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We investigate the thermodiffusive properties of aqueous solutions of sodium iodide, potassium iodide
and lithium iodide, using thermal diffusion forced Rayleigh scattering in a concentration range of
0.5-4 mol kg™ of solvent, large enough to deal with associated salts, and a temperature range of 15 to
45 °C. Al systems exhibit non-monotonic variations of the Soret coefficient St with concentration, with
a minimum at one mol kg~! of solvent in all three cases. We take this as an indication that the relevant

Received 2nd September 2022, length and energy scales are very similar in all cases. On this basis we develop an intuitive picture in

Accepted 28th October 2022 which the relevant objects are the fully hydrated salt molecules, including all water molecules that
behave differently from bulk water. Preliminary, somewhat sketchy calculations indicate that indeed

Soret coefficients begin to rise beyond concentrations where the fully hydrated particles are randomly
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1 Introduction

Thermophoresis, also called thermodiffusion or Ludwig-Soret
effect, describes mass transport in temperature gradients and
is one of the interesting unsolved puzzles in physical chemistry.
Nowadays the most prominent application of this effect is in
the determination of binding constants in protein-ligand
reactions,’” but the effect also plays an important role in, for
example, the conversion of waste heat into electricity by means
of thermogalvanic cells.>” In both cases a deeper understand-
ing of thermodiffusion of ions in aqueous solutions is desir-
able. Since the pioneering work of Hofmeister, it is known that
many physicochemical processes in aqueous salt solutions do
not only depend on ion concentrations and valencies, but also
on the ion type.®® We therefore present experimental results of
thermodiffusion in a range of concentrations and temperatures
of solutions of three different salts with equal valencies but of
different ion type, in casu lithium, sodium and potassium
iodide.
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close packed. Indications are given as to why the model will fail at large concentrations.

In principle, in systems like ours there are four mass fluxes,
i.e. those of the two types of ions, the one of the intact, non-
dissociated salt molecules, and that of the solvent. Because of
macroscopic electro-neutrality the two ionic fluxes must be
equal. If we further assume that the dissociation equilibrium
does not change with the very small temperature changes, the
flux of the intact salt molecules must be equal to that of the
individual ions. At the end we are left with only two indepen-
dent mass fluxes, that of the solvent and that of the solute as a
whole. From a phenomenological point of view we are therefore
left with binary systems. From a microscopic point of view, the
measured transport coefficients are combinations of those of
the individual components.

In a binary fluid mixture exposed to a temperature gradient
a stationary non-equilibrium state sets in, where the ordinary
diffusive mass flux of the solute, proportional to the diffusion
coefficient D, balances a thermophoretic mass flux of the
solute, proportional to the thermal diffusion Dy. The Soret
coefficient St defined as the ratio Dy/D describes the value of
the concentration gradient that develops as a result of the
applied temperature gradient. It can be positive, indicating
that the solute accumulates in the cold region, or negative, in
case the solute moves towards the warm region.”'® Especially
in aqueous systems, variations of concentration or temperature
may lead to sign changes and non-monotonous variations of
St. While early studies of more than 20 different salts in water
indicated monotonous behavior of the Soret coefficient with
concentration,' later works reported a minimum of St for
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12714 A recent indication for a

aqueous solutions of various salts.
minimum of S; with concentration was observed
experimentally’® and by computer simulations'® for lithium
chloride at very low temperatures. The simulations showed that
the minimum disappeared with increasing temperature, and
especially that artificially decreasing the size of the anion
increased the depth of the minimum. Until now, all these
phenomena are basically not understood on a microscopic
leVe1.10’17_19

According to Onsager’s irreversible thermodynamics
the Soret coefficient St of a binary mixture may be written as

