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High-dimensional neural network potentials for
accurate vibrational frequencies: the formic acid
dimer benchmark†
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Benjamin Schröder, c Edit Mátyus b and Jörg Behler ‡a

In recent years, machine learning potentials (MLP) for atomistic simulations have attracted a lot of

attention in chemistry and materials science. Many new approaches have been developed with the

primary aim to transfer the accuracy of electronic structure calculations to large condensed systems

containing thousands of atoms. In spite of these advances, the reliability of modern MLPs in reproducing

the subtle details of the multi-dimensional potential-energy surface is still difficult to assess for such

systems. On the other hand, moderately sized systems enabling the application of tools for thorough

and systematic quality-control are nowadays rarely investigated. In this work we use benchmark-quality

harmonic and anharmonic vibrational frequencies as a sensitive probe for the validation of high-

dimensional neural network potentials. For the case of the formic acid dimer, a frequently studied model

system for which stringent spectroscopic data became recently available, we show that high-quality

frequencies can be obtained from state-of-the-art calculations in excellent agreement with coupled

cluster theory and experimental data.

1 Introduction

Due to its unique capabilities to process and analyze large
amounts of data, machine learning has nowadays found
numerous applications in chemistry and related fields.1–5

Starting with the work of Doren and coworkers in 1995,6 a
prominent example is the representation of the atomic inter-
actions with quantum mechanical accuracy by learning the
potential energy surface (PES) from a set of known training
points computed using accurate electronic structure methods.
The resulting machine learning potentials (MLP) have rapidly
evolved in the past two decades.7–12 While first-generation
MLPs have been restricted to small molecular systems,13,14

second-generation MLPs like high-dimensional neural network

potentials (HDNNPs),15 Gaussian approximation potentials,16

spectral neighbor analysis potentials,17 moment tensor
potentials,18 atomic cluster expansion19 and many others have
paved the way to large-scale simulations of condensed systems,
from water and aqueous solutions to bulk materials and inter-
faces. Long-range electrostatic interactions,20–22 non-local
charge transfer,23–27 and magnetism28,29 can also be explicitly
considered in modern MLPs. Neural networks have also
been used to study reactive molecular systems in the gas
phase.30–32

Due to their very flexible but simple functional form MLPs
offer advantages like a very high accuracy of about 1 meV per
atom in reproducing known reference total energies, an efficiency
close to empirical force fields, and an unbiased description of
many types of atomic interactions – from covalent bonds via
dispersion interactions to metallic and ionic bonding. Still,
although some recent MLPs include physical terms like electro-
statics, in general the high flexibility of MLPs is curse and bless
at the same time, since the functional forms employed in MLPs,
like neural networks or kernel methods, are not guaranteed to
yield the correct physical shape of the PES. Therefore, large
training sets are needed to ensure that a reliable representation
of the PES is obtained in the training process. Moreover, a
careful validation is required, since energy and force predictions
can be inaccurate when extrapolating to atomic configurations
that are too different from those in the training sets.
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These limited extrapolation capabilities of MLPs and the
need for a dense enough sampling of the reference data set
raise the question how modern MLPs can be validated. While
for early MLPs constructed for small molecular systems a
systematic, grid-based mapping of the underlying PES has been
possible allowing for rigorous quality control, the situation is
different for second-generation MLPs designed for very large
systems. Here, the total energy is typically constructed as a
sum of environment-dependent atomic energies, resulting in a
linear scaling of the computational effort with system size
enabling simulations of thousands of atoms. However, since
the atomic energies, which are not quantum mechanical obser-
vables, can be considered as mathematical auxiliary quantities,
error compensation might occur reducing the transferability of
the potentials. Further, typically investigated quantities like the
root mean squared errors (RMSE) of energies and forces are of
limited use, since they can only be computed for the available
reference structures, and as averaged properties they may not
allow to assess the quality of all the fine details of the PES.

Here, we propose to employ the harmonic and anharmonic
vibrational frequencies as a sensitive probe to validate the
quality of MLPs pinpointing on close-to equilibrium structures,
which are particularly important for spectroscopic applications.
While far-from equilibrium behaviour is in principle equally
interesting also for spectroscopy, any PES not being able to
describe the equilibrium properties correctly could not be
trusted for spectroscopic applications. This tool can thus
be viewed as complementary to other procedures like active
learning that are covering a wide range of non-equilibrium
structures.33–35

Vibrational frequencies have been studied since the advent
of MLPs, mainly for small molecular systems, with great
success,36,37 and very accurate approaches for constructing
MLPs suitable for this purpose have been derived.38–40 Still,
most of these methods exhibit an unfavorable scaling with
system size. Second-generation potentials allow to address
larger systems, and some vibrational studies for larger
molecules,41 clusters,42 and condensed systems43–46 have been
reported. However, MLPs suitable for condensed systems have
been typically constructed relying on density functional theory
(DFT), which, although offering a good compromise between
accuracy and efficiency for many systems, does not provide
spectroscopic-quality vibrational frequencies. Moreover, study-
ing complex condensed systems does not allow to disentangle
all the subtle atomic interactions, which would be required for
a thorough validation of the PES.

In the present work, we fill this gap by investigating in detail
the accuracy that can be achieved by HDNNPs as a typical
example for second-generation MLPs. We explore the limits of
this method, which has originally been designed for dealing
with very large numbers of atoms, by carefully training a
coupled-cluster-quality47 PES for a moderately sized system.
This does not only allow us to compute harmonic frequencies
but also to assess the quality of highly accurate anharmonic
frequencies using state-of-the-art methods under well-controlled
conditions.

