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A new double-reference correction scheme for
accurate and efficient computation of NMR
chemical shieldings†

Deborah L. Crittenden *

Using an extensive set of benchmark geometric data and absolute NMR chemical shieldings for gas

phase molecules compiled from the literature, we introduce and test a novel shift-and-scale correction

scheme for bringing computed values into closer agreement with experiment. Our approach requires

only one additional reference calculation relative to existing methods for computing chemical shifts, and

all reference species are small molecules whose absolute nuclear shieldings can be easily obtained, both

computationally and experimentally. We demonstrate that our approach is capable of correcting for

errors due to choice of electronic structure method and basis set, vibrational averaging effects, and

scalar relativistic effects, but cannot account for the influence that heavy atoms have on the chemical

shieldings of neighbouring light atoms, via spin–orbit coupling. We particularly recommend using our

approach in conjunction with nuclear shieldings computed at DFT optimized geometries, employing

hybrid functionals with moderate-to-high quality atomic orbital basis sets, e.g. pc-2.

1 Introduction

Nuclear magnetic resonance spectroscopy is a widely used
technique for chemical characterization and molecular structure
determination. It is particularly useful for determining the mole-
cular connectivity or two-dimensional structure of unknown or
novel substances because it provides a wealth of detailed informa-
tion on chemical composition (how many atoms of different
types), molecular topography (which atoms neighbor one another)
and atomic environment (whether atoms exist in electron-rich or
electron-deficient environments with an molecule). Two-
dimensional NMR spectroscopy can even give information about
interatomic distances that can be used to help guide three-
dimensional molecular and biomolecular structure determination.

Given the utility and widespread use of NMR spectroscopy in
determining the identity of small molecules, it is surprising
that spectral assignment remains by and large a manual
process. This can be traced back to the fact that simple
heuristic models are very effective,1 and predicting NMR para-
meters to high enough accuracy for qualitative assignment of
experimental spectra is computationally challenging.2,3 Spin–
spin coupling constants can predicted to sufficient accuracy
(o10% relative error) using computationally affordable density

functional theory models with modestly sized atomic orbital
basis sets,4,5 but chemical shieldings are more challenging.2,6

For example, previous benchmarking studies6 have shown that
in order to obtain absolute chemical shifts for gas phase molecules
to within 5 ppm (mean absolute deviation) or B15% (mean relative
deviation) of experimental values (across 28 molecules with mea-
sured shieldings primarily available for 1H, 13C, 17O, 19F nuclei), it
is necessary to employ highly correlated wavefunction models –
CCSD(T) – in conjunction with large and flexible segmented-valence
atomic orbital basis sets such as Dunning’s correlation-consistent
polarizable core–valence basis sets of at least triple zeta quality, i.e.
cc-pCVXZ, where X = T or Q. It is also necessary to account for
vibrational-averaging effects, which would otherwise contribute
additional errors of B5 ppm or 25%. By way of comparison, DFT
models predictions typically incurred average absolute errors around
20 ppm and average absolute relative errors of B50%.

Similarly, relativistic effects cannot be ignored,7 even for
hydrogen atoms, whose chemical shifts are influenced by
neighbouring heavy atoms through spin–orbit coupling.8 For
example, relativistic corrections to 1H NMR chemical shieldings
range from 0.15 ppm for the hydrogen nucleus in hydrogen
fluoride to 18.40 ppm for the hydrogen nucleus in hydrogen
iodide.9 For heavy atoms, scalar relativistic effects dominate and
are even larger in magnitude.9 For halogen nuclei within halogen
hydrides, total relativistic corrections range from 8.9 ppm (HF) to
2060.8 ppm (HI).9

Of course, predicting absolute chemical shieldings is a
much harder task than predicting relative chemical shifts,
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which are generally the more experimentally relevant quantity.
In this work, we take this idea one step further and posit that by
uniformly shifting and scaling computational absolute shielding
values obtained using computationally inexpensive electronic
structure methods to exactly reproduce experimental values for
two carefully chosen reference molecules, it may be possible to
account not only for methodological errors that are constant
across all molecules but also methodological errors that vary
systematically between molecules.