. SNl
Sr— 0 <1+8ln/i> 7

20-22

T RT? dlnc ®
where y. is the activity coefficient of the salt and ¢ the mass
fraction of salt. Moreover, Q* is an unknown quantity, contain-
ing both thermodynamic and kinetic contribution, and which
is called the heat of transfer. Several expressions for Q* have
been suggested in the literature, some including kinetic
contributions,?® others ignoring them altogether.'”**>® The
simplest of these models is the one of Prigogine,'” who relates
sign changes with concentration to a stronger cross interaction
compared to the like-like interactions. This energetic concept
works fine for many aqueous mixtures with ethanol,”
saccharides,”® methylformamides®® and anionic surfactant
sodiumdodecyl sulfate micelles in the presence of NaOH.*® It
also rationalizes the sign of the Soret coefficient in aqueous salt
solutions at very low concentrations, i.e. below the dissociation
limit."*" In general, reasonable agreement may be found for
non-polar mixtures, but all models fail for polar mixtures.>”> We
have applied eqn (1), using the model of Kempers with thermo-
dynamic data from several ref. 31-33 but have not been able to
represent our results with any accuracy.

Variations of the Soret coefficient Sy with temperature often
follow an empirical equation proposed by Iacopini and Piazza*

s1(7) = s 1 -exp (T )| )

with obvious interpretations of the various adjustable para-
meters. In particular 7* is the temperature where the Soret
coefficient changes sign, possibly outside the range of experi-
mental data. Eqn (2) in particular does a good job with diluted
aqueous solutions.'”*** As we will see below, also St of
halides follows this equation for all concentrations. This is
not the case, however, for larger organic salts at low, and for
non-ionic solutes at higher concentrations.>**¢%

Several computer simulation studies of thermodiffusion
have appeared in the literature, some of which have been cited
above, but none of these addresses salt solutions over a range
of temperatures and concentrations. We will therefore not
review these studies here in any detail. However, because we
will refer to them on several occasions below, we do briefly
discuss the results of thermophoretic simulations of binary
Lennard-Jones mixtures by Artola and Rousseau.> All particles
in their simulations were of equal mass and equal size. Simula-
tions were performed over the full range of mole-fractions and a
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range of temperatures. Moreover they studied several different
systems by varying like-like (¢, €gp) and cross-interactions
(¢ap)- Clearly, with Lennard-Jones energies ¢ss = ¢pp, and eap
such that component A goes to cold at small mole-fractions x,,
component B must go to cold at small mole-fractions xg, i.e. at
large mole-fractions x,; as a consequence component A will go
to hot at large mole-fractions x,. The Soret coefficient of
component A must therefore obey St(xa) = —Sr(1 — x,), and

. 1 . . .
change sign at xpo = xg = > From the simulations it follows

that in all cases the Soret coefficient changes linearly with
mole-fraction, and indeed obeys the rule just mentioned. More-
over, it was found that changing kss in eap = kap\/€aAéBB
changes the slope of this line, while varying the ratio y = &gp/
¢aa induces a vertical (or horizontal if you prefer) shift of the
line. Before ending this paragraph on computer simulations we
mention one more study on Lennard-Jones mixtures by Bresme
et al.,*® where the authors perform in depth calculations of all
properties of their mixtures relevant for testing several theories
proposed to describe Soret coefficients so far. Their calcula-
tions are restricted however to one particular set of Lennard-
Jones parameters, and therefore cannot be used for our pur-
poses (see below).

Even when no theoretical explanation for the occurrence of a
minimum in the Soret coefficient with variations of concen-
tration is available, some hypotheses/speculations concerning
the origin of the phenomenon may be found in the literature.
Chanu,"® and later Gaeta et al.'* pointed at the perturbation of
local order of water in the neighborhood of the ions and its
dependence on salt concentration as a possible starting point
for an understanding of the non-monotonous dependence of
Soret. This picture of perturbed water goes back to Frank and
Wen.*" Evidently, in dense solutions, solvent molecules must
organize their structure in order to accommodate to the
presence of the solutes. Indeed, strong variations of water
densities around Nal, among other salts, have been confirmed
in a paper by simulations and neutron diffraction
experiments**™*® and around CO, by Mitev et al.” A closer look
at the structure in the latter case reveals that water molecules
very close to the solute are strongly bound to that solute, either
by expressing their negative oxygen atom to the slightly positive
carbon atom on CO,, or by embracing the slightly negative
oxygen atom on CO, with their hydrogen atoms. Similar
structures may be assumed to occur around dissolved salt
molecules. Beyond this first shell of water molecules, a second
shell of decreasingly perturbed water molecules is needed to
gradually adjust to bulk water. As a result, the CO, molecule
plus perturbed water is roughly a sphere with a radius of about
6-7 A.Y

