms learn from our data. Our examples will
mirror the use of ML in single-molecule transport analysis.
At the crux of the matter is the issue of what event a trace
corresponds to. While the uncertainty of that problem makes it
difficult to apply ML techniques as they are normally applied, it
does not make it impossible.

3.1 Defining bias

In the field of single-molecule transport, there is a concern that
we may inject our own bias into the data analysis thus leading to
subjective conclusions. Therefore, we should seek more
unbiased methods, such as clustering algorithms.15,16,21,44–46,54

The term bias means a systematic deviation from the true
value and covers a multitude of problems ranging from statis-
tically derived biases to biases coming, e.g., from how the
samples were gathered or analysed. We will describe the more
common types of biases and their importance.

In statistics, bias is a well-defined concept. If we have an
unbiased estimator, the expectation value of that estimator will
be equal to the true value of our estimated parameter. For

instance, the sample mean,
1

n

P
xi, is an unbiased estimator of

the population mean, m, for a series of independent and identi-
cally distributed observations drawn from a normal distribution.

While an unbiased estimator is desirable, it is not required
to get a good estimate of our parameter of interest. For
example, a potentially biased estimator of the population mean
is given in eqn (1):

�X ¼ 1

n

X
xi þ b: (1)

Here, %X is a biased estimate of the population mean, m, with n

samples, xi a measurement value and b is the bias term. If b ¼ 1

n
then as n - N, %X will approach m, the true value of the
population mean. It is not unbiased, but it is consistent – that
is, as the number of data points increases, our estimated
parameter will converge on the true value of the parameter.
We will refer to such bias – exemplified here with the parameter
b – as statistical bias.

Table 3 A selection of unsupervised algorithms

Clustering

K-Means + variations
OPTICS
DBSCAN
Finite mixture models
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In classical statistics, the main concern was having unbiased
estimators. The total error of an estimate consists of the systema-
tic part – bias – and the random part – variance. In many modern
settings, the error coming from variance can easily be orders of
magnitude larger than the bias term and there are therefore many
tools that actively bias the estimate a little, in order to gain a huge
reduction in variance and hence a much lower total error.

In ML, it is common to bias our estimator, or model,
through the use of regularisation – known as shrinkage in
statistics. While such regularisation will increase the error from
the bias term, it will make our model less sensitive to the
random noise of the data thus improving the performance of
the model. Regularisation is a balance as it might also mean
that the model loses its ability to accurately model the data.
This balance is known as the bias-variance trade-off.

We refer to the next type of bias as measurement bias. A few
are listed in the left column of Table 4. These are all related to
the collection, handling and analysis of data. Imagine that we
wish to estimate m of a normal distribution using eqn (1). If our
instrument is not sensitive enough to measure samples from
part of the distribution, our estimate of m will be biased. Such a
detection bias will persist even if we collect more samples.
These types of biases are often avoided by changing the
experimental setup or changing the framework in which we
analyse our data. Other times, they are unavoidable and we
instead have to assess how they might impact our analysis.

Finally, psychology has unearthed a litany of cognitive
biases. Generally, they help us make sense of the world at a
reasonable pace, but they can also cause us to make erroneous
conclusions. In the right column of Table 4, we have listed a few
cognitive biases. These are separate from the other two types of
biases though they share some traits. For instance, few cognitive
biases are mitigated by having more data. In fact, the reiteration
effect suggests that repeated exposure might make us more
susceptible to believe false information.

Analogous to the discussion of cognitive biases, and argu-
ably with some overlap, is that of logical fallacies. These errors
in reasoning can bias us towards conclusions our data cannot
substantiate. While out of scope for this tutorial review, they are
important and examples include ‘affirming the consequent’
and ‘appeal to probability’.

In the preceding, we have outlined different contexts where
the concept of ‘bias’ appears. In the following sections, we use
the described types of biases to explain the sources of errors
that are common in ML.

3.2 (Over)fitting supervised models

Overfitting is one of the most fundamental problems of ML and
it is both ubiquitous and subtle. It is intuitively easy to

understand yet there is no single solution for this problem.
Overfitting does not even have to occur during the training of
the model as it can happen during model selection.55 The
overfitting problem leads to models that seem satisfactory
when tested in a controlled setting, but when put to the test
on unseen data – for example, from a new experiment entirely –
their performance drops significantly.

The opposite problem also exists where a model is not
powerful enough to model the relevant variation in the data.
This problem, called underfitting, also results in performance
degradation of our models. With the recent development and
widespread use of powerful ML techniques, underfitting is, in
practice, less of a problem than overfitting. We will provide
examples of both regimes. In the following, we will work in a
regression setting due to ease of illustration. All conclusions
also hold for classification.