Although this sounds simple in theory, in practice it is
complicated by the vast array of computationally-affordable
electronic structure models that could be tried (the density
functional theory ‘‘zoo’’10) and multiple potential sources
of error:
� Electronic: incomplete, approximate or absent treatment

of electron correlation, basis set incompleteness.
� Geometric: resultant errors in equilibrium geometries,

vibrational-averaging effects.
� Relativistic: spin–orbit and scalar relativistic effects that

cannot be fully accounted for outside a full four-component
relativistic Dirac equation framework.

Therefore, it is necessary to be as systematic and selective as
possible. ‘‘Computational error bars’’ for DFT predictions may
be established using Hartree–Fock theory and Hartree–Fock–
Slater density functional theory.11 Despite both lacking any
attempt at modelling electron correlation, these simple meth-
ods nonetheless exhibit systematic electron under- and over-
localisation errors, respectively, and have proven effective as
‘‘bounding’’ functionals for molecular property estimation.11

An alternative strategy is to select density functionals from
the literature that have been shown to be particularly accurate
for predicting NMR chemical shieldings, such as the modified
B3LYP variant with 5% HF exchange recommended by Handy
et al.12,13 Alternatively, Keal and Tozer have developed density
functionals designed specifically for predicting NMR shifts and
shieldings,14,15 of which the KT3 functional has also been
optimized for other molecular properties including atomization
energies, ionization potentials, electron affinities, proton affinities,
geometric parameters, vibrational frequencies and electronic
polarizabilities.15

When it comes to selecting basis sets for NMR shielding
calculations, it is necessary to choose high quality basis sets
that can accurately describe electron densities close to nuclear
centres, i.e. ‘‘conventional’’ highly-contracted basis sets optimized
for computing valence properties generally do not suffice.16

Polarization consistent (pc-n) and segmented polarization consis-
tent (pcS-n) basis sets are particularly appropriate, because they
converge rapidly with respect to n.17,18 Even at n = 2, basis set
incompleteness errors are substantially lower than those asso-
ciated with the choice of electronic structure method.17,18

Geometric errors may arise from the choice of electronic
structure model and neglecting to account for vibrational-
averaging effects. Fortunately, these sources of error can be
accounted for separately. As proposed by Vuckovic,19 a simple
way of quantifying geometric model-related errors is to compare
property values computed at an ‘‘exact’’ reference equilibrium

geometry with those computed at the optimized geometry at a
given level of theory. Accounting for vibrational averaging effects
at each level of theory is harder and much more computationally
intensive, because it requires higher order derivatives of the energy
and nuclear shieldings with respect to atomic displacements.20

A more feasible approach is to derive anharmonic corrections
at a single level of theory and then use these to ‘‘correct’’ the
vibrationally-averaged experimental values to obtain semi-
experimental equilibrium shieldings, which can then be compared
directly with computed values.6 This approach can be justified on
the basis that anharmonic corrections are small in magnitude
relative to overall shieldings,6 so methodological errors are expected
to be negligible, except perhaps in cases where the chosen level
of theory yields qualitatively incorrect potential energy curves. For
example, Hartree–Fock theory provides a qualitatively incorrect
description of bonding within F2.3

Relativistic effects are the most challenging to account for,
because full 4-component relativistic Dirac calculations are
required for quantitative prediction of absolute NMR chemical
shieldings.21,22 These are more computationally intensive than
scalar and 2-component relativistic models,23–25 and are not as
widely implemented in molecular quantum chemistry pro-
gramme packages.

2 Methods
2.1 Benchmark data collation

Our data set comprises 49 molecules with 34 distinct 1H
shielding values (Table 1), 29 unique 13C shielding values
(Table 2 and 18 different 19F shielding values (Table 3). We
have particularly chosen to focus on these nuclei because they
are most widely used in chemical characterisation and most
abundantly represented in the literature.

Benchmark equilibrium geometries and geometric para-
meters were compiled from both the spectroscopic26–30 and
quantum chemical31–33 literature. Computed geometries are of

Table 1 Intermolecular-interaction-free 1H absolute gas-phase NMR
chemical shieldings measured at 300 K, s0 (ppm), compiled from the
literature. Where there are non-equivalent hydrogen atoms present in the
same molecule, the relevant nuclear centre is highlighted in bold

Molecule Value Ref. Molecule Value Ref.