In this paper we will adopt a similar picture for salt solu-
tions. For simplicity we assume that the measured effective
transport coefficients may be attributed to non-dissociated salt
molecules. Further discussion of this assumption will be given
in Section 3.1. We define three types of particles, the bare salt
molecule consisting of a cation paired with an iodide ion, the
hydrated salt molecule (HSP) consisting of a bare salt molecule
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Fig. 1 Model of a hydrated salt molecule with a first shell of tightly bound
water molecules (dark blue and a second shell of perturbed water (light
blue). For simplicity the molecule including the two hydration shells will be
assumed spherical.

plus a first layer of Z strongly bound solvent molecules, and the
fully hydrated salt molecule (FHP) consisting of the hydrated
salt molecule plus the shell of perturbed water molecules. A
caricaturist picture of these definitions is shown in Fig. 1. We
expect that the Soret coefficient will change monotonously with
concentration up to random close packing of the FHPs, beyond
which the behavior will change. Random close packing occurs
at a volume fraction of ¢ = 0.64,*® which with a radius of 6-7 A
corresponds to a molality of about 1.0 mole of salt per kilogram
of water. This indeed turns out to roughly coincide with the
minimum of Soret in all systems that we studied. We will use
this observation as the starting point of our analysis of the
thermophoresis of salt solutions with molalities on the order of
one mole kg™ " of water.

2 Results

2.1 Concentration dependence

We used Infrared Thermal Diffusion Forced Rayleigh Scattering
(IR-TDFRS) to investigate the thermophoretic behavior quanti-
tatively. A schematic diagram of the setup is discussed in ESI}
(Section S1) By way of example, we present in Fig. 2 the
diffusion coefficient D, the thermal diffusion coefficient D,
and the Soret coefficient St of Nal at four different tempera-
tures as function of concentration. The solid lines are guides to
the eye. As a measure of concentration we use molality m, i.e.
the number of moles of salt per kilogram of water. At all
temperatures Dy shows a minimum around a molality of
1 mol kg, which survives in Sy, only slightly smoothed by
increasing D. In all cases the diffusion coefficient D increases
monotonously with concentrations, with the increase at higher
concentrations being less than that at lower concentrations, due
to an increase of viscosity with increasing salt concentration.*®
At the lowest measured temperature St and Dy change sign
twice with concentration. Around m = 1 mol kg ' Nal is
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Fig. 2 Concentration dependence of Soret coefficient Sy, thermodiffu-

sion coefficient Dt and diffusion coefficient D of Nal at four different
temperatures as indicated in the inset. The lines are guides to the eye.

thermophilic (goes to hot), while at lower and higher concentra-
tions it reveals thermophobic behavior (goes to cold). Potassium
and lithium iodide behave similarly, but none of them shows a
double sign change (cf. Fig. S4 and S5, ESIY).

Fig. 3 displays the concentration dependence of Sy values at
25 °C of the three iodide salts that have been studied. The lines
are guide to the eye. All St of the investigated systems show a
minimum with concentration, around 1 mol kg™*, as has been
observed for several other electrolytes.”>>*® The concen-
tration at which the minimum is observed varies only margin-
ally for different salt systems. The steepest decay at low
concentrations is found for Lil, which is the most hydrophilic
of the investigated systems.

2.2 Temperature dependence

Fig. 4 shows the measured St as function of temperature at a
molality of 1 and 4 mol kg™ '. The curves have been fitted using
eqn (2). The Soret coefficient shows an increase with increasing
temperature for all salt systems investigated, which is typical
for aqueous solutions at low concentrations. At 1 mol kg~ Sy of
KI and Nal show a sign change with temperature (¢f. Fig. 4a),
while Lil, as expected from the previous literature, shows
thermophilic behavior at all concentrations.”® Additionally, St
of Lil remains almost constant with increasing concentration,
while the thermophobicity of the other salts increases with
concentration.

