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Understanding the water splitting mechanism in photocatalysis is a rewarding goal as it will allow

producing clean fuel for a sustainable life in the future. However, identifying the photocatalytic

mechanisms by modeling photoactive nanoparticles requires sophisticated computational techniques

based on multiscale modeling. In this review, we will survey the strengths and drawbacks of currently

available theoretical methods at different length and accuracy scales. Understanding the surface-active

site through Density Functional Theory (DFT) using new, more accurate exchange–correlation

functionals plays a key role for surface engineering. Larger scale dynamics of the catalyst/electrolyte

interface can be treated with Molecular Dynamics albeit there is a need for more generalizations of force

fields. Monte Carlo and Continuum Modeling techniques are so far not the prominent path for modeling

water splitting but interest is growing due to the lower computational cost and the feasibility to compare

the modeling outcome directly to experimental data. The future challenges in modeling complex nano-

photocatalysts involve combining different methods in a hierarchical way so that resources are spent

wisely at each length scale, as well as accounting for excited states chemistry that is important for

photocatalysis, a path that will bring devices closer to the theoretical limit of photocatalytic efficiency.

1. Introduction: solar energy
conversion requires functional
photocatalytic materials

Improving the quality of human life while living within the
carrying capacity of supporting ecosystems is one of the key
challenges to modern society. The route to becoming truly
sustainable affects many aspects of everyday and commercial
life, from household energy consumption to transport and food
production. The International Energy Agency (IEA)1 shows that
80% of the worldwide energy demand is supplied by the
combustion of natural resources2 such as coal and petroleum.
This has significant detrimental effects on local urban environ-
ments (e.g., air quality) but, more importantly, is leading to
global warming and abnormal climatic changes.3 As a result,
a central mission of several administrations, including the
European Commission, is to accelerate global clean energy
innovation towards a sustainable balance.

Hydrogen (H2) is an alternative fuel that can be produced by
a variety of methods.4 It emerges as one of the most suitable
green fuels for tackling the triple issues of exhaustion,
pollution, and climatic change. In this context, one of the
most attractive technologies for H2 production is photocatalytic
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water splitting, since it only requires solar energy, the most
abundant and inexhaustible energy source. This is an interesting
strategy, as well as a tremendous challenge, for the conversion of
solar energy into chemical energy.5 Solar-based H2 generation by
photocatalysis has almost no effect on global warming, produces
no air pollutants and can be stored easily.6 Therefore, the global
energy demand should move progressively towards H2-based
technologies since they can produce a high energy content from
natural resources such as sunlight and water, thereby promoting
clean, friendly, long-lasting energy sources and renewable
resources.7 Hydrogen can then be stored for use in hydrogen
fuel cells to generate electricity for further transformation to
higher hydrocarbons that can be stored well or for heating
houses and buildings.

The idea to achieve photo-assisted electrolytic water splitting
comes from the pioneering work of Fujishima and Honda8 in
1972, who used UV light to irradiate a titanium dioxide (TiO2)
anode coupled to a platinum cathode. This study was responsible
for initiating modern heterogeneous photocatalysis with TiO2 as
the workhorse along with several other suitable materials and
triggered extensive efforts to design efficient heterogeneous water
splitting photocatalysts. Although this breakthrough opened a
new avenue for solar fuel production,9–11 splitting water to
molecular hydrogen and oxygen has remained elusive thus far.
One of the main drawbacks of the approach of Fujishima and
Honda8 comes from the intrinsic properties derived from the
electronic structure of TiO2, which has an optical band gap larger
than 3 eV, and a concomitant requirement to use UV radiation,
which constitutes only 5% of the total sunlight reaching the
Earth’s surface.12 Other materials, such as Fe2O3, WO3, or BiVO4,
are promising but also face intrinsic challenges.13 Neither high
throughput experiments14–16 nor combinatorial studies17–20 have
up to now succeeded in identifying new promising catalytic
materials for industrial applications. Hence, alternative strategies

are urgently needed to realize an efficient interaction between
light, a catalyst and reactants; in summary, key challenges have
yet to be solved to fully exploit the enormous potential of solar-
produced hydrogen as efficient, clean chemical energy storage.21

2. Photocatalytic water splitting:
a complicated sequence of events

A key stumbling block for practical applications of the experiments
by Fujishima and Honda was the requirement for UV radiation.
A much more promising approach is to use sunlight as a
renewable energy source; however, finding alternative semi-
conductor photocatalysts with appropriate band gaps within
the spectral range of sunlight energy is a challenging task.
Other requirements of a good water splitting material are its
abundance, chemical stability, nontoxicity, low cost and,
obviously, excellent photocatalytic activity. This strategy syner-
gizes perfectly with the green chemistry concept and with the
imperative challenges regarding clean energy and a decarbo-
nized society proposed for the near future. The number of
published papers dealing with photocatalytic water splitting
has soared, with more than 14 000 references appearing in the
Web of Science in just the last 5 years. The majority of
investigations have focused on TiO2-, Fe2O3-, ZnO-, and WO3-
derived photocatalysts. While many alternative materials have
also been investigated,13 no single material that can fulfill all
requirements has been identified thus far. These numbers
highlight the many efforts to develop optimal photocatalysts
for overall water splitting with visible light. However, it
is difficult to understand what factor(s) dominate the net
photocatalytic activity because photocatalytic reactions proceed
through a complicated sequence of competing multistep
processes, as sketched in Fig. 1.22
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The principle of photocatalysis in semiconductors relies
on the generation of excitons: electron–hole pairs bound by
Coulomb forces. They are created by the absorption of a photon
with an energy of at least the semiconductor band gap minus
the exciton binding energy Eexc determined by the intrinsic
electronic structure of the photoactive material (step 1 in Fig. 1)
and Eexc can be significant for 2D materials.23 In a simple
single-body picture, the photo-excited electron is promoted
from the valence band (VB) or the highest occupied molecular
orbital (HOMO) to the conduction band (CB) or the lowest
unoccupied molecular orbital (LUMO) of the photoactive
crystalline solid or the nanostructure, respectively (step 2 in
Fig. 2). For photo-excitation energies larger than the band gap,
electronic relaxation to the bottom of the CB occurs quickly
by electron–electron or electron–phonon coupling on short
timescales (fs). Spontaneous optical (radiative) relaxation of
the photo-excited charge carriers into the ground state occurs
by spontaneous emission, with typical decay rates in the nano-
to picosecond time scale and, hence, this process competes
with the creation of new excitons. Moreover, even maintaining
continuous irradiation of the sample, the majority of the
created electron–hole pairs simply recombine or deexcite non-
radiatively, for example at defects, also preventing the desired
catalytic process. Fortunately, enough excitons decay into free
charge carriers which requires just overcoming the exciton
binding energy. This key charge-separation process (step 3 in
Fig. 1) yields photogenerated electrons and holes moving
independently, their motion governed by their effective masses,
temperature, and concentration. Provided a long-enough
mean-free path, these charge carriers eventually trigger the
photocatalytic redox reaction at the photocatalysts surface
(step 4 in Fig. 1). The diffusion of the charge carriers towards
the surface takes place at a picosecond (ps) time scale and

requires concentration gradients to move them adequately. The
photocatalytic process finishes with the consumption of the
surviving charge carriers by a redox reaction (steps 5 and 6 in
Fig. 1) that takes place on a longer time scale. Unfortunately,
these large asymmetries in the time scale between spontaneous
emission, exciton creation, charge carrier diffusion and redox
reaction may cause charge carrier accumulations resulting in
enhanced recombination losses (steps 7 and 8 in Fig. 1).

In addition, several parameters also affect the photocatalytic
activity of the abovementioned inorganic photocatalysts,
including their surface chemistry, surface and junction defects,
crystallinity, doping and deep traps, band edge positions,
particle size, and morphology.24 The above observations
demonstrate the importance of understanding the kinetics
and dynamics of a photocatalytic reaction to establish rational
strategies for the immediate development of a new generation
of photocatalysts for future practical applications.25

Experimentally, it is difficult to determine the influence of
the different factors mentioned above on photocatalytic
activity. Here, computational modeling provides an unbiased
approach to analyze in detail the influence on photocatalytic
water splitting and design new catalytic nanomaterials. To
complement experiments and design new ones, theoretical
models can be used to investigate the relation among structure,
morphology, surface chemistry, and catalysis, as well as the role
of composition. A large amount of useful information has been
gathered from electronic structure calculations of extended
models of TiO2,26–29 ZnO,30–32 and WO3.33–35 However,
these models neglect the effects arising from the finite size
and shape of TiO2, ZnO, and WO3 nanoparticles.36–38 Taking
these effects into account requires explicit modeling of
realistic nanoparticles by using top-down and bottom-up
protocols.39–42

Fig. 1 Scheme of a general photocatalytic water splitting process including the relevant steps involved during sunlight activation of the photocatalyst.
Black arrows show favorable steps, while red arrows show unfavorable steps.
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3. Modeling of photocatalysis:
advances versus challenges

Modeling the complicated sequence of events occurring during
photocatalysis by nanoparticles requires insight into the
processes occurring at atomistic scales. The available computa-
tional methods either face incomplete information about
microscopic details of the system or are computationally too
demanding for the size of the system considered. For example,
semiclassical methods such as molecular dynamics or Monte
Carlo, while computationally less expensive, are based on
parametrized force fields and lack a complete atomistic picture.
Conversely, sophisticated methods such as couple cluster,
configuration interaction, or many-body perturbation theory
can provide very accurate description of a single electronic
problem, yet quickly become overwhelmed by the size of the
system involved. Accurately describing the several length scales
involved in photocatalytic processes therefore requires sophis-
ticated computational techniques connected by multiscale
modeling.

In the following sections, we provide a brief overview of
currently available methods used for modeling photocatalytic
water splitting catalysts, each focused on a particular approach
and length scale. For solving the electronic problem, we focus
on DFT-based methods as the current workhorse of ab initio
material modeling in Section 3.1, the most widely used
approaches for the atomistic modeling of photocatalytic water
splitting. A less accurate method capable of treating a much
larger number of atoms is molecular dynamics (MD), as presented
in Section 3.2. Monte Carlo (MC) simulations achieve even larger
scale sampling (Section 3.3). However, to approach the length
scales of an experimental catalytic system, one must rely on the
use of continuum modeling methods (Section 3.4). Finally, we
discuss how to link these different length and accuracy scales,
which involves using multiscale approaches (Section 3.5).

