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Microscopic origin of diffusive dynamics in the
context of transition path time distributions for
protein folding and unfolding

Rajesh Dutta and Eli Pollak *

Experimentally measured transition path time distributions are usually analyzed theoretically in terms of

a diffusion equation over a free energy barrier. It is though well understood that the free energy profile

separating the folded and unfolded states of a protein is characterized as a transition through many

stable micro-states which exist between the folded and unfolded states. Why is it then justified to model

the transition path dynamics in terms of a diffusion equation, namely the Smoluchowski equation (SE)?

In principle, van Kampen has shown that a nearest neighbor Markov chain of thermal jumps between

neighboring microstates will lead in a continuum limit to the SE, such that the friction coefficient is

proportional to the mean residence time in each micro-state. However, the practical question of how

many microstates are needed to justify modeling the transition path dynamics in terms of an SE has not

been addressed. This is a central topic of this paper where we compare numerical results for transition

paths based on the diffusion equation on the one hand and the nearest neighbor Markov jump model

on the other. Comparison of the transition path time distributions shows that one needs at least a few

dozen microstates to obtain reasonable agreement between the two approaches. Using the Markov

nearest neighbor model one also obtains good agreement with the experimentally measured transition

path time distributions for a DNA hairpin and PrP protein. As found previously when using the diffusion

equation, the Markov chain model used here also reproduces the experimentally measured long time tail

and confirms that the transition path barrier height is B3kBT. This study indicates that in the future,

when attempting to model experimentally measured transition path time distributions, one should

perhaps prefer a nearest neighbor Markov model which is well defined also for rough energy

landscapes. Such studies can also shed light on the minimal number of microstates needed to unravel

the experimental data.

1 Introduction

The study of folding and unfolding dynamics of biomolecules
has been a subject of long and sustained interest from the
perspective of both theory1–5 and experiment.6–13 Folding and
unfolding transitions are typically described as a barrier crossing
process where the barrier is located between the two stable minima
corresponding to the folded and unfolded molecules. The char-
acteristic barrier height for such processes is typically greater than
10kBT with the result that the bio-molecules spend most of their
time around the stable minima. Transitions between them are rare
events and short lived, so that it is experimentally challenging to
measure the transition path times as compared to the dwell times
in one of the minima. Nonetheless, recent advances in single
molecule experiments13–20 shed light on microscopic features of

the transition path properties. These, in turn have triggered many
theoretical studies.21–31 In most theoretical analyses, the dynamics
is modeled in terms of a diffusion equation along a free energy
surface connecting the stable states. The theoretical studies
included a variety of dynamical effects, such as the role of
memory23–25,27,29,30,32 inertial contributions,21,22 multidimensional
transition paths28 and barrier shapes.33–37 However, none of these
studies gave adequate agreement with the experimental data, which
was accumulated using absorbing boundary conditions.

Our recent study of the transition path time distribution
based on a diffusion equation (Smoluchowski equation) led to
the conclusion that long time tails in the transition path time
distribution indicate the existence of a ‘‘trap’’ in the transition
path region.37 Introduction of a well along the transition path
gave good agreement with the experimental data provided that the
transition path barrier height is B3kBT, significantly higher than
previous estimates of B1kBT based on theoretical studies using
bell shaped free energy surfaces and open boundary conditions.
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The same study negated the requirement of multi-dimensional
effects, free energy barrier asymmetry, sub-diffusive memory
kernels or systematic ruggedness to explain the experimentally
measured data.

Our present understanding of the experiments is predicated
on the use of a Smoluchowski equation (SE) to describe the
dynamics. This assumption needs proper clarification. It is well
understood that the SE is a coarse-grained description of the
barrier crossing process. It may be derived as the continuum
limit of a nearest neighbor coupled set of master equations38,39

for motion through a series of uncorrelated transitions or
random hopping between the many microstates that exist along
the transition path. The ‘‘friction coefficient’’ used in the SE is
related to the trapping time in the microstates. The strong
friction limit, which validates the use of the SE, is a result of the
long trapping times in the microstates. The free energy surfaces
are known to be ‘‘rugged’’39–43 and may be described in
principle by a series of random well and barrier energies along
the reaction path. A rugged energy landscape is more ‘‘physical’’
than that of the smooth free energy surface used in the diffusion
equation analysis of the experiments. It is applicable not only to
protein folding–unfolding40,41,44 but also to the glass transition.45,46

Zwanzig described the effect of the roughness of the potential by
the introduction of random components on the potential energy
surface.42 He found that the roughness of the potential leads to
a non-Arrhenius increase in the mean first passage time and
provided a relation for the dependence of the diffusion coefficient
on the variance of the randomness associated with the rough
potential. Bryngelson and Wolynes47 used a generalized master
equation formalism and continuous-time random walk description
to estimate mean first passage times for protein folding. They
considered the number of native contacts as the reaction
coordinate.48 Nevo et al.49 showed how the roughness can be
measured by introducing an external force on the biosystem. In a
series of studies Bagchi and co-workers investigated the role of
spatial correlation of ruggedness and dimensionality dependence
of diffusion and entropy when the energy landscape is rugged.50–52