In Fig. 5, we show an example of fitting higher and higher
order polynomials to a synthetic data set. The data has been
generated according to

yi = xi
3 + N(0,1) � e (2)

where xi is drawn from a uniform distribution with xi B
U[�10,10) and e is a parameter for noise. We set e = 3. We
generate a training set with 15 samples (red crosses in Fig. 5)
and a test set with 1000 samples (blue dots in Fig. 5). Using the
training set, we fit eight polynomials of higher and higher order
and evaluate their performance on the test data. To visually
inspect what the models fit, we plot the lowest order model
(green line), the 3rd order model (orange line) and the highest
order model (dark blue line) in the left plot of Fig. 5. To
quantify the performance of each model, we plot the root mean
squared error of both the training and test set in the right plot
of Fig. 5. In the plot on the right, the red bars are the error on
the training set, the blue bars are the error on the test set and
the dashed, grey line is the lowest error on the test set. In the
ESI,† we show the average training and test error for 1024

Table 4 A selection of measurement and cognitive biases

Measurement Cognitive

Detection bias Confirmation bias
Selection bias Base-rate neglect
Survivorship bias Hot-stuff bias

Fig. 5 An example of over- and underfitting by fitting increasingly higher-
order polynomials to simple, synthetic data. The data has been generated
from a 3rd order polynomial with Gaussian noise subsequently added. Left
column: Predictions from a 1st (green line), 3rd (orange line) and 8th order
polynomial (dark blue line) vs. the true value. Red crosses are samples that
each model was trained on, blue dots are the samples that the model is
tested on. Right column: Error on the training set (blue) and error on the
test set (red) for fits of increasingly higher-order polynomials. The hori-
sontal dashed grey line indicates the lowest test set error.
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experiments in Section ‘‘Training and test errors on average’’ of
the ESI.†

In the left plot of Fig. 5, we see that the highest order
polynomial describes the training set reasonably well yet fails
to capture the significant trend in the test set. This discrepancy
in performance is also highlighted in the plot on the right of
Fig. 5. Here, the test error for the 8th-order polynomial is the
second-highest despite it having the lowest training error. This
is a typical case of overfitting. The model has fitted the noise in
the training data instead of the overall trend.

If we look at the 3rd-order polynomial it does well at
capturing the significant variation of the data without model-
ling the noise. This is also reflected in the right plot of Fig. 5
where the 3rd-order polynomial has the lowest test error but
has neither the highest nor the lowest training error. Finally, we
see that the lowest order polynomial is a straight line that only
captures the overall sloped trend in both the training and test
set. It does not capture the slight curvature present in the data
which results in an underfitted model. From the plot to the
right in Fig. 5, we see that the underfitted model results in poor
performance on both the training and test set.

This example highlights that the training error for large,
complex models is a poor indicator of real-world performance.
In most cases, the error on the training set should primarily be
used as a diagnostic to ensure that our model is not collapsing
or diverging. The more free parameters a model has, the more
pronounced the overfit can be. Deep neural networks are
extreme in terms of their amount of free parameters, making
them susceptible to overfitting. However, simpler models can
also overfit, as we have seen in this example.

The models shown in Fig. 5 are also examples of models
with differing degrees of variance and bias. The 1st-order
polynomial is almost agnostic to the training data and only
models part of the systematic variation in the data. This model
has a high bias and low variance. On the contrary, the 8th-order
polynomial has a high variance and low bias and is thus highly
sensitive to any idiosyncrasies of the data because the excess
degrees of freedom are used on modelling the noise in the data.
As mentioned in Section 3.1 ‘‘Defining bias’’, an effective way to
avoid overfitting, i.e., reduce the error from the variance term,
is by regularisation.

While the example of Fig. 5 illustrates the effect of under-
and, in particular, overfitting, it is instructive to look at
different causes of overfitting and to understand how to combat
each type.

3.2.1 Misunderstanding of the principle of holdout sets.
A holdout set is a subset of the data that has no overlap with
either the training set or the test set. It is set aside as early as
possible, preferably before looking at the data. A more labor-
ious alternative is to perform a new experiment and save those
measurements as the holdout set.

Assuming the training data is truly representative, it is a
common and sound principle to validate our model using a
holdout set. However, imagine that you have performed variable
and feature selection, tuned modelling parameters, considered
data transformations, etc. If the holdout set is created after such

choices have been made, it is indeed no longer a holdout set.
You may have artificially created a situation where your data set
has now been transformed into a simpler, better-behaving
problem where seemingly good results bear no meaning for real
world use. For this reason, it is important to set aside the
holdout set as early as possible.

3.2.2 The cross-validation trap. Cross-validation (CV) is a
data-efficient way to simulate a holdout set. One variant of CV
is to partition our data set into k non-overlapping subsets. The
model is then trained on each combination of k � 1 subsets
and tested on the last subset.

It is beneficial as all samples get to be part of the training
data and also get to be part of the simulated hold-out data set.
Hence, CV may provide more precise estimates of the perfor-
mance than a holdout set if the holdout set is small.

However, proper CV depends heavily on the purpose of the
model. If you have data with a temporal component – for
example, if you wish to predict one segment of an MCBJ trace
from another segment – you need to be careful. A naı̈ve
approach to CV would pay no attention to the chronological
ordering of each segment. It is then possible that the model is
asked to predict a segment from the past using a segment from
the future. Given that the model does not have access to future
data when deployed, it is a nonsensical task to validate against
and might obscure the real performance of the model.

Properly implemented CV can lower the risk of an overfitted
model but it requires a thoughtful implementation. Inappropriate
use of CV can lead to overfitting. CV is related to the task of
finding the best model, or hypothesis, out of many and it can be
shown that this task can lead to picking an overfitted model.56

3.2.3 Overly simple training data. Imagine a data set that is
not representative of the true complexity of the use cases.
Perhaps the training data is based on simulated data that only
approximate data from the real world, or the data comes from a
single lab even though the model is intended to be deployed in
many labs. In such cases, you may be able to fit the specifics of
the training data well, but the predictive power will be limited.