3.1 Atomistic modeling

Atomistic modeling involves the study of materials at the
atomic scale using the concepts of quantum mechanics and
relying on appropriate algorithms and codes running on powerful
supercomputers. Density functional theory (DFT) provides an
excellent compromise between cost and accuracy that can
reasonably handle the various steps of the photocatalytic process
for systems up to a few hundred atoms. This methodology
is useful for understanding the material chemistry and for pre-
dicting the properties of new materials. Atomic-scale quantum
mechanical modeling is particularly important for modeling water
splitting since the chemical reaction intermediates need to be
adsorbed and released from the crystal surface at an atomically
arranged active site. Intimate knowledge of this reactivity
process is crucial for both fundamental understanding as well
as quantitative modeling. Beyond DFT, there is a broad array of
other ab initio methods that improve on either the accuracy issues
of DFT (post DFT methods such as using time-dependent DFT for
excited states, coupled-cluster approaches or Green’s function
methods,43 quantum-chemical approaches for excited states44 or

Monte-Carlo approaches45) as well as frameworks to reduce
computational cost by machine learning46 or smart parametriza-
tion such as density-functional theory tight binding,47 to name
a few. These approaches all address the atomistic electronic
problem, and are therefore distinct from approaches suitable
for larger scales discussed in the following Sections. To keep the
discussion of atomistic approaches focused, we mostly restrict our
considerations here to DFT-based methods.

3.1.1 Methods. Computational methods based on Density
Ffunctional Theory (DFT) are almost universally used to
approach the properties of materials in different forms, from
nanoparticles to bulk and surfaces.48 Several computational
codes are currently routinely used to predict many physical–
chemical properties. Commonly used DFT codes include
VASP,49–51 Gaussian,52 wien2K,53 DMol3,54,55 GPAW,56

ABINIT,57 CASTEP,58 CP2k,59 ORCA,60,61 or the Atomistix
Toolkit.62 All of these software toolkits include a basic Kohn–
Sham equations solver—many various further post-DFT meth-
ods. We refer the interested reader to the respective code
documentations for details. Using a starting guess for the
electron density one calculates the effective Kohn–Sham

potential Veff as
Ðr ~r2ð Þ
r12

d~r2 þ V̂XC ~r1ð Þ �
PM
A

V̂
A

e-ion r1
!� �

where

V̂XC ~rð Þ ¼
dEXC r ~rð Þ½ �

dr ~rð Þ , and EXC[r(-r)] is the (approximate)

exchange–correlation functional and V̂
A

e-ion r1
!� �

is the electron–
ion interaction. Then the Kohn–Sham eigenvalue equation

�1
2
r2 þ Veff ~r1ð Þ

� �
ci ¼ eici

is solved. One obtains a new density using the eigenfunctions as

rð~rÞ ¼
PN
i¼1

fi cið~rÞj j2, with occupation numbers fi. For this density,

the total energy functional E[r] yields an estimate for the ground
state energy. Reinserting the new density into the expression for
Veff defines a self-consistency cycle that can be iterated until
convergence is reached, i.e., until changes in the density or
energy become smaller than a desired threshold. Note that
convergence is not guaranteed: modern codes use several tricks
to accelerate or even achieve convergence. After converging the
electronic system, forces on the atoms can be evaluated and the
atoms can be moved accordingly to also converge atomic posi-
tions. DFT thus provides physical–chemical properties including
factors particularly relevant for water splitting, including photon
adsorption energies, transport of electrons and holes, determi-
nation of band energies, and surface properties (Fig. 2).

Furthermore, DFT can also predict with sufficient accuracy
many kinetic and thermodynamic parameters e.g., transition
states, reaction barrier heights, overpotentials, entropy and
solvent effects for the oxygen evolution reaction (OER) and
hydrogen evolution reaction (HER) mechanisms.63–66

However, methods beyond standard DFT are often needed:
accurately describing charge-transfer processes critical to many
catalytic processes is challenging for standard exchange–corre-
lation functionals.67 Furthermore, the first step in the water
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splitting reaction is excitation by a photon which is beyond a
ground state method like DFT. To treat excited states, methods
such as many-body perturbation theory (MBPT) and time-
dependent DFT (TD-DFT) are used.68 When a material interacts
with external electronic or magnetic fields, electrons become
excited and the ground state method of DFT no longer applies.
Time-dependent TD-DFT is the extension of traditional DFT to
the time domain, which may include time dependent potentials
such as external fields. Because of this time dependent potential
there is an extra contribution of the exchange correlation kernel
to the energy expression, which makes TD-DFT better adapted
for excitation energy calculations than DFT.

MBPT includes electronic correlation as perturbation in the
Hamiltonian and solves the resulting problem perturbatively.
Since it is a wave function-based method, MBPT more properly
describes the excitation energy, but it is computationally more
costly, especially compared to TD-DFT. Other than TD-DFT and
MBPT, various other methods like the Bethe–Salpeter equation
(BSE) and GW were developed to study excitation energies. For
example, surface reaction intermediates for water splitting
with Fe2O3 were calculated by means of the GW69 and BSE70

methods, demonstrating the important role of the surface
excited state on the O-terminated surface, which behaves as a
reaction bottleneck. While TD-DFT and DFT are density-based
and MBPT is a wavefunction based method, GW is the

approximation to Hedin’s equation,71 G is the time ordered
Green function and W is the dynamically screened interaction.
Thus, in the GW approximation one can calculate the exact self-
energy of a many body system by expanding in terms of G and
W. It is computationally faster than MBPT and gives better
results than TD-DFT. BSE is an improvement over GW where
excitations are handled by a two particle propagator. Thus, with
a compromise of accuracy and computational time, GW–BSE
are better methods to be applied for excited state calculations.
Another method to crudely approximate excited states is the
DSCF method: the difference between DFT energies for neutral
and charged systems provides an estimate for the first electron
affinity or first ionization potential. Kazaryan et al.72 studied
both the ground state and excited state of Ti(OH)4 for the water
splitting reaction. Employing various DFT methods, both the
ground state (B3LYP73/TZ2P, BP8674,75/TZ2P, CAM-B3LYP76)
and excited states at the DSCF level show that hydrogen
abstraction for water splitting was an excited state surface
phenomenon with low to moderate activation barriers.

3.1.2 State-of-the-art. Improving the performance of a
catalyst requires several steps, starting from the identification
of its active sites and ending on increasing their effectiveness
without compromising the remaining features. When considering
a catalytic material, certain facets of the surface77 may be more
reactive than others. Surface reconstructions, terraces or defects

Fig. 2 Key properties analyzed by the DFT method that are relevant to the photocatalytic water splitting process.
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require even larger cells, yet often constitute the most active
catalytic sites78 due to their chemical surroundings or
unsaturation. Bader charge79 or Fukui function80 calculations
help to identify potential active sites. For example, if the surface
atom has both positive or negative charge, and the reactant is
negative, the reaction is predicted to take place at the positively
charged atom. Further parameters like adsorption energies also
explain where the incoming reactant will get adsorbed and how
strongly. If the reactant does not get adsorbed or adsorbs weakly,
the chance that the reaction will proceed at that site is strongly
reduced. In addition to the importance of purposely tuning the
bulk electronic structure features (band gap and absolute
band edge potentials), various strategies have been explored to
enhance the physical and chemical features of catalysts, such as
introducing active sites, doping,81 codoping,82 alloying83 and
defect engineering.81,84 Since most of the catalysts considered
are nanomaterials, these can be deposited on a supporting
material and connected to an electrochemical device for studying
the water splitting reaction. Thus many of the computational
methods meant for studying photocatalytic properties may also be
used for modeling photoelectrocatalysis as they are closely
related. Since the nanocrystals can be incorporated into an
electrochemical cell, this Section will also discuss additional
properties relevant for electrochemistry, including contribution
of bias.

3.1.2.1 Adsorption free energy as a basic parameter for electro-
catalytic water splitting. Even if not directly related to photo-
catalytic water splitting, it is convenient to mention the
electrochemical process as it offers some interesting insights,
especially because of its relationship to photoelectrocatalysis.
Two main easily computable descriptors have emerged to
assess the potential of a material to work as a HER/OER
electrocatalyst: (a) the Gibbs free energy of atomic hydrogen
at the catalytic active center should be close to zero for efficient
HER catalysis,85 and (b) for efficient OER catalysis, the max DG
of all the reaction steps involved should be close to 1.23 eV.86

The Gibbs free energy of atomic hydrogen is approximately
B3.43 eV, yet the Gibbs free energy of atomic hydrogen at the
catalytically active center strongly depends on the catalytic
surface considered. For example, Anantharaj et al.87 reported
in their paper (see Fig. 2D–F in ref. 87) volcanic plots for various
transition metal phosphides using different activity parameters
such as geometrical-area-normalized current, ECSA-normalized
current, and average TOF per surface site. Their data shows
how the Gibbs free energy for atomic hydrogen depends on
different catalytic surface. High variations in the Gibbs free
energy of atomic hydrogen were also shown by Seh et al.86 They
also showed a volcanic plot of the OER (Fig. 3 in ref. 86), and
the dependence of the overpotential on the difference of the
Gibbs free energy of O and OH intermediates. Recently Jang
et al.88 have also reported variations in DG of atomic hydrogen
on Bi, Sb and BiSb alloy and showed that the value depends on
the catalytic surface. Thus, although the value should be zero,
the Gibbs free energy of atomic hydrogen at the catalytic active
center is highly dependent on the surface being used.

Pt has been the focus of attention for the HER in water
splitting reactions owing to the zero value of the Gibbs free
adsorption energy of hydrogen. Thus, Fajin et al.89 investigated
platinum surfaces to study the effect of surface structure on
catalysis. They reported that low coordinated Pt atoms strongly
adsorb water molecules and that corners and edges were the
active sites for water dissociation. A similar study on the
adsorption of water to low coordinated Pt atoms was also
reported for different Ptn nanoparticles (NPs).90 They concluded
that dissociation was easier on small particles (13 atoms) than
on large particles (up to 140 atoms), whose activity tended
toward that of infinite surfaces. The particle size effects
on water dissociation on various surfaces were theoretically
investigated by Phatak et al.91

Furthermore, Kibsgaard et al.92 determined the efficiency of
various transition metal phosphide catalysts by determining
the free energy of hydrogen adsorption against the current,
normalized by the geometrical and electrochemical surface area
and turnover frequency. They observed that mixed metal phos-
phide (Fe0.5Co0.5P) showed the highest HER activity. Similarly,
metallic transition metal dichalcogenides were theoretically
proven to be potential HER catalysts for the water splitting
reaction based on their lower values of the Gibbs free energy of
adsorption.93 Rossmeisl et al.94 investigated the OER activity on
rutile-type surfaces by calculating the oxygen binding energies as
a function of �DG associated with the elementary steps of the
OER reaction. The authors found that the reaction was limited
by the oxide and peroxide formation step. Man et al.95 performed
similar investigations on binary metal oxides and perovskites for
the OER. They provided a volcano plot on the basis of HO* and
HOO* adsorption energies on the surfaces. The calculations
suggested a fundamental limitation on the maximum oxygen
evolution activity of planar oxide catalysts. Friebel et al.96 further
highlight the importance of the Gibb’s free energy by comparing
their calculated over potential with the shift of the a-Ni(OH)2/
g-NiOOH redox potential to higher values with increasing Fe
content.