HBr 35.037 34 CH3NH2 28.305 34
HCl 31.124 34 CH3Cl 27.932 34
NH3 30.727 34 HCN 27.78 35
CH3OH 30.671 34 SiH4 27.625 34
CH4 30.633 34 CH3OH 27.350 34
H2S 30.572 34 CH3F 26.635 34
CH3NH2 30.367 34 H2 26.293 34
H2O 30.102 34 CH2CCH2 26.279 34
CH3SH 29.888 34 LiH 25.7 36
CH3CH3 29.887 34 CH2Cl2 25.670 34
PH3 29.761 34 CH2CH2 25.463 34
HCCH 29.317 34 CH2F2 25.291 34
CH3CN 29.149 34 CHF3 24.543 34
CH3CO 28.857 34 CHCl3 23.659 34
CH3SH 28.831 34 C6H6 23.535 34
HF 28.51 35 CH3COH 21.068 34
CH3Br 28.328 34 HOF 18.511 37
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at least CCSD(T)/cc-pVQZ quality. Cartesian coordinates for all
benchmark equilibrium geometries used in this work are
reported in the ESI.†

2.2 Ab initio calculations

Absolute isotropic chemical shieldings were computed using
the gauge-including-atomic-orbital approach52 as implemented
in DALTON2020.1,13,53 applied to the Hartree–Fock or Kohn–
Sham molecular orbitals obtained using the methods and basis
sets summarised in Table 4, computed at both the benchmark
equilibrium geometry and optimized geometry at each level of
theory.

For the polyatomic molecules in our data set, vibrationally-
averaged geometries54 and chemical shieldings20 are computed
at HF/pc-2, following the procedure outlined in Ruud et al.,55

Lutnaes et al.56 and Teale et al.6 In brief, the geometry is first
optimized and subject to harmonic vibrational analyis. Semi-
cubic force constants required to define zero-point vibrational
displacements along each normal mode are computed by
numerical differentiation, using a step size of 0.0075 a.u. The
vibrationally-averaged geometries thus obtained are used as an
expansion point for computing vibrationally-averaged shielding
constants. The required cubic and quartic derivatives of the

energy and second derivatives of the nuclear shielding tensor
with respect to displacement along normal mode coordinates
are computed numerically, using a step size of 0.05 a.u. We
note that these step sizes may not always be optimal in all
cases, but will consider this as a potential source of error rather
than attempting to optimize these values on a case-by-case
basis which would be both computationally prohibitive and
may introduce further uncontrolled errors.

For diatomics, accurate and precise equilibrium and
vibrationally-averaged bond lengths can be determined directly
from spectroscopic data. Therefore, vibrationally-averaged
shieldings are computed using these coordinates rather than
their HF-optimized equivalents.

Finally, anharmonic corrections are computed as:

dZPVE = sHF/pc-2
0 � sHF/pc-2

e (1)

2.3 Correction procedure

At the heart of this work is our proposal to shift and scale
computed absolute shieldings to more accurately reproduce
experimental values:

scorr = mscalc + b (2)

The most statistically robust way of obtaining the required
m and b values, that guarantees residual root-mean-squared
errors will be minimised across the training data set, is linear
regression analysis. However, this is not particularly practical
as a general approach, because the parameters thus obtained
are not transferable, and so a full calibration procedure must
be performed at each intended level of theory.

However, all is not lost. The required scaling parameters may
instead be estimated by comparing computed and experimental
shieldings using two carefully chosen reference molecules:

m ¼ sexpð1Þ � sexpð2Þ
scalcð1Þ � scalcð2Þ

(3)

b ¼ scalcð1Þsexpð2Þ � scalcð2Þsexpð1Þ
scalcð1Þ � scalcð2Þ

(4)

Key considerations in choosing appropriate reference mole-
cules include:
� They should be small.
� They should have significantly different shieldings.
� They should lie on or near the line of best fit one would

obtain via a full regression analysis, i.e. be representative of the
data set as a whole.

Table 2 Intermolecular-interaction-free 13C absolute gas-phase NMR
chemical shieldings measured at 300 K, s0 (ppm), compiled from the
literature. Where there are multiple non-equivalent carbon atoms present
in the same molecule, the relevant nuclear centre is highlighted in bold

Molecule Value Ref. Molecule Value Ref.