Unfortunately, neither holdout sets nor CV can help diag-
nose overly simple training data. The best way to counter this
type of overfitting is typically a combination of detailed domain
knowledge and effort to obtain more challenging test data that
better represent the real complexity of the use cases.

In the ESI,† we list a few more considerations that a
practitioner has to think about to avoid the risk of overfitting.

In the preceding, we have talked about overfitting in the
context of classical ML. These challenges also hold for deep
learning though there are indications that more complex
regimes might exist. For instance, in specific situations, more
data might hurt model performance.57

3.3 Building trust in our models

If we wish to use our model to make predictions about unseen
data, we need to be confident in its performance and adequacy
for the type of data it will be used on. To build that confi-
dence, we need to choose some metrics to evaluate our model
against. Often, single-molecule transport studies, people choose
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single-threshold metrics, such as accuracy, to evaluate their super-
vised model.18,22,45,48,58

Choosing accuracy can be beneficial as it is intuitive, but it
assumes the cost of misclassifying false positives and false
negatives are equal. This assumption is not always sufficient as
we will illustrate in the following example.

Imagine a food company that produce chocolate bars. The
company is situated in a country with strict food laws so for any
bad chocolate bar in violation of these laws, the company is fined
h1000. Discarding a good chocolate bar only costs h1 in lost profits.

The company wants us to develop an ML model that, given
some sensory data, can predict whether or not any given chocolate
bar has to be discarded. Clearly, misclassifying a bad chocolate
bar as being good is many times more costly than misclassifying a
good chocolate bar as being bad. In other words, the cost of a false
positive (bad chocolate bar being good) is much higher than a
false negative (good chocolate bar being bad).

If we validate our ML model using accuracy, we implicitly
evaluate our model under the assumption that the cost of false
positives and false negatives are equal. This assumption does
not hold for the quality assurance of the chocolate bars and, as
we will argue, might not be the case either for discerning
between molecular and tunnelling traces.

The cost of misclassification is always context-dependent.
In the case of chocolate bars, we wish to reduce the expenses of
complying with food laws. In the case of classifying traces for

later analysis, we posit that it is worse to classify tunnelling
traces as molecular traces rather than the opposite. This is an
explicit choice that can be justified based on prior knowledge
about the data but is not statistically based. While such a
choice might seem subjective and arbitrary, it is also essential
and inescapable. It is not avoided by using accuracy, rather it
makes it implicit. The balance of false positives and false
negatives depend on the properties we investigate and the
conclusions we wish to draw.

In Fig. 6, we show how the results of subsequent analysis
depends on the initial choice of metrics that were used to
validate the ML model. The data set has kindly been provided
by Magyarkuti et al.18 Using an MCBJ setup, they measured
traces of 4,40-bipyridine at 4.2 K, a molecule that has previously
been shown to exhibit a double-step molecular plateau at room
temperature.10 To be able to quantify the performance of their
unsupervised method, they hand labelled all traces depending
on whether there was a molecular signal (1863 traces) or not
(3219 traces). A few examples from each class are shown in the
ESI.† To avoid biasing the classifier towards the majority class
(tunnelling traces), we have balanced the data set by removing
1356 tunnelling traces. We refer to the hand labelled labels as
the ‘‘true’’ labels and to the balanced data set as 4K-BPY.
We use linear discriminant analysis (LDA) as our model with
default settings as implemented in scikit-learn. There is no
optimisation of hyperparameters.

Fig. 6 How choice of metrics impact subsequent analysis: the case of separating molecular and tunnelling traces. (A) False positive rate (FPR) vs. true
positive rate (TPR) (green line) and FPR vs. accuracy (orange line). The three crosses and their corresponding dashed lines (grey, pink and light green)
represent three different decision threshold levels: conservative, balanced and aggressive. The percentages in the legend lists the accuracy at each
threshold. (B) Histograms of traces labelled ‘‘molecular’’. Four 2D conductance vs. electrode separation histograms (from left to right) for the
conservative, balanced, aggressive decision threshold and the true distribution, respectively. The red, dashed ellipsis highlights that a significant number
of tunnelling traces have been misclassified as molecular. Final plot shows 1D conductance histograms at each decision threshold and for the true
distribution. (C) Distribution of lengths of the molecular traces at each decision threshold at their respective colours and for the true distribution in black.
The solid lines are fitted Gaussians with mean (m), standard deviation (s) and standard error for each given in the legend text.
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As input to our model, we transform the traces as follows:
first, we discard any data point above �0.5G0 and below
�5.5G0. Second, we truncate our traces to only include the first
750 data points. Lastly, we convert each trace into a 2D-
histogram of 32 � 32 bins.

We have deliberately chosen a subpar model and feature set
to illustrate the impact of different decision thresholds. In the
ESI,† we show an example of a model that performs almost
perfectly making our choice between different decision thresh-
olds less significant.