3.1.2.2 Study of active sites. To effectively understand the
importance of active sites involved in photocatalytic water
splitting, Qiao et al.97 performed a DFT study to identify them
in a PdSeO3 monolayer. They observed that the selenium atoms
are good for water oxidation and the oxygen1 atoms are good
for hydrogen reduction half reaction. The free energy of atomic
hydrogen adsorption DG�H

� �
was reported to be 0.98 eV. Further

DFT-based calculations by Zhang et al.98 predict the possible
active sites of GO–SiC–MoS2 composite. Due to stronger
interaction between SiC and MoS2, the catalytic activity is
concentrated at this interface rather than at the GO or MoS2

interfaces. Luo et al.99 identified that ruthenium atoms act as
active sites for the reduction of protons, and when doped with
nitrogen, the active site changes from Ru to nitrogen and the
hydrogen evolution activity is comparable to that of Pd. There is
also an increase in the photocatalytic activity of the TiO2, due to
the presence of impurity band in the bandgap which results in
a red shift. Wu et al.100 investigate the catalytic active site of Pt
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loaded graphitic carbon nitride (g-C3N4) They showed that Pt
atoms are the active sites and the anchoring of Pt atoms
increases by formation of cyano defects. They also observed
that divalent atomic Pt provides more active sites than Pt metal
nano particles. A very detailed analysis of active site for photo-
catalytic water splitting was done by Zhao et al.101 on titania
where they showed that rutile 110 surface (Ti 5 coordinated) is
more active than anatase 101 surface.

3.1.2.3 Band energy positions. Since the water splitting
reaction includes a charge transfer, the study of the band
energy positions is also important for determining the catalytic
activity of the catalyst. Band energy position refers to the
position of the Valence Band Maxima (VBM) and Conduction
Band Minima (CBM). In order for the charge transfer (and
thereby the desired catalytic process) to occur, the valence band
should be at more positive potential than 1.23 V (vs. NHE) and
conduction band should be at negative potential than 0 V
(vs. NHE). Necessarily, the band gap required for water splitting
should be less than 2.5 eV and the photon energy should be
greater than 1.23 eV. Wei and Zunger102 showed through band
structure calculations that p–d repulsion in group II–VI semi-
conductors modified the charge distribution of pristine crystals
and their corresponding alloys, lowering the band gaps and
increasing the valence band onset. On the other hand, Lee
et al.103 studied in detail the structure of Zn–Ge–oxynitride
materials, focusing on the effects on the electronic bands
after doping the catalyst with oxygen. The presence of oxygen
orbitals in the valence band and nitrogen orbitals in the
conduction band caused large band dispersion, which resulted
in uplifting the valence band, narrowing the band gap, and,
consequently, facilitating enhanced optical absorption across
the band gap in the visible region.

3.1.2.4 Doping, codoping and alloying. Another principal
strategy to improve the performance of a catalyst is doping.
Appropriate doping promotes changes in the electronic structure
of the material by strengthening or weakening the bonding of
intermediates, modifying the bandgap, shifting the bands, and
changing the electronic charge on each element. Conversely,
doping also introduces local defects, that may adversely affect
mean free paths. Both results affect the catalytic activity, making
accurate microscopic modeling key for understanding and
optimizing the effect of doping. For example, Deng et al.104

doped MoS2 with Co and reported that with a moderate Co
content, the HER activity reached an optimal value due to a
change in the electron count and in the Bader charge of the
sulfur atoms, which in turn resulted in an optimal value of
the free energy of hydrogen adsorption. Shimodaira et al.105

substituted Mo6+ with Cr6+ in lead molybdate and observed that
charge transfer occurred from the valence band of Pb to the
acceptor band of Cr, thus inducing a decrease in the band gap.
Wang et al.106 showed that doping Ru in Ru–RuPx–CoxP
increased the density of states (DOS) at the Fermi level and
decreased the intermediate adsorption energy of the OER,
thereby increasing the potential of the catalyst for OER activity.

In addition, Wang et al.107 doped WO3 with Hf and observed that
the conduction band shifted to higher energies, promoting the
HER reaction. The concept of codoping was demonstrated by
Zheng et al.108 with graphene: they observed that some dopants
(nitrogen and oxygen) acted as acceptors, while others (fluorine,
sulfur, boron and phosphorus) acted as donors. They also
showed that N and P codoped graphene featured the lowest
HER potential compared to pristine or singly doped graphene.
In the study by Liang et al.,109 two dimensional monolayers
(AlN and GaN) doped with transition metal ions were investi-
gated in regard to their OER activity. A low overpotential with Ni
doping was found and related to the stabilization of the OOH
adsorbent which was correlated with a switch from a high-spin
to a low-spin state of the dopant atom.

Along with doping, alloys between oxides have been
investigated to improve the catalytic activity of photoactive
water splitting catalysts. Through DFT calculations, Kanan and
Carter82 showed that the band gap of MnO was reduced by
alloying with ZnO. Similarly, Toroker and Carter110 showed
through calculations that the large band gap of materials
unsuitable for water splitting could be narrowed by doping
with iron oxide. Furthermore, Zheng et al.111 coupled graphitic
carbon nitride with nitrogen-doped graphene, and the hybrid
system showed high activity for the HER. The reasons for the
increased activity were that G–C3N4 provided highly active
hydrogen adsorption sites while n-doped graphene facilitated
the electron transfer process for proton reduction.

3.1.2.5 Defect formation. Creating defects, such as vacancies,
may also significantly enhance catalytic activity. Vacancies can
help to localize charges to locally drive a desired catalytic
process and also alter charge transport properties, which can
enhance OER or HER activity. Conversely, badly-placed defects
may trap the photo-excited charge carriers, preventing them
from reaching the relevant catalytic sites. Ab initio modeling of
the electronic structure of defects is thus key for improving
device efficiency and for avoiding undesired effects. DFT
calculations112 show that the creation of oxygen vacancies in
Co3O4 resulted in a higher degree of electron delocalization and
that these delocalized electrons can be easily excited to facilitate
water oxidation. In another example, Wu et al.113 studied the
effect of oxygen vacancies in WO2–carbon mesoporous nano-
wires for the HER. The vacancies shifted the Fermi level into the
conduction band, creating a metal with high electron mobility,
which is a requirement for the water splitting reaction. However,
it is not only creating vacancies that is important for enhancing
the electrical conductivity but also optimizing the defect
amount. Indeed, Du et al.114 showed that in a perovskite catalyst,
having one oxygen vacancy per unit cell yielded a much better
conductor than having no vacancies or two oxygen vacancies.

Vacancies can directly change the reaction activation energies
and intermediate adsorption energies. Thus, Peng et al.115

further demonstrated that the reduction in the activation energy
barrier of the HER/OER reactions was due to the reduction
of adsorption energies caused by oxygen vacancies that were
created by reducing with NaBH4. In a different kind of study of
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oxygen vacancies, Mefford et al.116 reported reaction pathway
switching due to vacancy creation in a La1�xSrxCoO3�d/SrCoO2.7

perovskite electrocatalyst. Zhao et al.117 verified that dual Co
doping and oxygen vacancies in MnO2 nanosheets increased the
conductivity, decreased the adsorption energies, and thus
increased the catalytic activity for the OER.

3.1.2.6 Determining the mechanism and the rate-limiting step.
DFT is a powerful tool for determining the rate-limiting
(or potential-determining) step in the reaction mechanisms,
which is critical for optimizing a water splitting electrocatalyst.
Many studies use the approach first introduced by Rossmeisl
et al.94 to determine the potential determining step and the
overpotential. The authors have provided a detailed descriptions
of methods to be used to calculate the thermochemistry of the
entire process including how to determine DG for each step,
which intermediates to involve, which extra factors to include
such as pH and potential, etc. and how to calculate them.
Rossmeisl et al. also identifies the step with the largest DG as
the rate determining step and outline the use of the rate-limiting
potential and this DGmax for calculating the overpotential.
Optimizing the intermediate energy or calculating the zero-
point energy or TDS provides access to the overall thermo-
dynamics. Finally, Rossmeisl et al. showed that, based on linear
binding energy relationship, the volcano plot as a function of
binding energy of O can describe the oxygen evolution activity of
a catalytic surface. Zhang et al.118–122 performed several studies
on Fe2O3 and WO3 to investigate the impact of the structure
(orientation, nanocluster) and chemistry (doping, vacancies,
cocatalyst). Chen et al.123 performed a first principles DFT study
of the chemical dynamics of first proton-coupled energy transfer
(PCET) on a TiO2 surface. They observed that the PCET was
sequential, e.g., first, the proton was transferred, and then
the electron was transported in an inner sphere process.
Additionally, Valdes et al.124 showed through computational
studies the universal applicability of the four-step coupled
proton–electron transfer reaction mechanism for the OER on
metal oxides and the photooxidation of water.

3.1.2.7 Charge transport. Successful charge transport to
proper redox sites is important for efficient water splitting.
Viswanathan et al.125 performed DFT-based calculations of
charge transport and reported that with an increasing thickness
of TiO2, the electrical conductivity decreased. To this end, Liao
et al.126 reported that along with optimizing the thickness,
methods to improve charge transport with dopants are neces-
sary. They addressed electron transport due to n-type doping in
hematite and concluded that zirconium, silicon, and germanium
were better for doping, as they did not act as electron trapping
sites. Similarly, Toroker and Carter127 studied hole transport in
doped wurtzite and reported that vacancies created stronger
traps for electrons than dopants. Aside from local doping,
nanostructuring can alter charge transport. For example, Xie
et al.128 calculated the high charge density distribution on MoN
nanosheets and identified them as potential candidates for
catalysis because they can effectively facilitate electron transport

through sheets compared to their bulk counterparts. In addition
to charge transfer towards the surface, charge carriers need to
overcome the interface at the back contact between the electrode
and the metal behind it. To model charge transport across oxide/
metal interfaces, a high-throughput screening method was
developed based on wave packet dynamics.129

3.1.2.8 Excited state properties. Since the non-equilibrium
transfer of charges, i.e., holes and electrons, is a key step in
photocatalysis, it is important to study excited state properties of
the photocatalyst to estimate charge recombination possibilities
and to improve the rational design of the catalyst. In this regard,
Valero et al.130 studied the character of excited states in TiO2

nanoparticles using TDDFT calculations. They observed that for
excited states, the charge separation depends on the nanocluster
shape and size. They studied the character of the electronic
excitations by using canonical Kohn–Sham molecular orbitals
(MOs) and from natural transition orbitals (NTOs). A similar
work was done by Martynow et al.131 where they have studied
molecular photocatalysts of the type [(tbbpy)2M1(tpphz)M2X2]2+

(M1 = Ru, Os; M2 = Pd, Pt; X = Cl, I). They used TDDFT to
calculate the oscillator strengths and orbital characters of the
singlet and triplet excited states. They showed through their
calculations that the first absorption bands consist mainly of a
superposition of six to eight MLCT states matching the experi-
mental values. Further a wide and strong optical adsorption
spectrum is important for generating electron hole pair. In this
regard, Liu et al.132 calculated the optical spectrum of a two-
dimensional As/BlueP heterostructure, and reported a broad-
ening of the optical absorption spectrum in the visible light
region upon in-plane strain of 4.5%, improving photocatalytic
efficiency. Ma et al.133 studied the optical spectra of Ag3PCVI

4 (C =
O, S, Se) and reported that absorption coefficients of sulfides and
selenides are much larger than those of oxides. Also, sulfides
and selenides have direct band gap character which is favourable
for electronic transitions making them better photocatalysts.