In a previous investigation where St of a number of electro-
lytes had been studied at 0.01 mol kg™" of water, Snowden and
Turner®' found at 25.3 °C the largest negative value of St for Lil,
—1.44 x 10> K. Also, in our study Lil exhibits large negative

This journal is © the Owner Societies 2022
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Fig. 3 Concentration dependence of Soret coefficient St of Kl (upper
panel), Nal (middle panel) and Lil (lower panel) at all measured tempera-
tures. In each panel temperatures are 15, 25, 35 and 45 °C in that order,

with the lowest temperature corresponding to the darkest set of symbols.
Lines are guides to the eye.
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temperature / ° C

Fig. 4 Temperature dependence of Soret coefficient St of KI, Nal and Lil
at molalities of 1 (left panel) and 4 (right panel) mol kg™ respectively. The
open symbols mark data points by Caldwell.>® Darkest symbol corre-
sponds to the lowest temperature of 15 °C with gradually fading to lighter
symbols towards higher temperatures.

Sr values in comparison to KI and Nal (¢f. Fig. 4). In a
previous study of Lil Caldwell et al.>° reported a Sy value of
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—2.69 x 1072 K !, while we found an 11% lower value of
—3.01 x 107% K" under the same conditions.

Fig. S6, S7 and S8 in the ESI,f display the temperature
dependence of Dr and D. Both Dy and D show an increase with
temperature. The increase in D is associated with the decrease
in viscosity with temperature.

3 Discussion
3.1 Concentration dependence

In this section we infer from the characteristics of the data
presented above a coarse grain picture that, in our view, con-
tains the relevant elements to model the physics of our systems.
In the second part we present results from some quick, but
rather incomplete calculations on the basis of this model.

3.1.1 Rationalizing the results. Two things immediately
stand out in all plots of Soret coefficients in Fig. 3. First, the
data at low concentrations roughly depend linearly on concen-
tration, with the slope being pretty constant for all systems and
all temperatures. Second, the concentration where the mini-
mum occurs varies only marginally among the different salts.
The first observation agrees with the findings of Artola and
Rousseau discussed in Section 1, while the second is consistent
with the assumption that, at least at low concentrations, all salt
molecules behave like equally big spherical particles.

It is known that in all cases that we consider about 80% of
the salt molecules are dissociated into independent ions, while
only 20% of them exist as non-dissociated, intact salt
molecules.>*>* We notice, however, that also among the dis-
sociated ions the cation-anion pair correlation functions have
very strong first peaks, mainly as a result of the strong Coulomb
interactions. In agreement with the second of the above find-
ings we therefore assume that on average we may treat the salt
molecules as single particles, sometimes consisting of strongly
bound ion pairs, sometimes consisting of more loosely bound
ion pairs, and sometimes even as single anions. A particle like
this is called a bare salt molecule from now on. The properties
attributed to such a bare salt molecule must be considered to
be effective properties, very much as discussed in Section 1.
Clearly, the model that we describe below will become less
applicable with increasing cation sizes. If needed, a more realistic,
but also more complicated model may be devised along similar
lines. Referring to Fig. 1, we recall the definition of hydrated salt
molecule (HSP), consisting of a bare salt molecule plus the first
layer of strongly attached water molecules, and the fully hydrated
salt molecule (FHP), consisting of an HSP plus the layer of
perturbed water molecules. The radius of such an FHP will be
denoted Rys. We obtain an estimate of this radius by assuming
that the FHPs are randomly close packed when the molality is
equal to My;,. The volume fraction of FHPs ¢ is given as