We measure the performance of our model with two metrics:
accuracy (orange curve in Fig. 6A) and the receiver operating
characteristic (ROC) curve (green curve in Fig. 6A). The ROC
curve assesses false positive rate (FPR) vs. true positive rate (TPR)
at every decision threshold of the model. TPR is also known as
sensitivity or recall while FPR is defined as 1 – specificity.
A model with a ROC curve close to the diagonal is no better
than random prediction. Conversely, the closer the ROC curve is
to the upper left corner, the better the model performs. A
summary of the ROC curve can be given by the area under the
ROC (AUROC) and tells us, averaged over all decision thresholds,
what is the performance of the model. The AUROC is equal to
the probability that a classifier will rank a randomly chosen
positive instance higher than a randomly chosen negative
example. Alongside the ROC curve, we also plot the accuracy
calculated at the same decision thresholds as the ROC curve.

To illustrate the challenges with single-threshold metrics,
we choose three different thresholds: Conservative, balanced
and aggressive (blue, pink and light green crosses in Fig. 6A,
respectively). If we maximise accuracy, i.e., balance TPR and
FPR equally, we get the balanced threshold.

The aggressive and conservative thresholds both have an
accuracy of 76%, but their FPR differ significantly. The con-
servative threshold has an FPR of 2% whereas the aggressive
threshold has an FPR around 38%. Conversely, the conservative
threshold has a TPR of about 55% whereas the aggressive
threshold has a TPR of almost 90%. This difference in TPR
means that the conservative threshold will classify very few,
if any, tunnelling traces as molecular traces, but classify a
significant portion of molecular traces as tunnelling traces.
The aggressive threshold will correctly classify almost all the
true molecular traces at the cost of falsely classifying some true
tunnelling traces as molecular traces. The balanced threshold
has an FPR of 8%, a TPR of 81% and an accuracy of 86%.

In Fig. 6B, we plot, as 1D- and 2D-histograms, the traces that
have been classified as molecular for each of the three thresh-
olds and the true labels. In the three columns to the left, we have
plotted 2D conductance vs. electrode separation histograms for
the conservative, optimal and aggressive threshold, respectively.
In the fourth column, we have plotted molecular traces accord-
ing to the true labels. The traces have been aligned at the
crossing of 5 � 10�5G0. In the fifth column, we have plotted
the 1D-histogram for each threshold and the true labels.

The biggest difference in the 2D-histograms is the appear-
ance of diffuse, diagonal lines that are most clearly seen in the
red encircled region. These diagonal lines are indicative of

tunnelling traces being labelled as molecular traces, i.e., there
is a significant number of false positives.

In the 1D-histograms, we see that the average conductance
depends very little on the decision threshold. We also see that
the main peak at �3.8G0 is lowered slightly when choosing the
conservative threshold instead of the aggressive one. This is
expected as the conservative threshold will classify fewer traces
as molecular.

In Fig. 6C, we plot the length distribution for the traces
classified as molecular at each threshold. We fit a Gaussian
function to each distribution and, in the upper right corner of
the plot, we have provided the mean (m), standard deviation (s)
and their uncertainties for each fit. The error of each bin is
assumed to be Poisson distributed. We can see that the average
length for the junctions changes from 3.1 � 2.3 Å for the
aggressive threshold compared with 4.1 � 1.9 Å for the con-
servative threshold. This change in mean length is because the
conservative threshold has misclassified fewer tunnelling
traces as molecular traces.

In this example, we explicitly deal with the problem of an
imbalanced data set by removing B48% of the tunnelling
traces. Such an imbalance might introduce a significant bias
towards the majority class. Imagine a classifier trained on a
data set with 99% negatives and 1% positives. It is trivial to
obtain 99% accuracy if the classifier only predicts the
negative class.

Neither ROC curves nor the accuracy score is equipped to
deal with an imbalanced data set, but several other methods
exist. We can up-sample the minority class, down-sample the
majority class, or use performance metrics that explicitly
encode a notion of imbalance such as Cohen’s kappa or a
precision-recall curve. Each approach has distinct strengths
and weaknesses. For example, by down-sampling the majority
class, we obtain a more balanced data set at the cost of
discarding examples of the majority class. Nonetheless, what
we have shown in this section holds generally and does not
directly depend on whether the data set is balanced or not. One
issue with ROC curves is that they can only be used for binary
classification. There are extensions beyond two classes though
this extension is nontrivial.

To trust our models, we need to evaluate them by con-
sciously chosen metrics. If we assume an equal cost between
false negatives and false positives, accuracy is the right choice.
Yet, as we have illustrated in this example, it is not universally
the right choice. For a binary classification task, plotting the
ROC curve and reporting the AUROC is often a better choice as
it provides information about the TPR and FPR across all
decision thresholds. It also forces us to make an explicit
decision about the FPR and TPR that we tolerate in our model.
While we have only looked at the ROC curve and accuracy, a
systematic comparison of 17 performance metrics has been
performed by Ballabio et al.59

3.4 Predicting is not explaining

In single-molecule transport studies, it is often difficult to
classify individual traces according to whether they belong in
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the molecular or the tunnelling class. Even more so, we might
want to classify traces that belong to different conformers of the
same molecule. While the problem of manually labelling a few
thousand traces is partly motivational, it also raises the concern
that we, as humans, might not objectively label the traces.
To solve this problem, the community has set their eyes on
clustering techniques and unsupervised ML.