3.1.3 Limitations and perspective. From the literature
survey described above, we see that DFT studies on surface
defects or vacancies elucidate how the created charges may
successfully reach the adsorbed water molecule or may be
trapped in these defects, although detailed studies focusing
on the charge transfer dynamics are still missing. Furthermore,
to optimize the catalytic activity of a catalyst, one needs to
optimize its active sites. Establishing design rules through
computational modeling provides possible routes towards opti-
mizing the active sites, for example by selecting new material
compositions, surface defect engineering or facet selection.77

Thus, addressing surface properties via DFT plays an important
role here. Suitable surface engineering to favor certain types of
reconstruction41 can then increase the number of active sites.

However, when modeling catalytic reactions on nanostructure
surfaces using DFT, there are many challenges and open issues.
Although DFT is sufficiently accurate in many cases, there are
problems where the approximations used in standard exchange–
correlation functionals fail, particularly when considering band
gaps of oxides and charge transfer processes.67 The former can be
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handled by relying on hybrid functionals that include a fraction of
exact, nonlocal Fock exchange but the latter require more accurate
post-DFT approaches such as DFT+U, HSE, GW + BSE, TD-DFT,
etc. or correlated wavefunction techniques, which are often too
costly for realistic geometries.

As a second drawback, despite its decent accuracy DFT
cannot guarantee that it describes the physics involved in the
suggested mechanisms with sufficient accuracy or that the
predicted nature of oxygen evolution is the actual one. Even if
the predicted reaction path is handled perfectly accurately,
there might be an additional configuration which should be
lower in energy but is not, due to the shortcomings of DFT for,
e.g., charge transfer processes. In addition, kinetic energy
barrier calculations are typically performed at constant charge
rather than constant potential. One scheme to circumvent this
limitation involves extrapolation to the limit of an infinite unit
cell, where a single charge transfer has negligible impact on the
simulated potential; thus, the reaction barrier is obtained at
constant potential. A second scheme was addressed by Chan
and Nørskov,134 who presented a method based on a constant
potential correction obtained by charge extrapolation rather
than previous cell extrapolation. Furthermore, DFT strongly
depends on the choice of exchange–correlation potential; this is
the level of theory (local, gradient corrected, kinetic energy,
hybrid) used to define the exchange–correlation potential,
which in turn affects the reduction potential. This is especially
serious in cases where a solvent is involved. To circumvent this
difficulty one has to include solvent effects by either implicit or
explicit (e.g., quantum mechanics/molecular mechanics QM/
MM)135 methods that combine quantum mechanical techniques
for a cluster of interest with a surrounding environment handled
by classical molecular mechanics. Solvation models are used
for this. In implicit solvation models, atomistic species are
considered as a continuum. We therefore discuss such models
later in this review under the Section ‘‘Continuum modeling’’.
Moreover, standard static quantum mechanical methods relying
on the Born–Oppenheimer approximation, either within DFT or
wavefunction approaches, cannot provide a realistic description
of ionic dynamics. For some properties, dynamics involve only
the ground state potential energy surface, and molecular
dynamics provides a way to approach these phenomena, as
outlined below.

3.2 Molecular dynamics simulations

Molecular dynamics (MD) is a branch of computerized chemistry
and its primary purpose is analyzing the dynamics (time evolution)
of molecular systems either in the electronic ground state or
involving nonradiative transitions between several electronic
states. The first is usually referred to as Born–Oppenheimer MD
(BOMD) or simply MD. The second is termed nonadiabatic MD
(NAMD) and is especially relevant in photocatalysis, although the
methodology is still being developed with very few applications
in this particular field.136 BOMD depends on the classical
physics equations of motion, where the nuclei move on a given
potential energy surface. For every simulation step an update of
the forces (resulted from potential interactions), velocities and

positions of all particles happens. Depending on the level of
approximation, the particles interact through different types of
potentials – bonded and nonbonded. In water splitting, this
is central for describing the intimate details of the catalytic
reaction in a material environment. Particularly, water splitting
was analyzed using molecular dynamics through the means of
photosynthesis, semiconductors, and dye-sensitized photo-
electrochemical cells (PECs)—see Section 3.2.2.

3.2.1 Methods. Molecular dynamics (MD) is defined as an
approach that is used to analyze and simulate the time evolution
of particles systems at the ground electronic state of a potential
energy surface, which is obtained or approximated in some way.
MD depends on the classical physics (Newtonian) equations of
motion. At each step of the simulation, the velocities, forces
(coming from interaction potentials) and positions of particles
are updated. Using statistical ensembles, properties such as
particle number, pressure and temperature are controlled. Some
common use cases of MD are in chemistry, material sciences,
biophysics, etc., for systems of 105–106 atoms per particles for
time scales in the range of nanoseconds to microseconds. Given
the current computational power available, on large super-
computers these numbers can be larger (e.g., molecular systems
between 109 or 1012 atoms can been simulated). Through
methods such as coarse-grained MD, time scales smaller than
1 microsecond can also be achieved.

There are many computational ingredients to consider
before carrying out an MD simulation. In short, a global MD
algorithm can be described as follows. As a first step, the initial
conditions and some inputs must be set – as an example, the
potential V that is calculated in function of atom positions r
and velocities v, etc. – are mandatory. New potentials and
corresponding forces are calculated in a number of MD steps.
The potentials that are acting on the nuclei can be determined
usually from empirical potentials. Then an updated configuration
depending on classical physics equations of motion is done. New
positions of particles, temperature of the system, velocities and
other properties are computed in this updated algorithm.

Here are the above steps described in more detail. First, the
forces acting on the atoms (most often parameters of an
empirical force field) have to be read in. A force field in
molecular modeling is defined as a set of parameters that are
used to efficiently calculate the energy of potentials of an MD
system. Physical or chemical experimental data, quantum
mechanics, or both, can be used to create force fields. Another
input that is required, besides the parameters of the force
fields, is the coordinates, velocities and the size of the box.
The basis vectors of the periodic box determine the shape and
size of the box.

After that, the corresponding forces and the energy of the
potential of the atomistic system are calculated together with
the forces, velocities and new positions.

Data of interest (e.g. molecular trajectories) is saved at
certain intervals while the simulation takes place. Given the
substantial volume of data, it is not mandatory to save every
step but only at some wanted intervals. Saved data can contain
velocities and/or positions, forces and helpful information
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about the integration time step and the dimensions of the
simulation volume, etc.

3.2.2 Different types of MD. Next to the classical MD, there
are different types of MD. In this paragraph we mention some of
them that are relevant for water splitting. When the potentials
are determined from electronic structure calculation, this is
usually referred to as ab initio MD (AIMD). Some other variants
come from the computation of potentials. The computation of
potentials137 can be done with:
� (reactive) force fields, which means that we are discussing

about a classical, standard MD simulation.
� the Schrödinger equation, in which case an AIMD simulation

is performed and ionic motion is still treated classically, but the
potential they feel is calculated via quantum mechanics on the
fly; and.
� a mixed quantum/molecular dynamics approach, in which

a quantum/MD mechanics is executed.
3.2.3 State-of-the-art. Atomistic modeling from first

principles can be used to understand the physical–chemical
nature of active sites to engineer strategies to improve properties.
By contrast, MD focuses on characterizing complex systems such
as solid/liquid interfaces for a variety of applications. Particularly,
the following were analyzed by using MD simulations:

Photosynthesis: (1) the diffusion coefficient making use of
coarse-grained schemes, (2) radial distribution functions, and
(3) the velocity of a particle in the vicinity of the surface that is
active;

Semiconductors: (1) for the conduction position it has been
studied the surface adsorbate exact nature (2) the relative
alignment of the conduction PBE and valence with respect to
potentials of water redox;

Titanium-based simulations for water splitting: (1) under-
standing of cell structures, solid–water interfaces, volume thermal
expansivity and bulk modulus and (2) titanium dioxide-based
catalysts; and.

Dye-sensitized PECs: catalytic mechanism of water oxidation.

3.2.3.1 MD simulations for photosynthesis. Classical MD have
been used successfully for enhancing artificial photosynthesis
processes138 by understanding and simulating how the reactants
flow over active sites surfaces (e.g. the study of interfacial
phenomena at surfaces which are reactive and catalytic reactive).
A characterization method has been developed139 to accurately
describe the flow of reactants over a site that is active (e.g. a
‘‘metal ion’’). By using particle trajectory data, the dynamic and
structural characteristics of the system are studied. In addition,
Lennard-Jones (LJ) repulsive potentials together with Yukawa
potentials (electrostatic screened ones) for the absorption
modeling of sites that are active were used. The MD simula-
tions were done with LAMMPS tooling.140 Using CG scheme for
diffusion coefficient profiling,141 the radial distribution func-
tions and the velocity of a particle in the vicinity of the surface
that is active were obtained.

3.2.3.2 Molecular dynamics simulations of semiconducting
materials for water splitting. Calibration of the valence and

conduction band related to the water redox potentials is one
of the main properties that helps in determining whether a
material with semiconducting properties is good for water
splitting. In a first approximation, the vacuum level of the
frequent energy reference can be used for the computation of
the band alignment. Nonetheless, this procedure can lead to
faulty results as it does not take into account the arrangement
of dipole layers in a liquid/solid interface. Even though
methods that could lead to appropriate vacuum computations
have been researched, those methods do not consider material
characteristics that are related to the material and surface
termination.