As a model system we have chosen the formic acid dimer
(FAD), a doubly hydrogen-bonded complex, which in recent
years has become a benchmark system for the development of
molecular PESs and the calculation of accurate vibrational
spectra thanks to the increasing body of gas-phase spectro-
scopic data.48–54 It is the smallest hydrogen bonded complex
with double proton transfer and as such it is a system of high
interest for spectroscopy and theoretical dynamic studies due
to the possible delocalization of the nuclei over the two wells.
This double proton transfer is challenging since it cannot be
described by standard near-equilibrium tools based on normal
coordinates and perturbation theory. Even for this seemingly
small ten-atom system and its 24-dimensional PES the determi-
nation of accurate anharmonic frequencies is computationally
demanding and thus hardly accessible by a direct application of
wave function electronic structure methods. For this reason the
standard approach is the intermediate construction of an
analytic PES for the determination of vibrational frequencies.

Hence, in general, theoretical studies on vibrational fre-
quencies have three limiting factors: the electronic structure
method, its representation by a multi-dimensional PES func-
tion, and the vibrational treatment. Regarding the first two
aspects, two ab initio-based analytic PESs have been proposed
for FAD in the literature. In 2016, Qu and Bowman developed
the first full-dimensional potential energy surface55 (henceforth
labelled as QB16) for FAD by fitting permutationally invariant
polynomials, a very accurate method providing PESs of a quality
similar to modern MLPs,56 to 13 475 ab initio energy points
computed at the CCSD(T)-F12/haTZ level of electronic struc-
ture theory. Later, they carried out vibrational configuration
interaction computations in normal coordinates57–59 on this
surface. Recently, two of us used the QB16 PES and tested,
using a reduced dimensionality model, the utility of normal
coordinates or a possible efficiency gain of using curvilinear
(normal) coordinates60 in the GENIUSH program.61 During this
work, several fundamental, combination, and overtone fre-
quencies in the fingerprint range were obtained in an excellent
agreement with experiment.53 However, two (totally symmetric)
fundamental frequencies were obtained strongly blueshifted in
comparison with the harmonic frequencies of the QB16 PES55

and in comparison with the experimental value.53 Based on
these observations and due to some ‘artificial’ features of the
QB16 PES that made it necessary to restrict the quadrature grid
used for the vibrational computations, it was concluded that
further work on improving the FAD PES is required.

In 2022, Käser and Meuwly reported another full-
dimensional PES (PhysTL) for FAD62 generated by the message
passing neural network PhysNet.22 It is based on 26 000 MP2/
aug-cc-pVTZ single point energies, which have then been
transfer-learned employing 866 CCSD(T)/aug-cc-pVTZ energies
to obtain an approximately coupled cluster-quality PES that has
also been used in the computation of harmonic and anharmo-
nic vibrations.

Regarding experiment, FAD is a very well-studied system
(see, e.g. ref. 53 and 54 and references therein), and a wealth of
data is available for the validation of theoretical frequencies.
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In early work, thermal gas phase spectroscopy of FAD has been
employed,63,64 while more recently jet-cooled infrared and
Raman spectra of FAD in the monomer finger print region up
to 1500 cm�1 have been studied in ref. 54. Over the past one and a
half decades, all intermolecular vibrational fundamentals and
several combination and overtone bands of FAD have been
determined in the gas phase with an experimental uncertainty
of 1 cm�1.48–52,65–69 The experimental results including a critical
evaluation of theoretical work, which appear to be still lagging
behind experiment, have been recently reviewed in ref. 53.

The aim of the present work is to develop a robust and full-
dimensional high-quality HDNNP for FAD and to benchmark
the obtained frequencies using the best available theoretical
and experimental data. By robustness, we mean that the 24-
dimensional (24D) hypersurface provides a faithful representa-
tion (possibly without ‘holes’ or other unphysical features) of
the ab initio electronic energy over the relevant quantum
dynamical range, and this robustness persists irrespective of
the actual choice of (normal or curvilinear) internal coordi-
nates. By accuracy, in this context, we mean that the fitted
hypersurface reproduces ab initio points sufficiently closely.
‘Sufficient’ is determined in relation with prospective (ro)vibra-
tional computations which are to be compared with (gas-phase)
experimental infrared and Raman spectroscopy data.53

Next to the RMSE, which is the most common quality
measure of PESs, we make use of additional quantities in this
work that allow further refinement of the potential energy
surface for spectroscopic applications. For this purpose, first,
we define an accuracy goal for the harmonic frequencies that
are expected to be reproduced by the PES to within 10 cm�1

with respect to the ab initio harmonic frequency values com-
puted at the same level of electronic structure theory. Further-
more, to have a relatively compact assessment of the mode
coupling representation in the PES, we test the second-order
vibrational perturbation theory (VPT2) frequencies of the PES
again compared to the direct ab initio values as well as
experimental results. Finally, although a semi-rigid description
involving relatively small amplitude vibrations about an equili-
brium structure of the PES appears to be a good starting point
for FAD, the concerted proton tunneling of the double hydro-
gen bond qualifies this complex for the family of systems with
multiple (two) large-amplitude motions. ‘High’-dimensional
systems with multiple large-amplitude motions, i.e., motions
in which nuclei are delocalized over multiple PES wells, are
common in molecular systems and cannot be efficiently
described by using perturbative methods developed about
equilibrium structure properties (underlying the normal coor-
dinate concept). An efficient quantum dynamics description of
these types of systems is currently an active and challenging
field for methodological developments.70–76 These develop-
ments can be tested and validated with respect to precise
spectroscopy data, assuming that a faithful and accurate PES
representation for the molecular system is available.