Clustering is unbiased in a statistical sense and it is not
possible to overfit models in the same way as with supervised
methods. On the other hand, it has no mechanism to prevent
or detect measurement biases and the user of a clustering
algorithm can still fall prey to cognitive biases and logical
fallacies. As we will show in the following, clustering algorithms
require careful use to avoid spurious claims. A more general
analysis of some of the challenges of using clustering on high-
dimensional, biological data has been performed by Ronan
et al.60

In the following, we have chosen a single clustering
algorithm with different similarity measures to show that our
results are heavily dependent on our choice of similarity metric.

In Fig. 7, we show three different clustering results on the
data set introduced in the ESI,† from an MCBJ experiment with
one type of molecule in solution. We use agglomerative clustering
with complete linkage for all three results, but we change the
distance metric used to measure the pairwise similarity between
samples. The first column of Fig. 7 uses Euclidean distance, the
second column uses city block distance and the third column
uses cosine distance. As input, we convert every sample into a
1D-histogram with 128 bins and conductance values from �6G0

to �0.5G0.
In the top row, we plot the dendrogram for each clustering

result. A dendrogram visually represents the similarity between
two samples as the height of the lowest internal node they
share. For visual clarity, we omit some of the lower nodes to
condense the dendrogram. This omission has no impact on the
clustering result.

In the bottom row, we plot the 1D-histogram of the obtained
classes by cutting the dendrogram at the dotted black line.
In the ESI,† we plot the results for two more feature vectors:

One where each trace is converted into a 2D-histogram of 32 �
32 bins and another which appends the 1D-histogram to the
2D-histogram feature vector.

We see in Fig. 7 that our clustering result depends consider-
ably on our definition of similarity. With Euclidean distance, it
looks like the molecule has a high and a low conducting state
whereas using city block distance suggests only one dominant
binding configuration alongside some tunnelling traces.
Cosine distance suggests multiple clusters which could be
explained by multiple conformers. All three clustering results
are intrinsically valid yet highly dissimilar.

To move forward, we need to pick one of the solutions as
the correct one. One method the community has chosen is,
essentially, visual inspection.20,44 Analogous to what we have
done here, the clustering result is validated by outlining a
plausible situation that could have given rise to the subpopula-
tions. From what we have shown in the preceding, it should be
clear that this cannot be a sufficient explanation for why a
clustering result is valid. Validation has to be more than just
explaining the clusters.

Another approach is to first show that the clustering algo-
rithm works on synthetic data and then use the algorithm on
real data.21,45–47 While alluring, this approach is also proble-
matic. As we mentioned in Section 3.2 ‘‘Overfitting supervised
models’’, synthetic data is often simpler than real data. Analo-
gous to a complex model performing well on simple data, a
clustering model performing well on synthetic data does not
mean that it applies to real data. Unless using highly elaborate
synthetic data, validation on synthetic data can tell us that the
algorithm works, but not much more than that. Validation on
real data is essential.

Having shown that clustering does not necessarily give
unique results, we will try to explain part of the problem. In
Fig. 8, we have generated a 1D histogram (black line) from 2000
individual Gaussian peaks, each representing a histogram of
individual traces. A handful of individual samples (coloured
lines) is also shown. Each sample is modeled as a Gaussian:

yðxÞ ¼ e

�ðx� mÞ2
2s2 : (3)

Here, m is the mean of the Gaussian and s is the standard
deviation. To generate the 2000 samples, we let x =
{0,0.1,0.2,. . .,100}, s = 3 and then we sample m according to a
Gaussian distribution:

m B N(50,10). (4)

Consequently, we have 2000 samples with a Gaussian-
shaped signal (eqn (3)) where m for each of these signals are
drawn from a Gaussian distribution (eqn (4)).

We use three different methods to cluster the 2000 samples
into two classes. The first method uses PCA where each sample
is projected onto the first principal component. A score above 0
puts the sample into the first class and a score below 0 puts it in
the second class; the second method uses a Gaussian mixture

Fig. 7 Clustering results for a one-molecule data set using complete-
linkage and three different distance metrics: Euclidean, city block and
cosine. The top row shows the hierarchical clustering as a dendrogram
and the bottom row shows the 1D-histograms for each cluster (coloured
lines) and the original dataset (black, dashed line). For visual clarity, we omit
some of the lower nodes to condense the dendrogram. This omission has
no impact on the clustering result.
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model (GMM) with two components; the last method is a
simple threshold where a sample is classified whether its
maximum is above or below bin 50. The resulting clustering
is shown in the bottom of Fig. 8.

All three methods create the same two classes: one where
most samples are above bin 50 and another where most
samples are below bin 50. While the exact value of the simple
threshold might seem arbitrary, it illustrates what PCA and the
GMM are doing: they split a Gaussian at its mean. More
generally, if we draw samples from a single distribution and
ask a clustering algorithm to cluster them into two classes,
these two classes tend to contain samples from the upper and
lower end of that distribution, respectively.

This way of splitting a distribution is similar to what
happens in the left column of Fig. 7 and also happens for other
clustering algorithms.17,20,44–46 As alluded to with the GMM,
splitting a Gaussian is not unique for unsupervised machine
learning. It can also happen if we try to fit two Gaussians to a
single, larger Gaussian.

We emphasize that the high- and low-conducting clusters
exist and potentially corresponds to interesting physical phe-
nomena. But, as shown by the change of distance metric, such a
clustering result is one out of many. It should not necessarily
constitute as evidence of any initial hypotheses, but rather,
function as a starting point for further testing.