Wu et al.,142,143 has done one of the earliest studies to add
to the band edge alignment at the liquid/solid interface. His
attempt combined molecular dynamics based on the force field
TIP4P with DFT computations with the help of the semilocal
functional PBE. The correction of the band edge alignment
was done using the electrostatic potential profile across the
interface. A principal hypothesis was that the error of the DFT
computations in finding the conduction band of the inspected
semiconductors (TiO2, WO3, GaAs, GaP, GaAs and ZnSe)
compensated the error for the forecast level of the H2O acceptor
that is the unoccupied and lowest orbital of a solvated H3O+

ion. This approach seemed to be a good one for these particular
materials, but no similar success was noticed for the rest.144

In a similar way, the alignment of the conduction band with the
NHE (Normal Hydrogen Electrode) potential was well predicted
by the AIMD simulations of interfaces of TiO2/water using the
PBE functional. Broad discrepancies were shown by the same
simulations for the potential of ionization or the position of the
valence band.145 This outcome had its source in the usual
underestimation of the band edge using PBE functional for
the TiO2 band gap.

The free energy integration with the use of a dummy proton
with fluctuating charge determined the change of free energy of
the titanium dioxide reduction at the normal hydrogen electrode
together with the proton solvation. The DFT-MD simulations
looked at the importance of surface adsorbates nature for the
position of valence band and conduction band using PBE.146

These simulations indicates that the relative positions of the PBE
at the {101} and {001} facets of titanium dioxide anatase alter
with the state of the absorbed H2O particles. Accumulation of
electrons on {001} facets is advantaged by the deprotonation of
the H2O adsorption while holes rather accumulate at the {101}
facets. Oppositely, the relative positions of PBE near the surfaces
are inverted with reference to the anatase bulk when no depro-
tonation happens under acidic circumstances. Consequently,
the oxidative facets {101} become reductive and similarly the
reductive {001} facets turn oxidative.

Note that we focused here on the positions of band edges,
which are more relevant to electrocatalysis than to photocatalysis,
since the hot electrons/holes used in photocatalysis have usually
energies beyond those band edges. However, due to the limited
amount of MD simulations for photocatalysis, we nevertheless
discuss them as a possible starting point for MD simulations for
water splitting using photocatalysis.

Review Article Chem Soc Rev

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

9 
A

pr
il 

20
22

. D
ow

nl
oa

de
d 

on
 8

/1
/2

02
5 

2:
16

:5
8 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d1cs00648g


3804 |  Chem. Soc. Rev., 2022, 51, 3794–3818 This journal is © The Royal Society of Chemistry 2022

3.2.3.3 Semiconductor photocatalysis147,148 simulations based
on Titania for water splitting.149,150 Molecular dynamics simula-
tions (classical ones) were used for looking at the catalysts of
TiO2

151 (for example Pt/TiO2 with two polymorphs – rutile and
anatase) as water splitting photocatalysts152–156 by the use of
the LAMMPS. For accounting the interactions between tita-
nium dioxide surfaces and water the ‘‘universal force field’’
(UFF) parameters were used.

The effect which water has on surfaces like Pt-loaded titania
were intensely studied by the authors and the following valuable
properties were noted: the radial distribution function, density
profile, diffusion coefficient, residence time and dipole angles.
Furthermore, the results showed that the dipoles of H2O for
the Pt/rutile system does not havea preferrential orientation
and presented a long inhabitation period of more than 30 ps.
Diverse research have focused on understanding solid–water
interfaces.157–162

It is essential to look at the atomistic potential that is used
to characterize solid/water interface and the solid itself. Several
materials and their potentials have been examined in this area.
Different force fields are used in the example of TiO2 to clarify
the O and Ti atomistic interaction in various stoichiometries
and morphologies. For TiO2 polymorphs such as brookite,
anatase, and TiO2 II, Matsui and Akaogi163 and coworkers
created a pairwise potential. The sum of the Coulomb, disper-
sion, and repulsion interactions was taken into account by
these authors in a typical interatomic potential.13 Kim et al.,164

on the other hand, designed a different interatomic potential
for rutile that included additional conditions to the initial
Matsui potential, such as short-range repulsion, Coulomb,
Morse and van der Waals, and Morse interactions. The
proposed potential mimics mass modulus, cellular structure
and thermal expansion in volume and can be used also for
other polymorphs.164 The potential was able to match different
experimental properties combining the relationships between
volume thermal expansion crystal structures, enthalpy and
volume compressibility. This potential is widely used for
molecular dynamics simulations.165,166 However, the relative
anisotropic static permeability of rutile is not well described,
which is the major downside of this potential. A question remains
open as to whether interatomic potentials are applicable to
chemical reactions in general and to photocatalytic water splitting
in particular.

3.2.3.4 Dye-sensitized PECs. The use of dye-sensitized PEC is
another approach to photocatalytic water splitting.167,168 It has
been shown that constrained AIMD are good to be used for the
catalytic mechanism in water oxidation study.169 Further, the
authors studied the injection of the photoinduced electron into
the conduction band of anode of titanium dioxide using a
atomistic complex with a mononuclear fully organic DiNM
dye and a Ru-based WOC. DS-PEC devices can be integrated
successfully with the chosen dye through AIMD simulations.

3.2.4 Limitations and perspective. Few studies have been
conducted on water splitting through MD, and there are few or
none on water splitting through photocatalysis. Simulations of

photosynthesis in semiconducting materials as well as water
splitting were the focus of the first set of simulations. Another
review was conducted on simulations that examined water
splitting processes based on titanium. Some MD simulations
studied dye-sensitized PECs. As an open gap there should be
more simulations that are looking for more materials (not only
titanium-based materials, which is mostly the case) that can be
used for water splitting.

Looking at the properties that are studied with MD, some of
the limitations are due to the lack of accurate force fields for
different materials and the prohibitive computational cost of
AIMD simulations. Since force fields are difficult to develop
since they are mostly done manually, the study of more
materials and their properties becomes more difficult. One
possible further direction is the development of force fields
for more materials and extensions of current force fields to
make it possible to study more materials, parameters and
phenomena related to water splitting.

3.3 Mesoscale modeling

The Monte Carlo (MC) method, based on the massive generation
of random numbers, has been extensively applied in nuclear
physics, condensed-matter physics and theoretical chemistry.170

MC numerical simulations take advantage of the law of great
numbers to avoid the calculation of large multidimensional
integrals, such as those associated with the basic laws of
quantum physics and statistical mechanics. Thus, it can be
applied to systems containing 107–109 atoms per system.

The MC method has not been extensively used to simulate
water splitting systems. However, three main areas of application
of MC simulations to solve issues related to catalysis and photo-
catalysis can be identified:

(1) Studies of charge transport and electron dynamics in
nanostructured photoelectrodes are described in Fig. 3;

(2) Calculation of material properties using classical force
fields; and.

(3) Simulation of reaction paths in photocatalytic processes.
A considerable effort in methodology development is needed

before the application of the MC method to photoelectro-
chemical water splitting reactions. The state-of-the-art is
outlined below.

3.3.1 Methods. MC methods for electron dynamics in
nanostructured electrodes are also known as random walk
simulations.171–173 This technique is based on the generation
of random rates for the transfer of electronic carriers (electrons,
holes, excitons) between localized electronic states in the
material, commonly referred to as traps. Three models have
most commonly been used to do this: the multiple-trapping
model,174 the hopping model175 and Marcus transfer rates.176

The first assumes that electron transport occurs by a succession
of trapping/detrapping events between the localized states and
a transport level (usually identified with the electronic band
edge). The second considers direct jumps between traps, taking
into account probabilities that decay exponentially with the
distance between traps. Both models include a Boltzmann
factor that multiplies the jumping rate and depends on
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temperature and the energy difference of the electronic transi-
tion: exp[�(Efinal � Einitial)/kBT]. The third uses the well-known
Marcus theory and reorganization energies for electrons to
calculate the probability of transfer between localized states
in a semiconductor.

MC methods applied to the calculation of material properties
make use of the well-known Metropolis algorithm.170 The
implementation of this algorithm requires the availability of a
classical force field, a real handicap, that feeds the procedure
with the required lattice energy for a given atomic configuration.
A Markov chain of configurations is then generated from the
computation of transitional Boltzmann factors for different
atomic ‘‘moves’’, hence providing structural and thermodynamic
properties of the material by averaging along the produced
trajectory. This trajectory can resemble the true trajectory as
determined by Newtonian dynamics under certain conditions.177

A similar strategy is employed to simulate reaction paths. In
this case, the Boltzmann factors of transitional free energies
(computed by DFT) and the Metropolis algorithm are applied to
statistical trials to move forward in alternative reaction
pathways. This strategy helps to discriminate between alternative
mechanisms, even for very slow reactions.

3.3.2 MC applications. MC (random walk) approaches
applied to diffusive transport are by far the ones with the most
literature.171,172,175,176,178 They have been applied in a variety of
situations involving transport in random media, such as Brownian
motion.177 In fact, this approach is a natural way to investigate
electronic processes in nanostructured and disordered systems.
The nature of transport and recombination in this type of material
is quite stochastic, so the use of the MC method is particularly well
suited to study the relevant mechanisms from ‘‘first principles’’
with a reasonable numerical effort. The use of random walk
methods in nanostructured solar cells and water splitting systems
is especially appealing due to the key role of the interplay between
transport and recombination to achieve an efficient device.

Applications to solar cell modeling were pioneered in 1999 by
Nelson,179 who adapted the continuous time random walk
theory of Scher and Montrol.180 Random walk simulation has been
employed to describe diffusion-limited recombination,181–183 mor-
phological and percolation effects,184–186 photoconductivities,187,188

electron diffusion coefficients,189–191 and photocurrent and photo-
voltage transients192 in dye-sensitized solar cells (DSSC) and dye-
sensitized photoelectrolytic cells (PECs). These studies have recently
been extended to describe charge separation in water splitting
systems with the same type of photoanodes.193

In the second class of applications, the MC method has been
applied to obtain material properties in water splitting systems
such as titania194 and ceria.195,196 Amft et al.194 used the MC
method to simulate the adsorption of molecules of water on the
titania surface. Grieshammer et al.195 started from DFT calculations
to obtain lattice energies and then developed a classical interaction
potential that fit the resulting energetic landscapes. The classical
potential made it possible to run calculations on larger systems,
thus saving computational time. This method has been used for
describing the clustering of defects196 and of phase separations in
metal oxide alloys for water splitting.197

In the third class of applications, simulation of reaction
paths and rare events using the MC method has been introduced
by van Erp and coworkers.198,199 Ab initio quantum calculations
are used as input to produce transition energies. Then, an MC
sampling procedure with various types of trajectory moves is
employed. This strategy allows actual reaction rates to be
efficiently obtained, even for very slow reactions. This method
has been successfully applied to the modeling of the water
dissociation reaction.198 An analogous procedure has been used
by Hareli and Toroker200 to simulate the predominant reaction
path for water oxidation by nickel oxyhydroxide. DFT calculations
are run to calculate the reaction free energies of alternative
reaction paths. These free energies are fed to a traditional
Metropolis algorithm to calculate the transition probabilities from

Fig. 3 Illustration of Monte Carlo methods for electron transport in nanomaterials. Hopping times are calculated via a stochastic expression (R being a
random number between 0 and 1) that depends on the energies of the traps with respect to a certain transport level. This way energetic and
morphological disorder can be considered.
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one intermediate to another, hence estimating the probability
that the chemical reaction takes place via a particular reaction
path. In water splitting with hematite, a kinetic MC (kMC)
approach was used by Kerisit and Rosso201 to model charge
transport. Sinha et al.202 used kMC to model the surface coverages
of different intermediates as a function of time and applied
potential. Two different mechanisms were simulated, and it was
found that the coverage of OOH and O was negligible for both
mechanisms, whereas H2O and OH dominated the surface.