After giving a brief summary of the employed methods in
Section 2 and the computational details in Section 3, the results
are presented in Section 4. First, we assess the quality of the

HDNNP, which is obtained by iteratively increasing the amount
of reference data, until a converged potential is obtained. This
PES is then characterized by its harmonic frequencies,
which are compared to coupled cluster data. Finally, we report
anharmonic frequencies obtained from VPT2 and reduced-
dimensionality variational calculations, which allow direct
validation of the MLP using reference ab initio calculations
and accurate experimental data.

2 Methods
2.1 High-dimensional neural network potentials

High-dimensional neural network potentials have been intro-
duced in 2007 by Behler and Parrinello15 as the first type of
MLP applicable to large condensed systems containing thousands
of atoms. This is achieved by representing the potential energy E
of the system as a sum of atomic energies Ei, which depend on the
local chemical environment up to a cutoff radius,

E ¼
XNatom

i¼1
Ei: (1)

Each of these atomic energies is the output of an individual
atomic feed-forward neural network describing the functional
relation between the respective energy contribution and the local
atomic structure. The weight parameters of these neural networks
are determined in an iterative training process using known
energies (and often also forces) obtained from reference electronic
structure calculations. The weight parameters and architectures of
all atomic neural networks of a given chemical element are
constrained to be the same making the potential transferable to
different system sizes.

To ensure the mandatory translational, rotational and permu-
tational invariances of a HDNNP based PES, the local atomic
environments are typically characterized by vectors of atom-
centered symmetry functions (ACSF)77 as geometric descriptors,
which meet these requirements by construction and provide local
structural fingerprints. The inclusion of a cutoff function ensures
that the ACSFs smoothly decay to zero in value and slope at the
cutoff radius, which is commonly chosen between 5 and 10 Å.

Several extensions to second-generation HDNNPs have been
introduced in recent years, like the consideration of long-range
electrostatic interactions based on environment-dependent
charges,20,42 non-local charge transfer,24 and magnetic inter-
actions.28 More details about HDNNPs and their properties can
be found in several recent reviews-78–80 In the present work a
second-generation HDNNP relying on ‘‘short-range’’ atomic
energies only is employed, since for a comparably small bench-
mark system like the FAD all interactions can be fully described
as a function of the local chemical environments provided that
a sufficiently large cutoff radius is chosen.

2.2 Frequency calculations

2.2.1 Harmonic frequencies. The determination of harmo-
nic frequencies o is a routine task in theoretical spectroscopic
investigations.81 Here, we construct the Cartesian second
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derivative matrix (Hessian) by means of finite differences based
on the HDNNP. Mass weighting and diagonalization then yields
the desired harmonic vibrational frequencies. These are then
compared directly to the corresponding results of reference
ab initio calculations.

2.2.2 Second-order vibrational perturbation theory. The
anharmonic fundamental transition frequency ni within VPT2
is given by82

ni ¼ oi þ 2xii þ
1

2

X
jai

xij ; (2)

where oi is the harmonic vibrational wavenumber and the xij

are the anharmonicity constants that account for anharmoni-
city in the vibrational mode i as well as the coupling to other
modes j. Eqn (2) is based on a quartic force field (QFF), i.e., a
potential energy expression in terms of dimensionless normal
coordinates q = {qi} given by a Taylor expansion up to fourth
order,82

EðqÞ ¼ 1

2

X
i

oiqi
2 þ 1

6

X
ijk

fijkqiqjqk þ
1

24

X
ijkl

fijklqiqjqkql : (3)

In eqn (3) the so-called cubic and quartic force constants are
denoted by fijk and fijkl, respectively. A contact transformation
of the (ro)vibrational Hamiltonian83–85 up to second order then
yields formulae for the xij in terms of molecular parameters,

xii ¼
1

4
fiiii �

1

16

X
j

fiij
2 8oi

2 � 3oj
2

ojð4oi
2 � oj

2Þ (4)

and

xij ¼
1

4
fiijj �

1

4

X
k

fiikfkjj

1

ok
� 1

2

X
k

fijk

ok
2 � oi

2 � oj
2

Dijk

þ
X
a

Ba
ez

a
ijz

a
ij

oi

oj
þ oj

oi

� �
;

(5)

where the resonance denominator Dijk is given by

Dijk = (oi + oj + ok)(oi + oj � ok)(oi � oj + ok)(oi � oj � ok).
(6)

The last term in eqn (5) depends on the three equilibrium
rotational constants Ba

e and the Coriolis coupling constants zaij.
A closer look at eqn (4) and (5) shows that they contain

differences of harmonic frequencies in denominators which
may lead to so-called Fermi-Resonances. Two cases need to be
accounted for within VPT2: oi E 2oj and oi E oj + ok. In fact,
such vibrational resonances have been well documented experi-
mentally for FAD (see ref. 54 and references therein) and
therefore can be expected to interfere in the present VPT2
treatment. In order to allow a comparison between VPT2 results
and experiment a special treatment is required which is some-
times referred to as GVPT2.86 First, a change in the contact
transformation removes the resonance denominators from the
xij to yield so-called deperturbed anharmonicity constants x�ij .

87

In a second step the resonating vibrational states are treated
using perturbation theory for (near) degenerate states88 where

the coupling matrix element depends on a cubic force constant,
i.e. fijj or fijk.