NSVHS _
V

pm

Vs = Nay-4 Vi 3
VmoMW—i—mMs HS Av HS, ()

b=

A

where m is the molality of the solution, m, is the molality of water,
i.e. the number of water molecules in one kilogram of water, M;
and M,, are the molar masses of salt and water respectively, and .#
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Fig. 5 Hydrated salt molecules overlapping with increasing concentration.
The green—-red sphere represents the bare salt molecule, after adding the
blue shell of strongly attached water molecules we get the salt particle
(HSP), while after adding next the outer light blue shell of perturbed water
we arrive at the hydrated salt molecule, called FHP. At concentrations
above M, the outer shells overlap as shown in the bottom row.

is called the molarity, the number of moles of salt per liter of
solution. Vys is the volume of one FHP, ie. one hydrated salt
molecule or anion, N is the number of salt molecules in volume V,
and p is the density of the solution. With 72,,,;,= 1.0 mol kgf1 for all
systems and a random close packed volume fraction ¢, = 0.64,
we obtain Ry = 6.3 A; this is a very reasonable value according to
Mitev et al.”’

On increasing the concentration beyond mpy;,, the outer
hydration shells of the salt molecules begin to overlap, as
shown in Fig. 5. This gives rise to a type of depletion interaction
between the salt molecules, which we will now explain. First we
notice that concentrations are never large enough for the tightly
bound water molecules, constituting the first solvation layer, of
two different salt molecules or anions to touch. Therefore we
take HSPs as the coarse grain particles in our model. Similarly
we define coarse water particles to consist of several water
molecules. The energy of a salt solution is then written as

Ns—1 N Ny—1 Ny
E= Z Z 4)55 ll Z Z d)ww l]
=i+l i=1 j=i+l
£30Y ol + B (4)
i=1 j=1

Here ¢2 denotes the interaction potential between two coarse
salt particles, i.e. two HSPs at a distance r;;, ¢ww that between
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two coarse water particles and ¢, that between an HSP and a
coarse water particle. £°°' is an additional self energy depend-
ing on the configuration of all HSPs collectively, which is the
key quantity in our model.

When one molecule of salt is dissolved in water, the change
of energy has two contributions, one negative contribution
when the first layer of water molecules is bound to the salt,
and one positive contribution that takes into account the
perturbation of the outer hydration shell. The total increase
of energy will be negative. At low concentrations, when the
FHPs do not overlap, a total energy E° proportional to the
number of salt particles will be released. When two FHPs do
overlap, the energies gained by attaching the strongly bound
water shells to each of the bare salt molecules, i.e. by creating
the HSPs, are the same as for two non-overlapping FHPs, but
the energy paid to create the outer shells of the FHPs is
diminished by a positive amount, proportional to the overlap
of the two outer shells. This holds for any pair of overlapping
hydration shells. The self energy therefore reads

B Z K— (3= Hy) Hy >0 (r; <2Rps)
i<j
= 0 H,:/SO (VijzzRHS)
(5a,b)
where H; = 1 — ry/2Rys is half the thickness of the overlap,

divided by Rys, and « is a positive constant with the dimensions
of energy. With this we get for the total energy of the solution

Ns—1 Ng Ny—1 Ny
E=3 > 00+ D Y bulra)
=1 j=itl =1 j=itl
Ny N
+Zz¢sw(rlj)7 (63)
=1 =1
. 1
S rg) = ¢ lry) — g HP (3 — Hy) - = (6b)

O () + B2 (1)

where we have omitted the unimportant constant E°. Evidently,
with increasing concentrations the assumed pairwise-additivity
of the correction to the self-energy becomes inaccurate.

On the energy scales that we are interested in, coarse salt
particles may be considered to be impenetrable particles inter-
acting through dipole-dipole interactions, so 2 may well be
approximated by a Lennard-Jones potential. Given the dimen-
sions as shown in Fig. 1 the radius of a coarse salt particle is
about one half of Rys, so the salt-salt Lennard-Jones potential
has a ¢ of about Ry, and therefore a range of about 2¢ = 2Ry,
which is equal to that of the overlap potential ¢%"'*P. For
computational purposes it is often most convenient to have
water particles of about the same size as that of the salt particle.
Clearly for coarse water-water and salt-water interactions
somewhat more soft potentials seem to be preferable, although
Lennard-Jones potentials have been used for this purpose as
well. For a review see Hadley and McCabe.>” This concludes the
description of our coarse grain picture of salt solutions at low
concentrations.
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Fig. 6 Concentration dependence of Soret coefficient St of Kl (upper
panel), Nal (middle panel) and Lil (lower panel) at four different tempera-
tures. In each panel temperatures are 15, 25, 35 and 45 °C in that order,
with the lowest temperature corresponding to the darkest set of symbols.
Lines correspond to fits that have been obtained with our model (for
details see Section 3.1).