For example, as recently investigated through the use of
molecular dynamics simulations,61 the broadness of 1D-
histograms might be due to the stochastic nature of junction
rupture. As each trace ruptures at a different displacement
length, the main molecular peak will occur at slightly different
conductance values. Such a situation is similar to what we have
illustrated in Fig. 8.

We believe the biggest strength of clustering algorithms is their
ability to help us generate interesting hypotheses; not to confirm
them. We should perform additional, supplementary experiments
to make sure that a given clustering result is robust.62

Even though we have shown some problematic aspects of
clustering algorithms, we think their application in single-
molecule transport studies is interesting and opens an exciting
avenue to explore our data. They elegantly circumvent our need
for labelled data, but we have to be careful not to introduce new
problems or obscure current ones. As such, they should be seen
as a way to explore our data and a way to generate hypotheses
that can be investigated through future experiments rather
than the clusters providing physical insight in and of
themselves.

Analogous to the problem of variable clustering results are
Rashomon sets.63 The term comes from a 1950 Kurosawa movie
named ‘‘Rashomon’’ where four individuals describe the same
episode in contradictory ways. In ML, Rashomon sets refer to
different models having roughly the same performance. The
‘‘individuals’’ refer to the parameters of each model describing
the data. These parameters can be wildly different even for
models from the same class of models. Therefore, regardless of
whether our model is supervised or unsupervised, we need to
supplement our data analysis with experimental hypothesis
testing.

3.5 Removing uninformative features (feature selection)

As explained in Section 2.1 ‘‘Feature extraction’’, it can be
desirable to construct a minimal set of relevant features that
contain predictive information about our classes. A minimal
feature set will help with the performance, training time, and
sometimes also interpretability of the model. Knowing a priori
which features are relevant can be difficult and, therefore, it is
common to start with a large feature set that is subsequently
pruned. In the following, we will show how such filtering is
done, how it might help the performance of our models and
lastly, where care is required.

In Fig. 9, we show an example of how feature filtering might
impact the performance of our models and the analysis of our
data. We use the unbalanced 4K-BPY data set that we intro-
duced in Section 3.3 ‘‘Building trust in our models’’. We have
used the scikit-learn implementation of a random forest (RF)
model with default settings. A RF-model is a non-linear classi-
fier and, as such, it can be difficult to understand which
features the model relies on. As input, we have converted each
trace into a 1D-histogram with 256 bins in the range �6G0 to
�0.5G0.

At the top of Fig. 9, we show a 1D-histogram of the full data
set (dashed, black line), the true molecular traces (orange line)
and the true tunnelling traces (green line). Underneath the 1D-
histogram, we have plotted four barcode plots. The green
shaded area illustrates which bins have been selected by a
particular feature selection-method. The baseline model
achieves 0.99 AUROC and 0.99 accuracy score with a train/test
split of 70/30 using the full feature set of 256 bins.

We test three different feature filtering-methods: ANOVA
F-value, w2 and recursive feature elimination (RFE). All three are
implemented in scikit-learn.64 Another common method of fea-
ture selection is to impose L1 constraints on the loss function of
a model though we will not use this method for practical reasons.

Fig. 8 Illustration of how different clustering techniques split normally
distributed data. The top row shows each sample (green) and the full
dataset (black). The bottom row shows the resulting clusters (green and
orange) using three different clustering techniques: Projection of each
sample onto the first principal component and determining whether the
score of each sample is higher/lower than 0; using a Gaussian mixture
model with two components; using a simple threshold.
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It can be incorporated in most models though it can be cumber-
some due to the changes to the loss function.

We reduce the number of features from 256 to 96. Despite
this reduction, there is no significant drop in neither AUROC
nor accuracy for any of the three methods. As there is no
considerable drop in performance, the filtered features cannot
have contributed any discriminatory information that is not
already present in the retained features.

All three methods pick out features that are centred around
the main peak at approximately �3.8. This makes sense, as we
see from the 1D-histograms of the tunnelling and molecular
traces that this is the region where the traces, on average, differ
the most from each other. The feature sets are distinct for each
of the three filtering methods and this might be due to cross-
correlation between the features or simply because different
feature filtering methods emphasise different parts of a given
feature set. This distinctness means that feature filtering
should be seen as a guiding principle as to which features that
can represent what is important, and not as a method of
obtaining the ground-truth feature set. It should also be noted
that the retained features are merely correlated with the class
label in a predictive manner and do not imply causality.

It is a common mistake when performing feature filtering to
filter the features before the data has been split into a training
and test set. If the split does not happen before we filter our
features, we risk leaking information from the test set into the
training set. Such a leak can skew the performance of our
model away from its true performance.

In Fig. 10, we show the correct (left column) and incorrect
(right column) way to perform feature filtering. In the left

column, we start with the full data set at the top where x1,
x2,. . .,xn denote features. In single-molecule studies, these
features could correspond to bins of a 1D- or 2D-histogram.
We split the full data set into two sets: a training set and a test
set. This split is illustrated by the division of the middlebox in
the left column. In the last step, we filter features based only on
the training set and then remove the same features from the
test set as illustrated by the red columns in the last box.