3.3.3 Limitations and perspective. MC techniques boast
the great advantage of being less computationally demanding
than DFT and MD techniques. However, the produced trajec-
tories only approximately reproduce the true dynamics of the
system.177,189 In addition, the predictive power of MC simula-
tions relies on the availability of suitable models: transport
mechanisms in the case of random walk simulations and
classical force fields in the case of the computation of material
properties. In any case, fully exploiting the potential of MC
techniques for photocatalytic water splitting remains an open
challenge.

3.4 Continuum modeling

Continuum modeling (CM) is defined as a mathematical way of
applying a model to continuous data, e.g., data that have a
potentially infinite number and divisibility. In this way, CM is
the opposite of discrete modeling, where a mathematical set of
equations is fit to discrete data, e.g., data that take on a
countable set of values, such as integers, and which are
not infinitely divisible. CM models are typically described by
differential equations. In a typical plot in multiscale modeling,
CM is at the upper end with long time and long length scales.
This is the step between kinetic MC modeling and experiments.
Thus, CM is a main bridge for connecting modeling with
experiments.

CM modeling was first used in the field of continuum
mechanics, where typically the behavior of materials is modeled
as a continuous mass rather than individual atoms.203 In fluid
dynamics, CM is used to model fluid flow using a continuous
liquid instead of single liquid molecules, such as water.204 CM is
also increasingly employed to simulate traffic by replacing single
cars or pedestrians with a continuum description.205,206

Recently, CM has become popular for applications in solid-
state ionics, electrochemistry, and catalysis, particularly fuel
cell,207–209 electrolyzers, and water splitting applications.210–216

The reason is the strong need to bridge modeling and experi-
ments to better analyze experimental measurements and to
identify the limiting processes in electrochemical applications,
thereby improving performance. In general, we can identify
three levels where CM is used for electrochemical and catalytic
applications: the atomistic level, the interface level, and the
component/device level. All levels are discussed in more detail
in the following sections.

3.4.1 Methods. Different methods and software are used for
the different levels of CM. At the atomistic level, e.g., solvation
models, commercial software packages exist, such as VASPsol,217,218

Quantum-ESPRESSO,219 CANDLE218 and SaLSA,212,220 COSMO, or

linearized Poisson–Boltzmann/polarizable continuum models (LPB-
PCM).221–230

At the interface level, usually in-house codes are developed,
mostly in MATLAB and/or SIMULINK. The main reasons for
this are that this branch of CM modeling is rather new and the
reactions taking place at the interface strongly depend on the
application. Hence, general models cannot be set up or would
require large databases. In addition, different chemical and
physical phenomena are required depending on the application.
The models can be implemented using methods from control
theory and system identification. An example is provided in the
study by George et al.210,211 The advantage here is that any
chemical or physical phenomenon can be modeled and no
restrictions toward theory or application exist. A disadvantage
is that knowledge of coding is required for developing these
models. Thus, the modeling effort is more time consuming and
complex.

At the component/device level, finite element modeling
software and multiphysics modeling packages, such as COMSOL
or ANSYS, are typically used. The advantage is that these software
packages are ready to use, and many physical and chemical
equations and theories have already been implemented that
can be directly used with the addition of respective boundary
conditions and the chemical and physical parameters of a
specific system. The disadvantage is that theories that are not
included in the software cannot be easily added. Therefore, the
use of such software packages is usually limited to certain fields
and applications where the respective chemistry and physics are
already implemented.

3.4.2 State-of-the-art
3.4.2.1 Atomistic level. The first level in CM is the atomistic

level. In typical atomistic modeling, each atom is modeled
individually. This is difficult when considering a solid–liquid
interface, where many solid and liquid molecules interact.
A fully ab initio approach, e.g., an explicit solvation model,
represents the most detailed system but requires averaging
many atoms and molecules. This makes an atomistic approach
computationally very expensive and often not possible to
handle even with large supercomputers. Thus, CM modeling
using a continuum for the liquid phase at the solid–liquid
interface is therefore attractive. CM is used in the form of
solvation models. The solvent molecules are replaced with a
continuum dielectric, and the simulation result is averaged
over molecular configurations embedded in a solvent model.
Such models are called implicit solvation models. The advantage
is the considerably lower complexity and cost. Typical problems
that are solved with solvation models are electronic structure
calculations at solid–liquid interfaces. Ping et al.212 studied solva-
tion effects on the band positions of surfaces, such as Si(111),
TiO2(110), IrO2(110), and WO3(001). The solvation model predic-
tions were in excellent agreement (within approximately 0.1 eV)
with ab initio molecular dynamics (AIMD) results and in good
agreement (within approximately 0.2–0.3 eV) with experimental
measurements. Additionally, the energetics for surface oxygen
vacancies and their effect on the band positions were calculated.
The study demonstrates that the solvation calculations are closer
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to experimental values than vacuum calculations and agree
well with explicit AIMD simulations, which are, however,
computationally much more expensive. Sinha et al.202 used an
implicit solvation model to calculate the free energy steps in the
OER of water splitting over hematite. The results were compared
to a model without solvation. It was found that the overall impact
of the solvation model on the free energy steps was rather small
(a difference smaller than 0.1 eV on the electrochemical over-
potential and o0.2 eV on the relative stabilities of inter-
mediates).202 Hence, if the difference between explicit and implicit
solvents is not large, solvation models that only assume implicit
solvents are sufficient for modeling solid–liquid interfaces. Even
though implicit models are beneficial regarding computational
costs, there are several challenges that are related to the physical
description of the solvent and ion distribution and to the determi-
nation of the reaction energetics at constant potential.221

3.4.2.2 Interface level. The second level in CM is the interface
level. The interface level is defined as the area where the
electrochemical and catalytic reactions take place. Hence, the
entire reaction mechanism taking place at the interface is con-
sidered. For different applications, such as fuel cells, electrolyzers,
and water splitting, the research field currently has the following
challenge: identifying the limitations at the interface, whether
electrochemical or structural. However, to increase efficiency and
performance, it is of utmost importance to know these limita-
tions. The fact that these limitations are unknown is related to
experimental measurement and analysis methods. On the one
hand, surface species cannot be easily measured during the
operation of a device even though they are the key for identifying
the reaction mechanism that limits performance.86,231,232 On the
other hand, electrochemical interfaces are usually experimentally
characterized by current–voltage curves and electrochemical
impedance spectroscopy. These are mainly measurements of
physical properties, such as currents, voltages, and resistances.
The data are then fitted to physical models. For example, in
Electrochemical Impedance Spectroscopy (EIS), the data are fitted
to so-called equivalent circuit models consisting of resistances,
capacitances, and inductances. However, the interface is an
electrochemical system. In water splitting, particularly on the
oxygen evolution reaction (OER) side, oxygen is produced by
splitting water through a four-step mechanism with several inter-
mediates, such as OH, O, and OOH.94 Hence, the relation between
the physical model and electrochemical interface is missing in
typical data analysis from the experimental side.

Due to this problem, which appears not only for water
splitting but also for fuel cells, electrolyzers, and corroded
materials, studies have focused on so-called microkinetic modeling.
Microkinetic modeling is actually known from its use in
catalysis (e.g., Filo)233 and is usually used for determining
surface species and concentrations in catalytic systems.
Microkinetic modeling electrochemical systems is more difficult
due to additional charge carriers and the production of current,
which creates a multiple input–output system. A general
approach to simulate this is known from control theory and
system identification.234,235 Modeling can be carried out in the

form of state-space approaches. Such modeling was performed
in the field of solid oxide fuel cells (SOFCs) by Mitterdorfer and
Gauckler207,208 and by Bieberle and Gauckler.209 EIS data similar
to experimental data were simulated and compared to actual
experimental data. These studies were extended by Vogler
et al.,236 showing that one of 6 mechanisms on the anode side
of the SOFC could be identified; in this manner, hydrogen
spillover was finally found as the limiting process at the
Ni–YSZ interface of an SOFC anode.

Microkinetic modeling was recently also presented by
Dickens et al.237 for the OER on metallic oxide surfaces. Volcano
plots and current–voltage plots were simulated, and coverage
regimes for different surface intermediates were identified.
George et al.210,211 even went a step further and simulated the
semiconductor–electrolyte interface of the OER. In the first
study,210 a general model was set up step-by-step, and a case
study for the hematite–water interface was presented using a
nonlinear state-space approach, which is shown schematically in
Fig. 4. Current–voltage curves and EIS data were simulated from
the typical OER mechanism as suggested by Rossmeisl et al.94

and with DFT input data from Zhang et al.119 The simulation
followed experimental conditions, and the results compared
favorably to experimental data. In addition, the model allowed
for modeling surface coverage data that are very challenging
to obtain experimentally and currently unavailable.238,239 In the
next step, George et al.211 added illumination and charge
carrier dynamics in the model to simulate chopped light
measurements. Such studies offer the possibility to simulate
electrochemical data that can be directly compared to electro-
chemical measurements and in this way contribute to identify-
ing the reaction mechanism at electrochemical interfaces
(intermediate species, comparison of different reaction
mechanisms, materials scanning, parameter scanning, etc.).
In this way, such studies fill the gap of experimental challenges,
such as the measurement of surface species and concentrations.