2.2.3 Reduced-dimensionality variational vibrational com-
putations. A complete quantum dynamical characterization
of a molecular system can be obtained by the variational
solution of the (ro)vibrational Schrödinger equation including
the multi-dimensional PES as an ‘effective’ interaction acting
among the nuclei. The vibrational Hamiltonian, as a sum of
the PES, E, and the kinetic energy operator written in general
coordinates is

Ĥ ¼ 1

2

XD
k¼1

XD
l¼1

~g�1=4p̂kGkl~g
1=2p̂l~g

�1=4 þ E (7)

where p̂k = �iq/qqk (k = 1,. . .,D r 3Natom � 6), and the qk are
vibrational coordinates whose definitions (and choice of the
body-fixed frame) are encoded in the mass-weighted metric
tensor, g A RD�D, with g̃ = det g and G = g�1. Rigorous
geometrical constraints (D o 3Natom � 6) of selected internal
coordinates can be introduced in the quantum mechanical
vibrational model by ‘deleting’ the relevant rows and columns
of the g matrix. A numerical kinetic energy operator (KEO)
approach based on this formalism has been implemented in
theGENIUSH computer program,61 i.e., g, g̃, and G are evaluated
at grid points. The original implementation relied on the
discrete variable representation (DVR)89 of the vibrational
Hamiltonian, but more recently, this numerical KEO approach
has been used with finite basis representation (FBR) and
the Smolyak scheme,70,71,90 which opens the route towards
higher-dimensional computations. For FAD, the lowest-energy
vibrational frequencies from the fingerprint range have been
converged for a series of reduced-dimensionality vibrational
models defined in ref. 60.

The first applications with the new HDNNP based PES
developed in the present work use an 8-dimensional vibrational
model termed 8D(Jt). This approach includes the six inter-
molecular modes (J) and the cis–trans torsional degree of
freedom (t) of both monomers (see Fig. 1), which was found
to perform reasonably well in ref. 60.

Fig. 1 Formic acid dimer in its equilibrium structure. The intermolecular
(R,y,f,a,b,g) and the two cis–trans torsional (t(1) and t(2)) coordinates used
in the 8-dimensional variational vibrational computations are also shown.
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3 Computational details

The reference coupled cluster calculations for generating the
training data set have been performed using MOLPRO 2019.91

The explicitly correlated frozen-core (fc-)CCSD(T)-F12a92–94

method has been used in conjunction with an aug-cc-pVTZ
basis95 for carbon and oxygen atoms and a cc-pVTZ basis96 for
hydrogen atoms. In the following this atomic orbital basis will
be abbreviated haTZ. A VTZ/JKFIT basis97 has been employed
for the resolution of identity approximation. Reference ab initio
equilibrium geometries and harmonic frequencies were
obtained using either default convergence criteria or a tight
definition which corresponds to: a lower threshold for screen-
ing of two-electron integrals (twoint = 10�16) and the energy
(energy = 10�10) for all CCSD(T)-F12a energy evaluations,
improved convergence of the geometry optimization (gradient =
10�6 and step = 10�6) employing a fourpoint numerical gradient
and finally reduced step sizes of 0.005 a0 for both optimization
and numerical Hessian. Furthermore, reference QFF calculations
were performed using MOLPRO 2022, which provides the neces-
sary advanced features of the XSURF program98,99 for the devel-
opment of multi-dimensional PESs. These latter calculations also
employ the tight settings.

The HDNNPs have been constructed using the program
RuNNer.78,79 Several architectures of the atomic neural net-
works have been tested containing two hidden layers with up to
14 neurons each. A large cutoff radius of 15.0 bohr has been
used to ensure that in case of the FAD all atoms are included in
all atomic environments. The parameters of the atom-centered
symmetry functions describing the atomic environments are
given in the ESI.† For the training process, the available data
has been randomly split into a training set (90%) and an
independent test set (10%) not used in the iterative weight
optimization, which employs a global adaptive extended
Kalman filter.100

The reference data set has been generated in several steps.
An initial set of HDNNPs has been constructed using the energies
of 13 475 structures from the work of Qu and Bowman.58 This
data has then been further extended by including additional
structures obtained from active learning, i.e., by comparing the
energy predictions of different HDNNPs. If for a given structure
the deviation between these predictions was above a specified
error threshold, a CCSD(T) calculation has been carried out for the
respective structure, which has then been added to the data set to
further refine the potential.

Several strategies have been employed to search for struc-
tures not well-represented, which are geometries displaced
along the 24 normal modes, geometries used in the numerical
calculation of the Hessian, and structures obtained from mole-
cular dynamics (MD) simulations at 100 and 300 K driven by
preliminary intermediate HDNNPs using the n2p2101 and
LAMMPS102 codes. Moreover, about 500 000 structures corres-
ponding to the direct product grid used in the variational
vibrational computations60 were screened systematically and
added if needed. A threshold for the predicted energy deviation
of 1 meV per atom has been applied in the active learning for

the MD simulations, while 0.02 eV per atom have been used for
selecting geometries from the pool of grid structures. In total,
this extended second data set contains the energies of
27 372 FAD structures. Finally, a third data set has been
constructed by adding another 1800 structures extracted from
two-dimensional cuts of the PES corresponding to pairwise
coupled harmonic modes, for which a threshold of 2 meV per
atom has been used.

4 Results
4.1 High-dimensional neural network potentials

The HDNNPs have been trained using the three different data
sets containing increasing numbers of structures as described
in the previous section. The RMSEs of the energies of the
resulting HDNNPs showing the best performance called
HDNNP1 (11 neurons per hidden layer), HDNNP2 (10 neurons
per hidden layer), and HDNNP3 (14 neurons per hidden layer)
are compiled in Table 1. Since most of the energies of the Qu
and Bowman data set are within 0.1 Eh with respect to the
energy of the global minimum geometry, the high-energy
region is only sparsely sampled. This is the reason for the large
test set errors of all HDNNPs compared to the respective errors
of the training set, indicating overfitting in the high-energy
region beyond 0.1 Eh, which is particularly pronounced for
HDNNP1 relying on the data of Qu and Bowman only. This
overfitting is not present in the very well sampled low-energy
region below 0.1 Eh, as can be seen in the bottom half of
Table 1.