In the right column, we show the incorrect way of filtering
features. We start with the full data set, but, contrary to the
correct case, we start by filtering features based on the full data
set (red columns in the middlebox) before we split it into a
training and a test set. Only after performing the filtering, we
split the data set. Now, information in the test set has leaked
into the training set as illustrated by the black-white gradient in
the last box. This is a methodological flaw that has the potential
to severely alter the perceived performance of a model without
any warning signs.

In the ESI,† we show an example of how such information
leakage might happen with a concrete code example.

As an example of how it might skew our results, we have
created a synthetic data set of 12k samples that are all drawn
from a single, multivariate Gaussian distribution. Each sample
has a dimension of 32 � 32 = 1024 to mimic the number of
features we would have if we convert a molecular trace to a 2D-
histogram with 25 � 32 bins. Each sample is arbitrarily
assigned a label of 1 or 0. We repeat this experiment 500 times.
It should be clear that the performance of any model on this
data set should be no higher than random chance, i.e., accuracy
of 50%.

Fig. 9 Feature selection can help our understanding. Top: 1D-histogram of the 4K-BPY data set where each trace was labelled manually. The green line
is tunnelling traces, the orange line is molecular traces and the black, dashed line is the combined 1D-histogram of both tunnelling and molecular traces.
Beneath the 1D-histogram are shown four barcode plots. ‘‘Baseline’’ is the full set of features; ‘‘ANOVA F-value’’ is the remaining features after filtering
according to the ANOVA F-value between each feature and the target label; ‘‘w2’’ is the remaining features after filtering according to the w2 – value
between each feature and the target label; ‘‘RFE’’ is recursive feature elimination where the classifier is recursively trained with a smaller and smaller
subset of the original set of features. Each iteration removes the k lowest ranked features (in this example k = 2). To the left of the barcode plots is shown
a table of the AUROC and accuracy for each set of features. For all three examples, we used a random forest classifier with default settings. The original
set of features was 256 bins thinned to 96 bins. Both the classifier and the filtering functions can be found in the Python package scikit-learn.64
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As we show in Fig. 11, when we perform feature filtering the
correct way or do not perform any feature filtering, we have an
accuracy of 50%. On the other hand, if we perform feature filtering
the incorrect way, we artificially boost the performance by B6%.
Note that we have about an order of magnitude more samples than
features, yet our incorrect model still performs too optimistically. If
we had fewer samples, the artificial increase in performance would
have been bigger and vice versa for more samples. A related issue is
doing feature filtering the correct way on a data set that has close to
or more features than there are training samples.65

Here, we have described the issue of information leakage in
the context of feature filtering though the issue is more general
than that. It is a form of overfitting and, as mentioned in
Section 3.2 ‘‘Overfitting supervised models’’, it can also happen
if we do not set aside part of the data before we start looking at
it. Insidiously, information leakage can happen through the
practitioner if they choose to look at the full data set before
setting aside some of it as a holdout set and splitting the rest in
a train and test set. In this way, we, the humans, might focus on
spurious correlations that we impress upon our machines.

3.6 Sharing – of models and data

Being more forthcoming in sharing our work is another
approach to alleviate the problems we have outlined and to

help us grow as a community. Sharing of scripts for preproces-
sing and analysis,66 and of experimental data. Some groups are
already sharing their code and data,23,46,47 but this needs to be
more common. As explained in Section 3.1 ‘‘Defining bias’’,
there is a concern that human input skew our conclusions.
While this is a fundamental problem in science that is not
solved with ML techniques, part of the solution is to share our
data.67 Such an open-source approach aligns with a recently
proposed set of guidelines for ML in chemistry.68

This desire to share data has led to the principles for FAIR
data that is Findable, Accessible, Interoperable and Reusable.69

FAIR aims to maximise the potential from data sets and
maximise research impact. On a practical level, some studies
indicate that open-source leads to an increase in citations.70 It
also makes it easier for reviewers and readers to reproduce and
validate a reported approach. Such reproducibility of shared
code is important if we wish to avoid the replication crisis that
artificial intelligence research is struggling with.71

In the ML community there seems to be a fundamental belief
that all code should be open-source. This belief has led to services
such as https://paperswithcode.com, free hosting of source code
repositories like https://Github.com and extensive use of https://
arxiv.org. This deep-rooted belief even sparked controversy sur-
rounding the launch of Nature Machine Intelligence, a journal that
was initially closed-source but is now optionally open access.72

Sharing also opens up new types of papers and is one of the main
reasons for the creation of Open Reaction Database.73 For instance,
studies on how different ML methods compare against each other,
or more comprehensive studies on particular molecules.

We acknowledge that there are several challenges with
sharing – both technical and personal. For example, the chal-
lenge of storing experimental data is significant. The data sets
in single-molecule transport are often large, unstructured and
there is no standardised way to provide metadata.

Fig. 10 Illustration of the correct and incorrect way to do feature selec-
tion. (left) The correct way to perform feature filtering where the data set is
split into a training and test set before filtering is performed. (right) The
incorrect way to perform feature filtering where filtering is performed on
the full data set before it is split into training and test set. The red columns
mark features that have been removed and the black-white gradient
illustrates that information from the test set has leaked into the training set.