3.4.2.3 Component/device level. The third level in CM is the
component/device level. CM modeling is used to simulate the
characteristic data that are used for performance and quality
control of entire systems. CM is used to perform accelerated
simulations, which can prevent the need for many experiments
or to predict performance and degradation data to avoid too
many experiments. In contrast, such simulations can be used to
compare real experiments and interpret experimental findings
with chemical and physical models. Furthermore, so-called
multiphysics models are used. Bove and Ubertini240 simulated
the current density distribution in SOFCs by considering the
entire electrode–electrolyte component, including the flow in
the gas distribution channels. In this simulation, the imple-
mented physics laws were Ohm’s law and the Butler–Volmer
equation for the electrodes and Fick’s law, the Navier–Stokes
equation, and the Poisson equation for simulating the channel
flow. Yuan and Sunden241 calculated the temperature distribution
on a PEMFC membrane using gas flow and heat transport
equations. Regarding thermochemical water splitting, Haussener
et al.213 implemented heat and mass transfer models with fluid
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flow and respective chemistry to simulate a sulfur–iodine-based
thermochemical cycler for water splitting. Regarding photo-
electrochemical systems, several papers by Haussener et al.213,214

and Singh et al.215 implemented multiphysics models that
accounted for charge and species conversation, fluid flow, heat
transfer, and electrochemical processes. Current densities, linear
sweep voltammograms, and STH efficiencies were provided as
well as overpotential curves that allowed differentiation between
different types of losses in the system.213

3.4.3 Limitations and perspective. CM is a widespread
modeling technique for different fields and applications. In
the field of water splitting, it is still at the beginning stage, and
few studies have been carried out thus far. The advantage of CM
is its close proximity to experiments and the feasibility of
simulating the same data under the same conditions as experi-
mental measurements. Typical data that can be simulated are
current–voltage curves or impedance spectra. In addition,
entire systems can be simulated, in which modular simulation
approaches are very helpful. Simulations are usually not
computationally expensive and most of the time do not need
high-performance supercomputing infrastructures. In contrast
to these advantages, CM relies on input data that usually depend
on the output of other modeling approaches in a multiscale
modeling chain (see Section 3.5). Therefore, the quality of the
simulation results depends on the quality of simulations with
other time and length scales. CM does not have atomic accuracy.
This is countered by the possibility of using fitting procedures
that allow for direct comparison to experiments.

In general, CM is not a prominent path for modeling water
splitting. However, interest is growing, particularly from experi-
mental groups, since it allows the simulation of real systems,

such as solid–liquid interfaces and systems, under actual
operating conditions. This is highly required for increasing
the performance of energy devices; therefore, a high impact is
expected in the future.

3.5 Multiscale approaches for the catalysis of water
adsorption/oxygen desorption

3.5.1 Defining multiscaling. Modeling realistic devices for
catalytic water splitting involves the use of several different
length scales with varying accuracy requirements. The different
regimes involved—from highly accurate quantum mechanical
approaches to continuum modeling—have been discussed
separately in the previous sections of the present review.
Arriving at a comprehensive theoretical model requires combining
these different methods with their individual length, time, and
accuracy scales in a meaningful way to produce a multiscale
approach.

There is no general one-size-fits-all approach to multiscaling:
different techniques allow for combining a plethora of methods
in different ways. The essential quality of a multiscale approach
is the treatment of multiple scales in space or time. Multi-scaling
approaches are meanwhile applied in a variety of different fields,
ranging from protein folding242 or meteorology243 to biology.244

The recent rise in the popularity of multiscale approaches is
carried out by the availability of experimental and theoretical
approaches providing structural information down to the atomic
level and the enormous increase in computational power.245

However, given the complexity of the accurate simulation of
heterogeneous catalysis even at a specific length scale—e.g., the
atomistic description of the catalyst surface using quantum
mechanical methods—performing accurate interconnected

Fig. 4 Nonlinear state-space approach for simulating electrochemical data of the oxygen evolution reaction (OER) (approach is explained in
detail in ref. 210 and 211).
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calculations at several scales seems daunting. To meet the
challenge of simulating catalysis for water splitting, we first have
to combine expertise at several scales to develop multiscale
approaches in a coordinated research effort.

3.5.2 Multiscaling for photocatalytic water splitting. Multi-
scale approaches are essential to capture the complexities of
heterogeneous catalysis: the charge-transfer reactions and
excited states are the center of many photocatalytic processes
and they require highly accurate treatment of the electronic
system, beyond even the accuracies of conventional density
functional theory. Conversely, mesoscopic-scale approaches,
such as microkinetic modeling or solvation models, are
required to describe the surrounding environment, the
dynamic concentration of different reactants and to identify
rate-limiting processes. On the scale of a catalytic reactor, flow
equations or state-space modeling provide valuable insight and
ways to improve device efficiency or reduce cost. Although
progress for these individual methods has been considerable,
we do not yet have a complete, unified picture of a general
catalyst under varying conditions. A true multiscale framework
will bring us closer to finding an abundant, efficient, safe, and
affordable photocatalyst for water splitting.

To date, parameter-free multiscale approaches for catalytic
reactions on the atomic scale are still hampered by simplifications
in describing the reactive site. While steps, defects and terraces
are likely to host highly active catalytic sites, their description
is much more challenging than those of pristine cleaved surfaces.
In fact, state-of-the-art microkinetic modeling often neglects the
effect of the shape of the catalyst on reactivity and
selectivity.246–249 Indeed, the need for ab initio kinetic models
not only for pristine surfaces but also for different facets, terraces
and defects quickly leads to an explosion of complexity, although
scaling relations may help to quickly identify specific sites of
interest.250 Modern approaches aim to predict nanoparticle
growth and reactive sites under operating conditions251 or resort
to semiempirical methods to provide acceptable parametrizations
for different facets.252,253

A true multiscale framework to describe heterogeneous
photocatalysis for water splitting could interrelate phenomena
at relevant time and length scales,254 bringing devices closer to
the theoretical limit of photocatalytic efficiency.255 This was
suggested for the first time by Zhang and Bieberle-Hütter
together with a literature review on the modeling of photo-
electrochemical water splitting.216 Most results to date concern
the combination of two levels of theory. For example, to describe
water splitting at titania surfaces in aqueous solution, one can
use DFT-derived optimized force fields (ReaxFF)256 that can then
be used for kinetic modeling.257 The obtained complex distribu-
tion of water on these surfaces hints at the importance of a true
multiscale description. Similar approaches for iron oxides,258

aluminum nanoclusters259 or ZnO260 demonstrate the robustness
and versatility of kinetic modeling in heterogeneous catalysis.
In particular, the effect of water molecules at surfaces is easily
missed in DFT calculations. Along similar lines, kMC approaches
first obtain electron transfer rates by DFT and then employ kinetic
models to describe the transport processes of, for example,

hematite261 or Pt(111).262 The combination of more than two
methods and scales is still rare. A multiscale approach to inves-
tigate the mechanism of the OER was recently demonstrated by
Sinha et al.202 These authors used DFT, DFT-MD, and kMC to
study a hematite Fe2O3(110) water system. DFT calculations
indicated that the formation of O* species was a potential limiting
step. DFT-MD simulations determined a transition state barrier of
0.35 eV for proton transfer. The DFT and DFT-MD results were
combined to create a reaction path model for the OER. Rate
constants for the elementary steps were estimated and used as
input for the kMC simulations. The surface coverages of the
different intermediates in the OER were calculated by kMC as a
function of time and applied potential. This work was the first to
show a multiscale model for the OER by coupling DFT, DFT-MD,
and kMC. The beauty of the above approach is that data that are
experimentally unavailable but highly needed can be calculated,
such as surface coverages. The multiscale model now needs to be
refined to further improve the mechanistic picture of the interface
and the electrochemical model.

In a separate study, the same group also coupled DFT with
continuum modeling.210 In this study, DFT simulations were
used to estimate reaction rate constants for the different single
steps in the multistep OER process on a hematite surface. This
input was then used in a nonlinear state-space approach to
calculate electrochemical data, such as current voltage curves
and electrochemical impedance data. In addition to these data,
which are typical experimental data, surface coverages can be
calculated—data which is experimentally unavailable.

Coupling DFT calculations for transition energies with a
combined microkinetic-and-reactor model allows for a multi-
scale description of propane dehydrogenation on Pt.263 Very
recent results for ethylene epoxidation on Ag catalysts realize a
true multiscale description from the atomistic level all the way
to a description of the reactor.264 A similar approach for water
splitting would be very useful as a benchmark for current
multiscale methods.

3.5.3 Multiscaling methods. Given the number of different
multiscaling techniques, we will restrict ourselves to the most
important approaches to describe catalytic processes. The
major challenge in modeling heterogeneous catalysis is the
different scales involved: catalysts feature active sites—often
edges between different facets or even single atoms embedded
on a surface—that are already challenging to simulate in a fully
quantum-mechanical approach.250 Reaction rates or selecting
specific reaction products depend on the local chemical
environment, which, in turn, is a function of temperature,
pressure or surface coverage. Predicting and optimizing the
macroscopic functionality of a catalyst requires addressing
these different length and time scales.

Multiscale modeling needs to provide the solution to two
distinct aspects of the problem:265 complications and complexity.
Regarding complications, we refer to the need to accurately
describe phenomena at different scales and to seamlessly couple
the results. Complexity refers to the vast parameter space still
required to model a realistic catalyst after having established a
multiscale description: providing all parameters for every
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conceivable local reaction via ab initio approaches remains unfea-
sible. We discuss strategies to solve both problems below.

Beyond the need for connecting theories at different length
scales—from ab initio modeling at the atomic scale to large-
scale descriptions for reactor chambers—multiscaling also
involves bridging accuracy scales, especially concerning differ-
ent levels of ab initio theories; notably, electron–electron inter-
action renders an exact analytical treatment of the many-body
Schrödinger equation impossible for more than two electrons,
while brute-force numerical solutions are unfeasible due to the
unfavorable scaling of the Schrödinger equation with the
number of electrons. Approximate methods, such as DFT, have
proven exceptionally successful at providing very accurate
results that fit experimental benchmarks for many problems.
Indeed, the development of more advanced exchange–correlation
functionals is an active area of research. However, there are a few
noteworthy cases where the approximations employed in DFT
prove critical. Of particular interest for photocatalysis are excited
states, which are challenging to treat using ground state
approaches, such as DFT, and charge transfer processes, which
are at the heart of many important catalytic reactions but unfor-
tunately poorly described by exchange–correlation functionals.

A promising alternative to treat large, complex systems is to
further partition on the atomic scale, obtaining a cluster of a
few atoms that should be treated with high accuracy (e.g., with
higher accuracy than even DFT) and the surrounding atomic
environment. This cluster is then embedded in the surrounding
environment described by a less accurate method. In contrast to
QM/MM approaches,266 we consider here cases where DFT is the
less accurate method used for treating the immediate environ-
ment. The cluster of interest is typically handled using quantum-
chemical approaches such as correlated wavefunction
techniques or highly accurate yet expensive post-DFT methods
such as GW267 or the random phase approximation.268 Several
embedding schemes have been proposed.269–272 Density-based
embedding approaches allow the seamless combination of
different methods, since the only communication happens via
the electron density, a quantity accessible via many different
methods.272–275 More elaborate approaches require embedding
operators instead of potentials,269,276–278 but they also reduce the
margin of error. While several implementations in popular codes
exist, these are rarely included in the basic package and typically
require substantial user input.