Fig. 2 shows the energy error of all training and test data
points for the QB16 potential and the three HDNNPs. The QB16
potential performs better than HDNNP1 if only the original
data of Qu and Bowman is used. The (unweighted) RMSE of the
QB16 on this initial data set corresponds to 0.91 meV per atom
(74 cm�1) to be compared with 2.43 meV per atom (196 cm�1)
for HDNNP1. If, however, the data set is increased, the error of
the HDNNPs is strongly reduced finally resulting in a very small

Table 1 Energy root mean squared errors (RMSE) of the training and test
sets for the three HDNNPs trained using data sets containing increasing
numbers of structures. The RMSEs of these potentials are given for the
complete energy range covered in reference data and for the structures in
the most relevant energy range below 0.1 Eh with respect to the global
minimum. The numbers of structures included in the respective energy
range for calculating the RMSEs are given in the second column while in
both cases the HDNNPs have been trained to the full data range

PES Structures

RMSE [meV per atom] RMSE [cm�1]

Training Testing Training Testing

Full energy range
HDNNP1 13 475 2.43 13.99 196 1129
HDNNP2 27 372 0.92 1.88 74 158
HDNNP3 29 162 0.37 2.04 30 165

Energy range below 0.1 Eh
HDNNP1 12 725 2.15 2.42 174 195
HDNNP2 26 531 0.85 1.04 68 83
HDNNP3 28 286 0.35 0.34 28 27
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RMSE of only about 0.35 meV per atom (28 cm�1) for HDNNP3
in the relevant energy range up to 0.1 Eh (ca. 21 950 cm�1).

4.2 Vibrational frequencies

4.2.1 Harmonic frequencies. As an important test for
spectroscopic applications, next we compare the harmonic
frequencies of the PESs with the respective ab initio values
corresponding to the same level of electronic structure theory.
As described in the introduction we consider an agreement
within �10 cm�1 as a requirement for this purpose.

Fig. 3 shows the harmonic frequency errors obtained for the
three main HDNNPs of the PES refinement procedure. Similar
to the energy RMSEs we find a continuous improvement start-
ing from HDNNP1 showing some rather large deviations up to
52 cm�1, which are decreasing to at most 27 cm�1 for HDNNP2,
finally reaching a very high quality in case of HDNNP3 with the
largest deviation in the PES vs. ab initio harmonic frequen-
cies being less than 7 cm�1. Overall, the frequency RMSEs of
HDNNP1, HDNNP2, and HDNNP3 are about 27 cm�1, 9 cm�1,
and 4 cm�1, respectively. Consequently, we choose HDNNP3 as
the production-quality PES for vibrational calculations, which
will be called simply ‘FAD-HDNNP’ in the following.

The lower part of Fig. 3 provides a comparison of FAD-
HDNNP harmonic frequencies with the other two published
FAD PESs.55,62 Concerning the accuracy of the PES at the
harmonic level, FAD-HDNNP seems to outperform the earlier
QB1655 and PhysTL

62 potentials, which exhibit RMSEs of 8 cm�1

and 14 cm�1 with maximum deviations of 28 and 30 cm�1,

respectively, from the ab initio harmonic frequency values of
the corresponding level of electronic structure theory.

The numerical values of the harmonic frequencies for the
newly developed FAD-HDNNP (and also for the HDNNP1 and
HDNNP2 development stages) are collected in Table 2 together
with the ab initio frequencies. Interestingly, the numerical values
of the ab initio frequencies at the chosen level of theory depend
notably on the precise details of the MOLPRO computation setup
as shown in the last two columns of the table. The determined
4 cm�1 RMSE with a maximum deviation of 7 cm�1 of FAD-
HDNNP appears to have reached the current accuracy limit of the
available electronic structure methodology employing commonly
used default settings, as even the MOLPRO frequencies exhibit
changes up to 13 cm�1 in exceptional cases like o15 when using
tight settings. Still, even in this case the RMSE of FAD-HDNNP
with respect to the tight MOLPRO data is very similar to the RMSE
with respect to the default settings with only a marginally
increased maximum deviation of 8 cm�1 in case of o12 and o13.

The equilibrium structure of FAD obtained from the refer-
ence ab initio calculations can be compared to the minima of

Fig. 2 Energy difference DE = ECC � EPES as a function of the reference
energy ECC relative to the energy of the global minimum for the QB16
PES,55 HDNNP1, HDNNP2, and HDNNP3 (=FAD-HDNNP). The root-
mean-squared errors (RMSE) for the HDNNPs are provided in Table 1.

Fig. 3 Deviations of the harmonic vibrational frequencies oi with respect
to the reference ab initio results (tight settings). Top panel depicts the
deviations Doi = oi � oref,i for different HDNNP versions during the
potential refinement with HDNNP3 corresponding to the final FAD-
HDNNP. The bottom panel compares these differences for harmonic
frequencies calculated from the QB16 PES by Qu and Bowman,55 the
harmonic frequencies published by Käser and Meuwly62 based on the
transfer-learned PhysTL, and the final FAD-HDNNP (= HDNNP3) results.
The reference ab initio results have been obtained at the level of electronic
structure theory that was used for the development of the respective PES,
i.e. fc-CCSD(T)/aug-cc-pVTZ for PhysTL (see ref. 62 for details) and fc-
CCSD(T)-F12a/haTZ for QB16 as well as FAD-HDNNP. Root mean squared
errors (RMSE) are provided in the legends.
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the HDNNPs. This is done in Table 3 and additional results
obtained with the QB16 PES55 are provided for comparison.
Due to symmetry only 9 internal coordinates are required to
characterize FAD. Similar to the harmonic frequencies, the
agreement of the HDNNP geometrical parameters with the
reference ab initio results improves with the refinement proce-
dure. The largest difference is observed for the r(O� � �O) dis-
tance which at the same time appears to be the most sensitive
coordinate exemplified by a comparably large variation of
0.001 Å between the default and tight reference ab initio

geometries. Nevertheless, the agreement of HDNNP 3 (= FAD-
HDNNP) with the (tight) reference ab initio geometry is good
with an RMSE of 0.002 Å for the bond distances and 0.041 for
the angular coordinates.