3.1.2 Estimated predictions. In order to test the validity of
this model one has to perform simulations or try to extract
information otherwise. Here we will present the results of some
rather sketchy calculations on the basis of the results published
by Artola and Rousseau for Lennard-Jones mixtures. To this end
we assume Lennard-Jones potentials for coarse water-water
and salt-water interactions and map the total coarse salt-salt
potential ¢®(ry) = ¢%(ry) + dN"*P(r;) on some effective
Lennard-Jones potential <. With these we next make use of
the reported data in the paper of Artola and Rousseau. Details
of the calculations are presented in the Appendix to this paper.
Evidently, mapping the sum of $%(r;) and ¢*"P(r;), with
rather different distance dependencies, to an effective
Lennard-Jones potential, must be approximate. We assume,
however, that for concentrations not too far above my;, the
approximation works acceptably. The results obtained with this
method must be considered as a proof of principle. The final
verdict has to be given by means of a simulation study. Until
then, the model remains somewhat speculative, although intui-
tively appealing.

The results of our calculations are shown as the lines in
Fig. 6. It is clearly seen that the predicted Soret coefficients
increase as soon as the outer hydration shells of the big spheres
begin to overlap. At larger concentrations, however, they decay
again while experimental data continue to increase. Apart from
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the numerical inadequacies already mentioned, also the model
itself will become inadequate at the larger concentrations. First,
the pairwise additive corrections to the self energies will
become inappropriate, and next, at even higher concentrations,
one can imagine that it is profitable to form clusters of salt
particles and expel the water molecules from these altogether to
minimize the energy stored in the perturbed hydration shells.
Both effects will lower the average salt-salt interactions faster
than is done within the present model, and will drive salt to
the cold.

3.2 Temperature dependence

As can be seen in Fig. 4 St of all investigated systems shows an
increase in thermophobicity with temperature and can be
successfully described by eqn (2) for all concentrations studied.
The same behavior has been recently observed for other simple
salts without large organic groups,*®>® which is in contrast to
the temperature dependence of St observed for larger organic
salts*”*” and non-ionic solutes in water.>® For a typical non-
ionic solute, the behavior of St changes from increasing with
temperature to decreasing with temperature as the concen-
tration increases. It is assumed that this is correlated with the
hydration of the solutes, which decreases as the concentration
increases. In contrast, the Soret coefficients of simple ionic
solutes show the typical temperature dependence described by
eqn (2) over the entire concentration range. This might be
explained by cluster formation and growth of the salts with
increasing concentrations. At high salt concentrations, these
clusters are hydrated by water as the fraction of ions in the
interfaces decreases when more ions are part of larger clusters.
This results in diluted solutions of clusters, which still exhibit
the typical temperature dependence of diluted aqueous
solutions.

4 Conclusion

We have studied the thermophoretic properties of three iodide
salt solutions over a range of temperatures and concentrations.
For all three salts, Lil, Nal and KI, the variation of the Soret
coefficient with concentration exhibits a minimum for all four
temperatures that we investigated. On the basis of various
theoretical expressions combined with the best thermodynamic
enthalpies and activity coefficients available, we were not able
to describe this minimum. On the contrary, in most cases we
predicted a maximum in Soret coefficient with concentration.