CH4 195.07 38 CH3CN 74.03 38
CH3CN 185.05 38 CHF3 68.74 38
CH3Br 182.41 38 CF3CF3 68.49 38
CH3SH 182.34 38 CFCl3 67.21 38
CH3CH3 180.84 38 CF4 64.48 38
CH3Cl 163.84 38 CH2CH2 64.43 38
CH3NH2 158.32 38 CO2 58.71 38
CH3COH 156.81 38 C6H6 57.17 38
CH3OH 136.51 38 OCS 30.97 39
CH3F 116.75 38 CO 0.80 38
HCCH 116.65 38 H2CO �0.5 40
CH2CCH2 115.29 38 CH3COH �6.66 38
CCl4 88.99 38 CS2 �8.11 38
HCN 82.1 41 CH2CCH2 �29.35 38
CH2F2 77.73 38

Table 3 Intermolecular-interaction-free 19F absolute gas-phase NMR
chemical shieldings measured at 300 K, s0 (ppm), compiled from the
literature

Molecule Value Ref. Molecule Value Ref.

ClF 636.8 42 CF4 259.0 42
CH3F 470.9 43 PF3 228.1 42
HF 409.6 44 F2CO 221.4 42
LiF 374.3 45 CF2Cl2 202.4 42
SiF4 362.9 46 CFCl3 195.7 42
CH2F2 338.9 47 SF6 139.3 48
BF3 326.9 49 NSF3 125.7 50
C2F6 282.7 42 NF3 50.1 42
CHF3 274.0 51 F2 �233.1 42

Table 4 Electronic structure methods and basis sets employed in the
present work, listed in order of decreasing % HF exchange

Category Options

Method HF, HnHa, B3LYP, B3LYP0.05
b, HFS, KT3

Basis set pc-2, pcS-2

a A simple hybrid functional comprising 50% exact (HF) exchange and
50% Slater–Dirac exchange. b A modified variant of the B3LYP func-
tional comprising 5% HF exchange and 95% Slater–Dirac exchange (cf.
20% HF and 80% Slater–Dirac exchange in the original).
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The molecules selected according to these criteria are listed
in Table 5.

3 Results and discussion

The first task at hand is to assess whether computed shielding
constants display systematic errors that may be amenable to
linear-scaling correction. It is well known from the quantum chem-
istry literature that the most significant source of error in molecular
property predictions comes from the underlying electronic structure
model. Therefore, we will begin by comparing shieldings computed
at benchmark equilibrium geometries using a range of electronic
structure models (scalc

e ) with semi-experimental ‘‘equilibrium’’
shieldings (sexpt

e ). To assess geometric effects, we will compare
nuclear shieldings computed at benchmark and optimized
geometries (scalc

e and scalc
opt ) with vibrationally-averaged experi-

mental shieldings (sexpt
0 ) and semi-experimental equilibrium

shieldings (sexpt
e ). Finally, we will apply and analyse the perfor-

mance of our two-point correction model.

3.1 Electronic effects

Correlations between computed and semi-experimental equili-
brium shieldings are illustrated in Fig. 1. B3LYP and B3LYP0.05

data have been omitted from these plots because they are hard
to visually distinguish from the HnH data. Similarly, computa-
tional values generated using the pcS-2 basis set are not shown,
because these data points are visually indistinguishable from
their pc-2 counterparts. However, key regression statistics for
all 6 methods with each basis set are summarised in Table 6.

Fig. 1 shows that the KT3 functional displays qualitatively
different behaviour to the hybrid functionals – it is much more
accurate for predicting 13C shielding constants, although it
displays similar accuracy for 1H and 19F shieldings. Analysis of
the regression parameters in Table 6 illustrates these differences
even more clearly. Hybrid functionals display systematic model-
dependent trends in both the slope and intercept values according
to the proportion of HF exchange in the underlying functional;
regression parameters for the KT3 functional do not fit these
trends. KT3 functionals tend to yield more accurate predictions of
shielding constants (slopes and intercepts closer to 1 and 0,
respectively) but display more scatter about their lines of best fit
(lower R2 values).