Finally, we investigated the performance of the HDNNPs in
describing the geometry and barrier height of the double
proton transfer transition state. The details are provided in
the ESI† and results are compared to new ab initio calculations.
Although not the main focus of the present investigation, we
find good agreement between FAD-HDNNP and the reference
results with an RMSE of 0.002 Å for Cartesian coordinates and a
deviation of only 12 cm�1 in the barrier height.

4.2.2 VPT2 frequencies. Since the harmonic frequencies
are well described by the FAD-HDNNP, it is now appropriate to
investigate the representation of mode couplings as a next step.
A compact measure for the mode couplings near the equili-
brium structure can be obtained from a comparison of the
VPT2 frequencies computed using the PES with gas-phase
experimental results49,51,54,64,103 as well as direct ab initio
results which are still feasible for FAD, although the computa-
tions are very demanding taking several weeks. The corres-
ponding anharmonic fundamental transition frequencies are
provided in Table 4. The normal coordinate QFF parameters
obtained from FAD-HDNNP and those calculated ab initio are
compiled in the ESI,† and can be used for further assessment of
the representation of the mode couplings. This allows a com-
parison which is completely unaffected by details of the VPT2
resonance treatment.

A direct comparison between VPT2-based results and experi-
ment for the high-frequency hydrogen-stretching vibrations is
problematic. This is on the one hand due to the fact that these
fundamentals are in an energy range of already high state
density which leads to substantial anharmonic couplings/reso-
nances beyond what can be reliably treated using VPT2.57 On
the other hand experimental results for these fundamentals
also carry a significant uncertainty which may exceed 10 cm�1.
Therefore these frequencies are not well suited for benchmark-
ing purposes and we will below focus on the fundamentals
o1800 cm�1. Nevertheless, the hydrogen stretching fundamen-
tal frequencies obtained with FAD-HDNNP agree well with the
reference ab initio VPT2 results. A maximum deviation of
11 cm�1 is found for n1 which probably is due to the resonance
effects mentioned above that render these frequencies highly
sensitive to small details of the PES representation.

For the lower frequency modes FAD-HDNNP reproduces the
reference ab initio results with an RMSE of 5 cm�1 where the
maximum deviation (for resonance free fundamentals) of
23 cm�1 is observed for n11. Considering the deviation of
the corresponding harmonic frequencies is only 2 cm�1 (cf.
Table 2) this indicates a problem in correctly describing the
anharmonicity in the symmetric OH out-of-plane bend. Overall
the agreement between FAD-HDNNP and the experimental
results is good with an RMSE of 9 cm�1. The RMSE of the
reference results is slightly better with 6 cm�1 but still the n11

mode shows a large deviation of 12 cm�1. Nevertheless, these
results are well within the typical range of errors that are to be

Table 2 Comparison of the harmonic frequencies oi (in cm�1) for the
three HDNNPs and the respective reference ab initio results obtained at
the fc-CCSD(T)-F12a/haTZ level of theory. The latter are computed using
either the standard convergence criteria (termed default) or stricter con-
vergence criteria (termed tight) with respect to the electronic energy and
geometry optimization as well as smaller step sizes in the numerical
gradient and Hessian (cf. Section 3)

Mode Sym. HDNNP1 HDNNP2
FAD-HDNNP

Ab initio

HDNNP3 Default Tight

o1 Ag 3218 3212 3209 3203 3207
o2 Ag 3060 3077 3103 3105 3103
o3 Ag 1708 1723 1722 1717 1718
o4 Ag 1443 1485 1486 1484 1482
o5 Ag 1376 1417 1410 1413 1411
o6 Ag 1254 1249 1257 1257 1255
o7 Ag 689 681 688 688 686
o8 Ag 216 215 214 211 210
o9 Ag 164 173 167 171 170
o10 Bg 1073 1083 1083 1085 1083
o11 Bg 980 960 957 960 955
o12 Bg 257 241 257 258 249
o13 Au 1128 1106 1109 1102 1101
o14 Au 937 983 979 986 985
o15 Au 213 161 180 186 173
o16 Au 68 71 71 76 68
o17 Bu 3324 3323 3312 3305 3309
o18 Bu 3108 3085 3100 3101 3099
o19 Bu 1773 1783 1784 1782 1782
o20 Bu 1411 1459 1459 1456 1453
o21 Bu 1358 1414 1410 1405 1407
o22 Bu 1208 1247 1260 1260 1260
o23 Bu 704 718 712 716 715
o24 Bu 281 275 275 278 276

Table 3 Geometrical parameters of the formic acid dimer minimum
structure optimized at the reference ab initio level of theory and deter-
mined for different PESs. Bond lengths are provided in Ångströms and
angles in degrees. HDNNP3 corresponds to the final FAD-HDNNP for
spectroscopic use

Parameter

Ab initio

QB16a HDNNP1 HDNNP2 HDNNP3Default Tight

r(O–H) 0.9934 0.9932 0.9927 0.9945 0.9925 0.9936
r(C–H) 1.0929 1.0930 1.0929 1.0927 1.0937 1.0927
r(C–O) 1.3113 1.3114 1.3116 1.3104 1.3121 1.3112
r(O� � �O) 2.6748 2.6758 2.6778 2.6729 2.6791 2.6709
r(CQO) 1.2177 1.2176 1.2174 1.2192 1.2172 1.2178
+OQC–O 126.14 126.14 126.15 126.26 126.13 126.13
+OQC–H 122.02 122.03 122.05 122.04 122.15 121.99
+C–O–H 109.77 109.76 109.73 109.42 109.93 109.79
+O–H� � �O 178.93 178.93 178.95 179.51 179.01 178.86

a Qu and Bowman.55
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expected for the underlying level of ab initio theory. To improve
on this would require the inclusion of high-level corrections
such as core-valence correlation and higher-order correlation
beyond CCSD(T). While such composite schemes have been
shown to provide high-quality potentials for small mole-
cules,104–107 their computational cost is prohibitive for FAD.