All experimental data share the same characteristics. First,
Soret coefficients at low concentrations decay linearly with
concentration, and second, in all cases a minimum occurs at
one and the same concentration of one mole of salt per kilo-
gram of solvent. From this we infer that the relevant objects in
all systems are to a large extent equally big and behave like
ideally dissolved particles at low concentrations. From the
concentration where the minimum occurs we obtain an esti-
mate for the size of these objects, which coincides with that of a
salt molecule including the full hydration shell of strongly
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attached and perturbed water molecules. Beyond the concen-
tration where the Soret coefficient is minimal, the hydrated
objects begin to overlap which leads to stronger interactions
between salt molecules, much like depletion interactions do in
colloid-polymer solutions. Preliminary, somewhat sketchy cal-
culations indicate that indeed the Soret coefficient increases
when concentrations increase beyond one mole of salt per
kilogram of water. The model only holds at concentrations
not very much larger than close packing of the big hydrated
objects. At even larger concentrations the pair wise approxi-
mation on which the model is built may not be accurate
enough. Moreover at large concentrations it may be energeti-
cally profitable for the system to expel the water between the
salt molecules and form salt clusters.
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Appendix

In this appendix we describe how we map our model on the
binary Lennard-Jones model of Artola and Rousseau in order to
be able to make use of their numerical data on St for these
systems. We summarize the data of these authors as

1

$109 = 14

ke~ 1l — (7a)

X()],

1

Xo = 0.635w

0.142, (7b)
where x is the mole fraction of A-particles and & and  are set
parameters. Their relation to the Lennard-Jones potential para-
meters is according to ¢ap = ky/eaassp and Y = epp/eaa. The
values of x, are obtained from the simulations and have been
fitted by us as in eqn (7b).

As noticed in the main text, the radius of the bare salt
molecule plus the attached water layer is about half the radius
of the fully hydrated salt molecule. Moreover, our concentra-
tions will never be large enough that the attached water layers
become perturbed as well. Given these two facts, we consider
one salt molecule together with Z attached water molecules to
be one LJ; particle of diameter ¢ equal to Rys. A LJ,, particle
then consists of Z + « water molecules, such that it has the
same diameter and preferably the same mass as the salt
particles. With this we calculate the Lennard-Jones mole-
fractions for salt according to

N;
== (Z _— 8
X Nyw — ZNg ( +a)m0+ocm (8)
Ny +——
Z+a

Since there is no definite way to decide about the size of a
particle of Z + o water molecules we settle for o = 1. All Lennard-
Jones potentials have the same value for ¢, which plays no
further role in what follows.

27386 | Phys. Chem. Chem. Phys., 2022, 24, 27380-27387

View Article Online

Paper

We now must decide about the values of k and /. These are
determined by the three epsilon values g;a = e enp = 6w and
€AB = &sw, Of Which &, and &g, remain constant throughout this
appendix. Moreover only values of ££/c,,, are needed explicitly.
First, we determine eX/enw = 1/y/° by putting the overlap
potential to zero for molalities less than m,;,. By fitting the
experimental data in this range with eqn (7) we get kX° and y/° for
the zeroth order potentials. For molalities larger than m,;, we
assume that the total salt-salt potential, ¢io®(r;) may be
approximated by the effective Lennard-Jones potential

B ()

& () = dosrg) + T bos(ry), ©)

where ™ is the average nearest neighbor distance between salt

Leff

molecules. This gives rise to an effective ¢ given as

n 1 NN
g RN

& ,
) P (NN)

’Ss

, (10)

where the tildes indicate that factors bearing the dimensions of
energy have been taken out, i.e. ¢% = ¢p%/e® = ¢Y/e, etc. Since
both the numerator and the denominator in the last term are
negative, the effective epsilon is larger than the pure epsilon, so
binding becomes stronger. In order to complete the calculation
of k and y as function of concentration we must relate /" to
the concentration. To this end we approximate

(11)

M min 173
M '

NNy =1+ (

FoOr M = M min, we get N = 2, and for very large concentrations
=1,

We now have available all information to calculate k and
as functions of concentration:

L1 e NN (g
i) v N ) (22
N (12b)

where A = k/ey, is an adjustable parameter. Putting these
values into eqn (7) we calculate Sy for any concentration.
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