These observations likely reflect differences in parameterisa-
tion strategy; hybrid functionals are parameterised to accurately
model the energetics of valence electrons57 whereas the KT func-
tionals are designed to accurately reproduce exchange-correlation
potentials, especially for electrons within 0.4–1.0 a.u. of each
nuclear centre.14 Because valence electron behaviour varies widely
across our data set whereas smaller fluctuations are expected in

core regions, it stands to reason that hybrid functionals display
larger but more systematic errors, whereas the KT3 functional
exhibits smaller but less systematic errors. This suggests that
hybrid functionals may be more appropriate for our proposed
shift-and-scale correction procedure. In particular, it is best to
choose ‘‘well-balanced’’ hybrid functionals in which electron under-
and over-localisation errors approximately cancel and that are
parameterised to model electron behaviour well in a wide range
of chemical environments, which will show up as consistently high
R2 values across all nuclear centres in this context.

However, from a practical standpoint, it does not make
sense to correlate DFT shieldings computed at near-exact
equilibrium geometries with semi-experimental equilibrium
shieldings, because both of these quantities are hard to obtain.

Table 5 Reference molecules for our two-point correction procedure

Nucleus 1H 13C 19F

Molecule 1 CH4 CH4 HF
Molecule 2 H2 CO CF4

Fig. 1 Computed vs. semi-experimental equilibrium shieldings for 1H
(top), 13C (middle) and 19F (bottom) nuclei.
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Benchmark equilibrium geometries can only be obtained by
painstaking analysis of spectroscopic data or through high level
ab initio geometry optimizations. Anharmonic corrections are
computationally intensive because they require calculation of
third derivatives of the energy with respect to atomic displace-
ments and second derivatives of the nuclear shielding tensor.
Therefore, it is prudent to investigate whether errors intro-
duced by ignoring anharmonicity and/or optimizing geometries
using density functional theory are systematic, and could
therefore be compensated for using our proposed shift-and-
scale procedure.

3.2 Geometric effects

Nuclear shieldings computed at benchmark and DFT-optimized
geometries are correlated against vibrationally averaged experi-
mental values and semi-experimental equilibrium values in Fig. 2.
B3LYP/pc-2 data are illustrated as a representative example.

For 13C nuclear shieldings, neither geometry optimization
nor vibrational averaging effects significantly affect the correlation
between computed and observed values. Therefore, the most
sensible quantities to correlate are shieldings computed at the
DFT-optimized geometry and vibrationally-averaged shielding
constants obtained directly from experiment.

For 19F nuclear shieldings, the picture becomes a bit more
complicated. The most obvious outliers are due to limitations
of mean-field models for describing bonding in F2, which
shows up in longer-than-expected optimized bond lengths,
and therefore shieldings that are lower in magnitude than
expected. In fact, perhaps the most surprising thing about this
data is how well the B3LYP data correlates to experiment when
the molecule is constrained to its equilibrium bond length,
given the known deficiencies of the electronic structure model.
Because this outlier is so extreme and also because F2 has a very
different shielding constant to other fluorine nuclei in our data
set, this disproportionately affects the R2 value. However,
otherwise we observe a mix of smaller sources of scatter due
to both vibrational-averaging corrections and geometry
optimization.

For 1H shieldings, a very different pattern emerges. In this
case, geometry optimization does not seem to have much of an

Table 6 Linear regression summary statistics correlating predicted NMR shieldings at benchmark equilibrium geometries scalc
e with semi-experimental

equilibrium shieldings sexpt
e = sexpt

0 � dZPVE. Zero-point vibrational corrections are computed at HF/pc-2 following the procedure of Ruud et al.20

Model

1H 13C 19F

Slope Int. R2 Slope Int. R2 Slope Int. R2

HF/pc-2 0.9301 2.352 0.9715 1.110 �18.48 0.9708 0.987 18.0 0.9917
HF/pcS-2 0.8890 3.085 0.9479 1.108 �17.55 0.9712 0.989 21.9 0.9923
HnH/pc-2 0.9837 0.446 0.9849 1.099 �22.25 0.9900 1.057 �29.5 0.9886
HnH/pcS-2 0.9817 0.435 0.9853 1.110 �24.74 0.9902 1.067 �29.1 0.9894
B3LYP/pc-2 1.0019 0.140 0.9866 1.057 �23.44 0.9848 1.075 �50.2 0.9917
B3LYP/pcS-2 1.0002 0.124 0.9872 1.072 �27.47 0.9864 1.088 �51.5 0.9923
B3LYP0.05/pc-2 1.0282 �0.751 0.9832 1.048 �23.91 0.9791 1.097 �66.9 0.9888
B3LYP0.05/pcS-2 1.0264 �0.762 0.9842 1.066 �28.95 0.9808 1.112 �69.3 0.9896
HFS/pc-2 1.0666 �2.376 0.9765 1.073 �24.31 0.9793 1.128 �82.5 0.9775
HFS/pcS-2 1.0643 �2.371 0.9781 1.094 �30.12 0.9796 1.146 �85.9 0.9789
KT3/pc-2 0.9914 0.482 0.9767 0.958 �3.86 0.9747 1.023 �42.9 0.9869
KT3/pcS-2 0.9941 0.349 0.9782 0.957 �3.33 0.9782 1.024 �39.2 0.9878