For n14 we observe a large deviation of 25 cm�1 when
comparing the FAD-HDNNP and the experimental frequency
of 964 and 939 cm�1, respectively. In agreement with experi-
mental results54,108 we find this mode to be in Fermi-resonance
with n12 + n23 at 941 cm�1 to be compared to the experimental
value of 961 cm�1. A close look at these numbers may indicate a
possible misassignment. However, upon inspection of the
VPT2 results we find that these vibrational states are in an
almost perfect resonance (56 : 44 mixing) with deperturbed
energies of 952 and 954 cm�1 for (n12 + n23)* and n�14, respec-
tively. As such this resonance is very sensitive to the level of
theory and small changes in the PES can easily reverse the state
ordering. Note that this situation is also present in the refer-
ence ab initio results and therefore appears to be due to the
convergence of the PES with respect to the employed electronic
structure level.

Finally, our calculations indicate a Fermi-resonance between
n22 and n10 + n15 with anharmonic transition frequencies of
1234 and 1219 cm�1, respectively. Nejad et al. have discussed

this resonance in detail,54 proposing a new assignment for the
transitions in the triplet of bands centered at 1220, 1225, and
1234 cm�1, i.e., a resonance triad assigned to n10 + n15, n9 + n11 +
n15 and n22. In contrast, we find no involvement of n9 + n11 + n15

in the VPT2 results for n22 based on FAD-HDNNP. This (pre-
liminary) result is also obtained from the ab initio reference
calculations based on the resonance detection criterium for the
n10 fundamental. However, the situation is complicated by the
fact that the n11 shows the largest error (for fundamentals not
affected by resonances) with respect to experiment of more
than 20 cm�1 in case of FAD-HDNNP which in consequence
shifts the n9 + n11 + n15 band by a similar amount and thus it can
not interact with n10 + n15 through the rather small coupling
matrix element of only a few cm�1. In contrast, for the reference
ab initio calculations the VPT2 frequencies 1219, 1226, and
1233 cm�1 for n10 + n15, n9 + n11 + n15 and n22, respectively,
agree nicely with the experimental results. Upon enforcing the
coupling between n10 + n15 and n9 + n11 + n15 the previous
frequencies change only slightly to 1218, 1227, and 1234 cm�1

but with a complicated mixing of the harmonic basis functions
in agreement with the results of Nejad et al.54 Clearly, a correct
description of this intricate resonance triad both for the
frequencies of the involved bands as well as the intensity
pattern governed by the mixing ratios will be an excellent
benchmark test for a theoretical spectroscopic description
of FAD.

4.2.3 Reduced-dimensionality variational vibrational fre-
quencies. Finally, to perform the 8D intermolecular-plus-
torsion vibrational computations, we first determined a
potential-optimized DVR for every vibrational degree of free-
dom following the procedure described in ref. 60. All remain-
ing, i.e., constrained, degrees of freedom have been fixed at the
values of the FAD-HDNNP equilibrium geometry (cf. Table 3).

The one-dimensional cuts of the three investigated HDNNPs
and the QB16 potential along the intermolecular coordinates
plotted in Fig. 4 show that the newly developed FAD-HDNNP
behaves well along all the intramolecular degrees of freedom
consisting of the distance between the monomers and relative
orientation (cf. Fig. 1). In contrast to the QB16 potential, which
shows a low-energy oscillation for f E 1501, no artificial cutoff
of the primitive grid intervals has been found to be necessary
for running the calculations.

The obtained vibrational frequencies converged for the
8D(Jt) intermolecular-plus-torsional representation are col-
lected in Table 5. Overall the agreement for both QB16 and
FAD-HDNNP with experiment is reasonably good with devia-
tions of only a few cm�1 for most frequencies. However,
similarly to previous results discussed in ref. 60, we can still
observe a non-negligible blue shift in the problematic funda-
mental frequencies n8 and n9. With the present, extensively
tested PESs, we can identify two possible origins and corres-
ponding solutions for this shift. First, either it is a consequence
of the constrained coordinates resulting in a too steep potential
energy well at the equilibrium cut, which may be overcome by
relaxing the constraint coordinates. Or, second, the number of
the active vibrational degrees of freedom should be increased

Table 4 Comparison of the VPT2 fundamental frequencies (in cm�1)
obtained from the reference ab initio calculations and the FAD-HDNNP
PES with experimental data49,51,54,64,103

Mode Sym. Ab initioa FAD-HDNNP Exp.