Fig. 11 How information leakage from filtering features might lead to
biased results. 12k samples drawn from a Gaussian distribution with a
dimension of 32 � 32 are randomly assigned to class A or B leading to 6k
samples in each class. ‘‘Wrong’’ (green line) perform feature filtering and
scaling before splitting into test and training set, ‘‘Right’’ (orange line) splits
the data, applies preprocessing on the training data and applies the learned
preprocessing on the test data while ‘‘No preprocessing’’ (blue line) only
splits the data into a training and test set. We perform 500 runs.
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The availability of high-quality, labeled datasets has been a
tremendous boon for the development of performant ML
models. Such high-quality datasets would also benefit single-
molecule transport studies, but even unstructured datasets are
important to share with any published paper. Without access to
the data that a paper is based on, it is impossible to indepen-
dently verify the conclusions of that paper. For example, it can
be valuable to test how robust the conclusions of a paper are to
the specific choices made during data preparation.

We suggest that work be initiated on developing common
protocols for sharing data. Increasingly, institutions have
begun to offer hosting services, but there are also independent
solutions such as https://academictorrents.com. Thinking
about where to archive our work also forces us to find a long-
term storage solution. Services such as Github have de facto
solved the technical challenge of storing source code yet other
challenges persist.

On a personal level, sharing source code can be very inti-
mate. It is our creation and putting it out for everyone to see
and to critique can be intimidating. It might also mean that we
lose some ‘secret’ knowledge that gained us an edge. While we
cannot offer any solutions to these softer problems, we feel that
the gains of open-source outweigh the challenges.

There is also the problem of when to release data as we
might feel that there are more papers to write about a given
data set. Related to this problem is the concern of getting
scooped. We acknowledge that this is a genuine reason for
holding on to a data set. A solution could be that only part of
the data set is released or that the group commit themselves to
release the data at a later point.

Our attitude towards sharing can be summarised succinctly:
more is better! As we have outlined, there are legitimate circum-
stances that prevent us from sharing the full extent of our work,
but even a little goes a long way. The more we openly make
available for each other, the quicker we can advance our field.
Science is a collaborative endeavor and we should take full
advantage of the communicative facilities that are available to us.

4 Where do we go from here?

In our opinion, the use of unsupervised learning should be
seen as a way to generate hypotheses and not as a way to
validate them. Given the nature of single molecule transport
data, it is difficult to know a priori what each trace constitutes
and even how many subpopulations there should be.

We feel that more work should explore how much and what
kind of information we can extract from traces. Both in terms of
new features, but also where in the trace we are looking. New
representations of the data would benefit ML algorithms and
researchers alike. Several groups have already begun work on
this and we think this is an important direction to explore.15,74–76

A richer representation of the data would also enable more
extensive use of traditional statistics. Perhaps an approach
could be envisioned where newer machine learning techniques
quickly filter out traces that has contaminants. More traditional

statistics could then be used to summarise characteristics
about the data or explore potential correlations.

One thing we have not touched on is the hard classification
often employed when dealing with classes in single-molecule
transport studies (also in this paper). Perhaps a softer classification
could prove beneficial where a trace does not necessarily belong to
a single class, but might exhibit characteristics of multiple classes.
For example, some traces might be 80% molecular traces as they
break later than traces that are only 20% molecular.

While we have not touched much on their use, tools for
dimensionality reduction can facilitate a better understanding
of a high-dimensional dataset. Many methods exist, but some
popular ones include PCA, t-distributed stochastic neighbor
embedding (t-SNE), or uniform manifold approximation and
projection (UMAP). The use of t-SNE (and its variants such as
UMAP) have been popular in recent years and some authors have
started to investigate exactly when these methods break down.77,78

5 Conclusion

In this Tutorial Review, we have explored the exciting use and some
of the challenges of ML in the field of single-molecule transport
experiments. There is a need and a desire for more advanced data
analysis techniques if we wish to gain further insight into our data.
Advanced ML techniques potentially offer a solution, but we have
to be careful. The powerful nature of ML comes with numerous
pitfalls that require considerate caution and elaborate testing to
avoid spurious claims. The problems we have highlighted and the
opinions we have stated are mirrored by others.68

Alongside this manuscript, we have made many of the
scripts and data available that we used to make our analyses
and our figures. We encourage readers to explore both the data
and the scripts – possibly even using the scripts to explore their
datasets! They can be accessed at https://github.com/chem-
william/TOM_paper. The data sets used in this paper can be
accessed from https://erda.ku.dk/archives/23e862ff4a66
f896a7ef635cbec16e0b/published-archive.html.

This manuscript, and the published scripts, has used Python
as the language of choice. While Python offers a mature and rich
ecosystem for ML and advanced data analysis, it is not the only
one. For example, MATLAB, R, and Julia are all well-suited for ML.

The field of ML is in equal measure exciting and fast-paced.
We believe its potential union with the field of single-molecule
transport is an intriguing approach. Perhaps if an algorithm, a
machine, can learn the intricacies of a molecular trace, maybe
we can too.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

The authors are grateful to András Halbritter, András Magyar-
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2019, 10, 8299–8305.

63 L. Breiman, Stat. Sci., 2001, 16, 199–231.
64 F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,

B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,

M. Brucher, M. Perrot and E. Duchesnay, J. Mach. Learn.
Res., 2011, 12, 2825–2830.

65 C. M. Andersen and R. Bro, J. Chemom., 2010, 24, 728–737.
66 D. C. Ince, L. Hatton and J. Graham-Cumming, Nature,

2012, 482, 485–488.
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