Fig. 2 Computed (B3LYP/pc-2) vs. experimentally-derived shieldings for
1H (top), 13C (middle) and 19F (bottom) nuclei.
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effect, but the data clusters strongly based upon whether zero-
point vibrational averaging corrections have been applied or not.
This is perhaps unsurprising, as zero-point vibrational effects are
expected to be strongest for lighter, peripheral atoms. What
is perhaps surprising is that 1H nuclear shieldings computed
at DFT-optimized geometries correlate just as well with
vibrationally-averaged shieldings obtained directly from experi-
ment as computational values obtained at reference equilibrium
geometries correlate to semi-experimental equilibrium data.

Therefore, we conclude that the most computationally-
effective strategy will be to apply our two-point correction
model to NMR shieldings computed at DFT-optimized geome-
tries, using experimental reference data that has not been
corrected for vibrational averaging effects. This approach will
obviously incur significant errors if the DFT model of choice is
not appropriate for a given molecule, but such errors will
remain isolated provided that such molecules are not used in
the calibration process.

3.3 Two-point correction model

Scaled and shifted B3LYP/pc-2 nuclear shieldings obtained
using our two-point correction model are illustrated in Fig. 3,
and summary statistics for corrected and uncorrected HnH/
pc-2, B3LYP/pc-2 and B3LYP0.05/pc-2 and KT3/pc-2 predictions
presented in Table 7. After correction, all four models display
similar error statistics, reflecting similar underlying error pro-
files and visually indistinguishable correlation curves.

The main take-home message is that our two-point correction
procedure is extremely effective at controlling for most sources
of error in equilibrium DFT predictions of vibrationally-averaged
NMR shielding constants, based upon DFT-optimized geome-
tries. This enables us to identify and characterise outliers, which
fall into two categories; those that arise due to neglect of
relativistic effects and those that arise due to grossly inadequate
modelling of electron correlation.

Hydrogen nuclei adjacent to third- and fourth-row atoms
within HBr, HCl, H2S, CH3SH and PH3 exhibit significant spin–
orbit coupling that is inherently captured experimentally but
absent from non-relativistic quantum chemical models and not
accounted for by the present formulation of our two-point
correction procedure. Nonetheless, the residual errors appear
quite systematic, and in line with expectations from relativistic
calculations of spin–orbit contributions to nuclear shielding

Table 7 Errors in predicted shieldings before and after application of our 2-point correction scheme. MAD = mean absolute deviation between
computed (scalc

opt ) and experimental (sexpt
0 ) values, STD = standard deviation, MARD = median absolute relative deviation. Outliers are excluded in all cases

Model

1H 13C 19F

MAD (ppm) STD (ppm) MARD (%) MAD (ppm) STD (ppm) MARD (%) MAD (ppm) STD (ppm) MARD (%)

HnH/pc-2 0.539 0.472 1.6 8.26 7.71 5.4 60.4 39.0 19.2
HnH/pc-2 (corr) 0.321 0.277 0.8 3.22 4.80 2.7 10.8 20.6 0.9
B3LYP/pc-2 0.797 0.286 2.7 12.85 5.34 14.7 29.0 18.8 9.3
B3LYP/pc-2 (corr) 0.238 0.195 0.7 2.75 3.36 2.5 7.5 9.3 1.8
B3LYP0.05/pc-2 0.450 0.332 1.4 15.64 6.42 16.9 47.0 28.6 14.2
B3LYP0.05/pc-2 (corr) 0.164 0.236 0.3 4.40 5.09 3.8 10.7 10.6 3.1
KT3/pc-2 1.062 0.412 3.7 4.60 5.69 4.6 34.5 16.4 10.3
KT3/pc-2 (corr) 0.235 0.358 0.6 4.60 5.60 3.9 12.8 13.6 3.9