n1 Ag 2909 2920 —
n2 Ag 2942 2948 —
n3 Ag 1672b 1677c 1664d

n4 Ag 1431 1433 1430
n5 Ag 1375 1375 1375
n6 Ag 1225 1229 1224
n7 Ag 679 682 681
n8 Ag 194 197 194
n9 Ag 157 164 161
n10 Bg 1061 1058 1058
n11 Bg 923 934 911
n12 Bg 241 247 242
n13 Au 1072 1074 1069
n14 Au 959e 964f 939g

n15 Au 162 166 168
n16 Au 67 68 69
n17 Bu 3044 3041 —
n18 Bu 2935 2941 —
n19 Bu 1741 1745 1741
n20 Bu 1406 1416 1407
n21 Bu 1372 1375 1372
n22 Bu 1234h 1233i 1234j

n23 Bu 704 706 708
n24 Bu 262 264 264

a CCSD(T)-F12a/hATZ using tight settings. b Fermi-resonance coupled
with n4 + n8 at 1619 cm�1. c Fermi-resonance coupled with n4 + n8 at
1625 cm�1. d Experimental bands at 1664 and 1668 cm�1. e Fermi-
resonance coupled with n12 + n23 at 938 cm�1. f Fermi-resonance
coupled with n12 + n23 at 941 cm�1. g Experimental bands at 939 and
953 cm�1. h Fermi-resonance coupled with n10 + n15 at 1218 cm�1.
i Fermi-resonance coupled with n10 + n15 at 1219 cm�1. j Experimental
bands at 1220, 1225, and 1234 cm�1.
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in the GENIUSH program. However, in the latter case the
computational cost would increase rapidly in DVR, and for
this reason, it will be necessary to use the more efficient FBR-
Smolyak representation.70,71,90

In comparison with VPT2 (cf. Section 4.2.2), it is interesting
to note that VPT2 gets all fundamental frequencies (including
n8 and n9) mostly correct (cf. Table 4). In Fig. 5 of ref. 53, Nejad
and Suhm contrasted the good performance of VPT2 (�5 cm�1

with respect to experiment) against the very large deviations
(15–40 cm�1) of the fundamentally more complete VCI compu-
tations.109 Their observations motivated further theoretical and

computational work, including an inquiry about the efficiency
of normal coordinates for the intermolecular (low-frequency)
vibrations for this system.60

5 Summary & conclusions

In this work we have examined the accuracy of machine-learned
potential energy surfaces using the prototypical case of high-
dimensional neural network potentials. Like many other
modern machine learning potentials, HDNNPs have been
primarily developed to transfer the accuracy of electronic
structure methods to very large systems containing thousands
of atoms, with the aim to perform large-scale molecular
dynamics simulations. Consequently, the validation of the
resulting multidimensional PESs is a difficult task. In this
benchmark study, we have selected a system of moderate size,
the formic acid dimer, for which vibrational frequencies at the
CCSD(T) level of theory are accessible as a probe for assessing
the quality of the PES along with a wealth of experimental data.

For the development of the full-dimensional HDNNP we
have pursued a three-step procedure based on increasing
reference data sets in the training process. First, a generally
faithful representation of the PES without artifacts like artificial
‘‘holes’’ of overall good quality is generated. Second, this sur-
face is then iteratively refined by adding further points to
ensure that the harmonic frequencies of the PES reproduce
within�10 cm�1 the harmonic frequencies of the CCSD(T) level
of theory, which serves as our reference. Third, the representa-
tion of (lower-order) couplings is investigated by computing the
VPT2 frequencies and the corresponding normal-coordinate
quartic force constants in comparison with experimental data
and reference ab initio results.

This carefully validated full-dimensional FAD-HDNNP sur-
face has been used in (pilot) 8-dimensional, curvilinear, varia-
tional computations focusing on the low-energy intermolecular
range. Further progress in the variational vibrational metho-
dology is required for reaching a higher-energy spectral range
including a higher number of active vibrational degrees of
freedom.

The finally obtained FAD-HDNNP potential energy surface
shows a very high quality, which, in combination with the
wealth of available, high-quality experimental data,49,53,63–67,110

we expect to be very useful for future developments in quantum
dynamics and spectroscopic applications, which rely on robust
and accurate PESs.

Data availability

Data for this paper, including the newly calculated ab initio data
set used in the fitting of fit FAD-HDNNP, the necessary RuNNer
input files for FAD-HDNNP, the ab initio points employed in the
reference QFF generation via numerical differentiation,
and the obtained QFF parameters (equilibrium geometry, nor-
mal coordinates and force constants) for both the ab initio
reference as well as FAD-HDNNP are available at GRO.data

Fig. 4 1-dimensional cuts of the three investigated HDNNPs and the
QB16 potential along the intermolecular coordinates (cf. Fig. 1) of the
formic acid dimer used in the reduced-dimensionality variational
computations.

Table 5 Vibrational energies referenced to the zero-point vibrational
energy (in cm�1) obtained with the 8D(Jt) intermolecular-torsional model
in the GENIUSH program using the QB16 PES and FAD-HDNNP. The
inactive degrees of freedom are fixed at their respective equilibrium values

Assignment60 ~nQB16
60 ~nFAD-HDNNP ~nexpt

53

n16 70 70 69.2
2n16 141 140 139
n15 162 171 168.5
n9/n8 191 190 161
n8/n9 208 210 194
3n16 211 210
n15 + n16 232 240
n12 239 243 242
n24 253 253 264
n9 + n16 262 260
n8 + n16 277 279
4n16 281 280
n15+ 2n16 303 309
n12 + n16 310 311 311
n24 + n16 323 322
2n15 324 330 336
n9+ 2n16 332 340
n8+ 2n16 347 348
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(10.25625/ZDGKYA).111 Additionally, the ESI† provides details
on the RuNNer settings and the ACSFs used during the HDNNP
development, the transition state structure determined from
different PESs and ab initio calculations, and details on the QFF
parameters.
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12 J. Behler and G. Csányi, Eur. Phys. J. B, 2021, 94, 142.
13 C. M. Handley and P. L. A. Popelier, J. Phys. Chem. A, 2010,

114, 3371–3383.
14 J. Behler, Phys. Chem. Chem. Phys., 2011, 13, 17930–17955.
15 J. Behler and M. Parrinello, Phys. Rev. Lett., 2007, 98,

146401.
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