Given the methods laid out in the previous sections of this
review, all the tools needed to arrive at a true multiscale model
are available. On the atomic scale, ab initio approaches, such as
DFT, can provide input for effective parametrized models to
estimate bond dissociation energies and reaction kinetics even
if achieving this level of description in excited states and
nonadiabatic phenomena involved in photocatalytic water
splitting remain a formidable challenge. On the mesoscale,
we aim to predict the reaction rates of elementary events (single
steps in the required chain of reactions toward the desired
product). A Markovian master equation allows for simulating
the different reaction rates, either using the mean-field
approximation,278–280 or more accurately by kMC algorithms

that account for the correct and site-resolved statistical interplay
among the elementary steps of the microkinetic model.279,281

Reaction path analysis then allows for determining the
dominant elementary reaction steps under given operating
conditions.249,282 Regarding electrochemical systems, Melander
et al.283 recently presented a general DFT framework for
modeling electrochemical interfaces at given potentials and
finite temperatures that even allows for selective coarse graining
as needed. On the macroscale, CM allows for a seamless
comparison to experiment: one introduces concepts from statis-
tical mechanics such as chemical potential or temperature and
simulates their change in time and space.284 For example,
predicting the catalytic rate of a proposed reactor would involve
the hydrodynamic flow of a solvent through its 3D geometry.285

State-space modeling provides rate equations for reactants and
products,286–288 and has been proposed as a key ingredient for
one level of a true multiscale description of photoelectro-
chemical systems.216

Once the description at each scale is established, we then
have to connect the individual models.289 Direct coupling is
obviously impractical. Instead, interdependencies are decoupled
by appropriate approximations at each scale. For example,
quantum-mechanical approaches provide effective interaction
potentials or force fields that serve as input for microkinetic
modeling.290 Likewise, kMC simulations provide estimates for
local reaction rates at different catalytic sites.291 Balancing the
number of kMC simulations required to arrive with an accep-
table timestep at the macroscale requires approximations such
as the instantaneous steady-state to allow the tabling of steady-
state reactivity data.292 A full multiscale model could thus
encompass five levels of scale (see Fig. 5):216

� On the atomistic level, DFT (potentially including
embedded more accurate quantum-chemical corrections) provides
fundamental parameters, such as geometries, reaction barriers or
overpotentials, including excited states involved in the photo-
catalytic process;
� Molecular mechanics can then describe the emerging

chemical environment and reconstruction of nanocatalysts,
while NAMD is still needed to describe the physics involved
in the nonradiative deexcitation of the photogenerated hole-
electron pair;
� Coarse-grained approaches for mesoscale modeling, such

as kMC, provide the dynamics of reactions and allow for
identifying rate-limiting reactions, but generalizing these
approaches to involve one or several excited states remains a
pending task;
� Continuum approaches that allow up to device-scale

simulations, can provide the hydrodynamic flow of solvents,
temperature distribution in a device, or electrochemical data,
such as current–voltage curves or impedance spectra (using
state-space models); and
� Process simulation models describe the operation of the

reactor in an industrial setting.
These five tiers provide a clear path toward a multiscale

approach: a treatable system size and timescales that increase
with every step, as does the level of approximation. In principle,
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each level could provide the effective parameters needed for a
reasonable description at the next scale (top row of arrows in
Fig. 5). However, realizing descriptions at these different scales
is not enough: we next have to face the issue of complexity.
First-principles methods, especially those required to accurately
describe breaking bonds, require considerable numerical effort.
Consequently, initially parametrizing all possible interactions of
reactants requires an unfeasible number of DFT calculations,
even if each one of them is treatable. Thus, the hierarchical
multiscale approach outlined above needs to wisely spend
computational resources on the key rate-limiting steps at each
level.293,294 Identifying those contributions on the fly and then
dispatching more accurate first-principles calculations to
accurately determine those contributions is key for arriving at a
tractable multiscale approach (see bottom row of arrows in
Fig. 5).295 A brief outline265 is provided below:

(1) Treat the full problem by a low-accuracy method at
affordable cost;

(2) Compare predictions for the dominant reaction parts with
selected experiments or benchmark high-level results to identify
inconsistencies and determine the responsible approximations;

(3) Selectively improve the accuracy of the description for
those reactions identified as problematic; and.

(4) Include the improved description in the full model, while
reevaluating step 2 until sufficient accuracy is obtained.

Machine learning approaches could provide a highly effi-
cient alternative route.296 Such active learning approaches
provide both a quick estimate for the requested reaction rates
based on the ab initio calculations already performed while also
providing an estimate of how accurate this estimate is possibly
resulting in the (automated) decision to invest in an additional
ab initio calculation to improve the model.

4. Summary: perspectives and future
challenges

Computational modeling provides a powerful approach to
analyze the many processes involved in photocatalytic activity

with nanocrystals, such as light absorption, electron transport,
electron–hole recombination, and chemical reactivity, which
cannot be isolated in an experimental setup. Therefore, multi-
scale modeling methods are critically needed to account for the
finite size and shape of nanoparticles, which strongly affect
catalytic activity.

Atomistic modeling primarily performed with DFT is impor-
tant for atomically characterizing the reactivity. Additional
methods, including TD-DFT, MBPT, GW, and BSE, are rarely
used since they are computationally expensive for calculating the
excited states of a surface for water splitting; thus, their large
scale use is still unfeasible. To date, ground state DFT has
provided important descriptors for studying the active site and
identifying the mechanism and rate-limiting step. Particularly,
intermediate adsorption is affected by peculiar electronic
features at surface edges and by composition variations through
the dopants/alloys/defects of nanoparticles or their substrates.
The role of the photoexcited states needs to be emphasized;
however, the dynamic aspects that can be approached by NAMD
still represent a challenge.297,298

Despite increased understanding of the role of electronic
structure and band positions on reactivity, DFT is limited in
accuracy by the choice of the exchange correlation functional
and by the lack of dynamic information of atoms involved in
water splitting, not to mention the complexity arising from the
need to inspect the reactivity involving several potential energy
surfaces. In contrast, information that can be obtained using
MD includes the following: the diffusion coefficient, velocity in
the vicinity of the active surface, radial distribution functions,
relative alignment of the valence and conduction band edges
with respect to the water redox potentials, understanding of
solid–water interfaces, cell structures, bulk modulus and
volume thermal expansivity, and catalytic mechanism. How-
ever, MD is limited to ground state chemistry, although NAMD
approaches are being developed and applied.299–302

Compared to DFT, there are far fewer studies for
water splitting using MD simulations. There are a series of
simulations for different applications, including photosynthesis,

Fig. 5 A general approach to multiscale modeling.
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semiconducting materials in PECs, and dye-synthesized PECs.
However, these simulations are limited to a small amount of
materials (mostly Ti based) due to the large effort needed to
parametrize the force fields for each and every material.

Notably, the MC method has also not been extensively used
to simulate water splitting systems. However, three main areas
of application of MC simulation to solve issues related to
catalysis and photocatalysis can be identified: studies of charge
transport and electron dynamics in nanostructured photo-
electrodes, calculation of material properties using classical
force fields, and simulation of reaction paths in photocatalytic
processes.

MC approaches are applied through statistical sampling and
random walk methods that are especially appealing for nano-
structured water splitting systems due to the key role of the
interplay between transport and recombination to achieve an
efficient device. The nature of the reactivity, transport and
recombination in nanostructured and disordered systems is
quite stochastic, so the use of the MC method is particularly
well suited to study the relevant mechanisms in nanocatalysts.

CM is most comparable to experiments in that it provides
the same data under the same experimental conditions, such as
current voltage-curves or impedance spectra. The different
levels of CM include the following: (1) at the atomistic level,
solvation models have been successful in predicting band edge
positions but not for capturing external fields; (2) at the solvent/
solid interface level, since experimental data are fitted to a physical
circuit model that does not contain chemical information, micro-
kinetic models have been developed to simulate current–voltage
plots under experimental conditions and to calculate surface
coverage that is difficult to measure, but these require system-
specific developments; and (3) at the device level, multiphysics
models are used for heat and mass transport to simulate the
performance and quality control of the entire electrochemical
device. Although the simulations are usually not computation-
ally expensive and most of the time do not need supercompu-
ters, CM relies on input data that usually depend on the output
of other modeling approaches in a multiscale modeling chain
and does not have atomic accuracy. Therefore, CM is thus far
not a prominent path for modeling water splitting but is
predicted to have a high impact by bridging models to
experiments.

To meet the challenge of simulating catalysis for water
splitting, we have to combine expertise at several scales to
develop multiscale approaches in a coordinated research effort.
Microkinetic modeling and flow equations are valuable for
describing the dynamic concentration of different reactants
and identifying ways to improve device efficiency, but we do
not yet have a unified picture of a general catalyst under varying
conditions. For example, microkinetic modeling often neglects
the effect of the shape of the nanocatalyst on reactivity and
selectivity. Most results to date concern the combination of two
levels of theory, such as MD with kinetic modeling or DFT with
kMC, and the combination of more than two methods and
scales is still rare. Coupling DFT calculations for transition
energies with a combined microkinetic-and-reactor model

allows for a multiscale description that would be very useful
for water splitting.

Multiscale modeling will provide a solution by combining
the results at different scales (see Fig. 5): (1) DFT provides
fundamental parameters such as geometries and reaction
barriers or overpotentials; (2) molecular dynamics can describe
the emerging chemical environment and reconstruction of
nanocatalysts; (3) kMC provides the dynamics of reactions;
(4) CM can provide the hydrodynamic flow of solvents, tempera-
ture distribution in a device, or electrochemical data, such as
current–voltage curves or impedance spectra (using state-space
models); and (5) process simulation models describe the opera-
tion of the reactor in an industrial setting.

The hierarchical multiscale approach outlined above needs
to wisely spend computational resources at each level. Identifying
those contributions by first treating the full problem by a
low-accuracy method and then dispatching more accurate first-
principles calculations will allow us to arrive at a tractable multi-
scale approach.

In summary, each method has made substantial contribu-
tions to understanding the catalytic behavior of materials. For
example, DFT has been widely used for modeling hetero-
geneous catalysis and has revealed the correlation between
reaction intermediate adsorption energies and overpotential.
Larger scale approaches have been much less exploited. Future
challenges in modeling complex nanocatalysts involve combin-
ing methods at different length scales, including excited state
chemistry to describe photoexcited states, to account for the
entire material system and representative effects. A true multi-
scale framework to describe heterogeneous photocatalysis for
water splitting could interrelate phenomena at relevant time
and length scales, bringing devices closer to the theoretical
limit of photocatalytic efficiency.
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Catal. Today, 2019, 338, 128–140.

265 M. Maestri, Chem. Commun., 2017, 53, 10244–10254.
266 M. Karplus, M. Levitt and A. Warshel, Angew. Chem., Int.

Ed., 2013, 52, 11972.
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