Fig. 3 Scaled-and-shifted B3LYP/pc-2 nuclear shieldings obtained using
our two-point correction scheme. The dotted diagonal line represents
exact equivalence between computed and experimental values.
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constants of hydrogen halides in the literature.9 Similarly,
carbon nuclei adjacent to multiple chlorine atoms or a single,
heavier bromine atom also display spin–orbit heavy-atom–light-
atom effects consistent with trends reported in the literature.8,58

Molecular fluorine, F2 is a canonical example of a molecule
in which electron correlation effects are extremely important
and must be accounted for using correlated wavefunction
theories to obtain get its potential energy curve even qualita-
tively correct.59 Similarly, electron correlation is known to be
particularly important for molecules with O–F bonds, such as
HOF.60 Therefore it is appropriate that DFT-based models yield
inaccurate predictions in these cases.

Digging a bit deeper into the data presented in Table 7
reveals that the effectiveness of our correction procedure
depends on both the level of theory and the identity of the
nuclear centre. The KT3 functional displays a different error
profile to the hybrid functionals; it yields more accurate pre-
dictions of 13C shieldings that cannot be improved using our
correction scheme, but less accurate predictions of 1H shieldings
that show the highest fold improvement in accuracy upon
correction. Overall, this supports our earlier assertion that KT
functionals appear to trade off the ability to capture subtle
changes in valence electron behaviour for an improved descrip-
tion of the near-core region.

Errors in shielding constants computed using hybrid func-
tionals tend to be larger but more systematic, so our correction
procedure improves prediction accuracy across the board. For
hybrid functionals, mean absolute deviations in 1H NMR
shieldings are reduced by a factor of B2–3, 13C by B2.5–4.5
and 19F by B4–6. In general, the less accurate the initial
predictions, the more they are improved upon correction.

Finally, we note that our correction model holds up well
against other benchmark computational results in the litera-
ture. To facilitate comparison, we have computed aggregate
mean absolute deviations and median absolute relative devia-
tions for all corrected shielding values obtained using hybrid
functionals, excluding outliers. These values are presented in
Table 8. Based on mean absolute deviations, our results are
comparable in accuracy to the CCSD(T)/aug-cc-pCV nZ (n = T, Q)
results of Teale et al.,6 but are obtained at a fraction of the
computational cost.

4 Conclusions and future work

We have introduced a novel two-point correction procedure for
scaling and shifting equilibrium nuclear shielding constants

computed using density functional theory to reproduce
vibrationally-averaged experimental values. It relies on two
empirical but non-adjustable parameters per nucleus, which
are the exact gas-phase shieldings for two reference molecules.
As such, it can be used in conjunction with any electronic
structure model and basis set, although it is important to use
high-quality basis sets that can appropriately capture changes
in electron density near nuclei in nuclear shielding calcula-
tions. It is most effective when applied to shieldings computed
using density functionals that prioritise accurately describing
the behaviour and energetics of valence electrons.

We have demonstrated that this approach yields predictions
of approximately CCSD(T)/aug-cc-pVT/QZ accuracy for a frac-
tion of the computational cost. Further, it enables outliers that
arise due to non-systematic or non-systemic effects such as
spin–orbit coupling and electron correlation model failure to
be clearly identified and characterised. Spin–orbit heavy-atom–
light-atom effects are particularly problematic, and will need to
be accounted for to ensure high accuracy predictions for all
molecules, including those that contain heavy atoms adjacent
to much lighter nuclei. In keeping with the spirit of this work,
we propose that this too be achieved using a simple empirical
correction approach, although this will require careful calibration
against benchmark computational data obtained by solving the
full 4-component Dirac equation.25

Similar correlations between computed nuclear shieldings
and experimental chemical shifts have been observed for
molecules in solution,61 and so we expect our two-point correction
procedure to generalise well – noting that the ‘‘shift’’ aspect of our
procedure will naturally account for referencing when applied to
predict relative experimental shifts from absolute computed
shieldings. In other words, it is equally appropriate to use relative
chemical shifts for reference points in our procedure as it is to use
absolute shielding constants – provided the chemical shifts are all
measured under the same experimental conditions. The question
of which reference molecules are most appropriate – and the
importance of accounting for solvation effects – will be addressed
in future work.
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8 J. Vı́cha, J. Novotný, S. Komorovsky, M. Straka, M. Kaupp
and R. Marek, Chem. Rev., 2020, 120, 7065–7103.

9 L. Visscher, T. Enevoldsen, T. Saue, H. J. A. Jensen and
J. Oddershede, J. Comput. Chem., 1999, 20, 1262–1273.

10 L. Goerigk, A. Hansen, C. Bauer, S. Ehrlich, A. Najibi and
S. Grimme, Phys. Chem. Chem. Phys., 2017, 19, 32184–32215.

11 F. Peccati, R. Laplaza and J. Contreras-Garca, J. Phys. Chem.
C, 2019, 123, 4767–4772.

12 P. J. Wilson, R. D. Amos and N. C. Handy, Chem. Phys. Lett.,
1999, 312, 475–484.

13 T. Helgaker, P. J. Wilson, R. D. Amos and N. C. Handy,
J. Chem. Phys., 2000, 113, 2983–2989.

14 T. W. Keal and D. J. Tozer, J. Chem. Phys., 2003, 119, 3015–3024.
15 T. W. Keal and D. J. Tozer, J. Chem. Phys., 2004, 121,

5654–5660.
16 T. Kupka and C. Lim, J. Phys. Chem. A, 2007, 111, 1927–1932.
17 T. Kupka, M. Stachów, M. Nieradka, J. Kaminsky and

T. Pluta, J. Chem. Theory Comput., 2010, 6, 1580–1589.
18 T. Kupka, M. Stachów, M. Nieradka, J. Kaminsky, T. Pluta

and S. P. A. Sauer, Magn. Reson. Chem., 2011, 49, 231–236.
19 S. Vuckovic, J. Phys. Chem. A, 2022, 126, 1300–1311.
20 K. Ruud, P.-O. Åstrand and P. R. Taylor, J. Chem. Phys., 2000,

112, 2668–2683.
21 J. I. Melo, M. C. Ruiz de Azua, C. G. Giribet, G. A. Aucar and

R. H. Romero, J. Chem. Phys., 2003, 118, 471–486.
22 J. Autschbach, Mol. Phys., 2013, 111, 2544–2554.
23 J. I. Melo, A. F. Maldonado and G. A. Aucar, J. Chem. Inf.

Model., 2019, 60, 722–730.
24 L. Visscher, J. Comput. Chem., 2002, 23, 759–766.
25 M. Repisky, S. Komorovsky, M. Kadek, L. Konecny,

U. Ekström, E. Malkin, M. Kaupp, K. Ruud, O. L. Malkina
and V. G. Malkin, J. Chem. Phys., 2020, 152, 184101.

26 K.-P. Huber and G. Herzberg, Molecular spectra and molecu-
lar structure: IV. Constants of diatomic molecules, Springer
Science & Business Media; 2013.

27 G. Herzberg, Electronic spectra and electronic structure of
polyatomic molecules, van Nostrand; 1966, vol. 3.

28 K. Kuchitsu, Structure of free polyatomic molecules: basic
data, Springer Science & Business Media; 2013.

29 J. Demaison, L. Margules and J. E. Boggs, Struct. Chem.,
2003, 14, 159–174.

30 L. Halonen and T. K. Ha, J. Chem. Phys., 1988, 89,
4885–4888.

31 A. Karton, S. Daon and J. M. Martin, Chem. Phys. Lett., 2011,
510, 165–178.

32 J. Gauss and J. F. Stanton, J. Phys. Chem. A, 2000, 104,
2865–2868.

33 A. R. Hoy and P. R. Bunker, J. Mol. Spectrosc., 1979, 74, 1–8.
34 P. Garbacz, K. Jackowski, W. Makulski and

R. E. Wasylishen, J. Phys. Chem. A, 2012, 116, 11896–11904.

35 W. T. Raynes, Nuclear Magnetic Resonance: Volume 7, The
Royal Society of Chemistry; 1978, vol. 7, pp. 1–25.

36 L. Wharton, L. P. Gold and W. Klemperer, J. Chem. Phys.,
1962, 37, 2149–2150.

37 J. Hindman, A. Svirmickas and E. Appelman, J. Chem. Phys.,
1972, 57, 4542–4543.

38 W. Makulski, Phys. Chem. Chem. Phys., 2022, 24, 8950–8961.
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