In a recent study, Wales investigated how kinetic traps and
corresponding barriers affect the first passage time distribution
using a master equation approach.53 A similar analysis was also
used in the study of single molecule enzyme kinetics.54

Li et al. studied the first-passage-time distribution in a time-
dependent parabolic potential with spatial roughness using
Kramers theory and a nonsingular integral equation.55,56 They
concluded that the theory based on an integral equation almost
correctly describes the mean first passage time for the whole
range of external force whereas Kramers’ theory57,58 is valid for
only small external forces. Metzler and coworkers36 explored
the role of roughness in the barrier by varying the amplitude
and periodicity of the roughness to describe the transition path
properties. In a recent experiment, Woodside and co-workers
found brief pauses in transition paths, suggesting roughness or
the presence of micro-barriers in the free energy landscape.59

Despite the wide usage of the diffusion equation, it is not at
all clear why it is really valid in the context of protein folding
and unfolding dynamics. The continuum limit of the nearest

neighbor master equation is valid provided that the heights of
the barriers separating the microstates change systematically.
The continuum limit is not well defined when the free energy
profile is that of a rough landscape. Even if the barrier profile is
smooth it remains unclear how many microstates are need in
practice to assure that the SE provides a valid description of the
dynamics. These are the two central questions which motivated
the present study. Theoretical formulation of the nearest neigh-
bor master equation and the diffusion equation is reviewed in
Section 2.1. We then provide in Section 2.2 a numerical study
which compares the dynamics obtained by the two approaches.
Specifically, we compare the transition path time distributions
obtained for a bell shaped barrier profile for different models
with different numbers of microstates. In Section 3 we apply the
master equation model to analyse the experimentally measured
transition path time distributions for the hairpin DNA molecule
and the PrP protein.14,15 We find that also the master equation
model leads to the conclusion that there is a central well along
the reaction path which is responsible for the experimentally
measured long time tails. We conclude with a discussion of the
implications of the present work on the widespread usage of
diffusion equations when modeling transition path time distri-
butions for the folding–unfolding transition dynamics.

2 Diffusion and master equations
2.1 Theoretical framework

Experimentally, the transition path time is typically measured
by considering the motion between two points along a suitably
defined reaction coordinate leading from the folded to the
unfolded states (and vice versa). The distribution of the times
to cross the distance is the transition path time distribution.
The two points are naturally chosen as half the difference of the
full distance between the two stable states. After the system enters
the transition path region for the first time, the distribution is
obtained by noting the first time that the system then crosses the
second point. This experimental definition of the transition path
time distribution implies absorbing boundary conditions on the
dynamics.

The diffusion equation, or equivalently the Langevin equa-
tion describing the motion along a one dimensional reaction
coordinate x̃ is

@~x

@~t
¼ �1

z
@U

@~x
þ 1

z
Fð~tÞ (1)

where, �@U
@~x

is the force acting on the particle due to the free

energy surface U, z ¼ kBT

D
is a friction coefficient, kB denotes

Boltzmann’s constant, and F(t̃) is a Gaussian random force with
zero mean and (Dirac) delta function correlation

hF(t̃)i = 0

hF(t̃)F(t̃0)i = 2zkBTd(t̃ � t̃0) (2)
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Numerical simulation of the dynamics is based on the follow-
ing discretized and reduced diffusion equation

x tþ dtð Þ ¼ x tð Þ � d bUð Þ
dx

dtþ
ffiffiffiffiffiffiffi
2dt
p

R tð Þ (3)

where x = x̃/L is the reduced reaction coordinate, time is
rescaled as t = t̃D/L2 with D denoting the diffusion coefficient
and 2L denotes the experimental distance between the end
points at �L and L. In order to compare with experiment (see
Section 3), we consider L = 2.5 nm and time is rescaled using
the frequency factor 6 � 104 s�1 for the DNA hairpin and 3 �
103 s�1 for the PrP proteins.14,37 R(t) is a Gaussian random
number with zero mean and unit standard deviation. The
stochastic differential equation is solved using the Euler–Mar-
uyama method.60

In the master equation formalism, the system gets trapped
in different microstates from which it can escape to either side
by an Arrhenius rate law. The location of the microwells
is determined by discretizing the reaction coordinate x.
The distances between the microwells is assumed to be l.

The distance between the wells is taken such that if there are
N wells, the over all distance between the initial and final
barrier is l(N + 1). As may be seen from ref. 38 and 39, that the

continuum limit is obtained by letting l - 0 and n - N such
that the overall distance from right to left is kept fixed. The
potential of mean force in the resulting diffusion equation is
the profile of the barrier energies. Since we want to compare
between the diffusion dynamics of a parabolic barrier obtained
from the continuum limit of a master equation, we take the
profile of the barrier heights to be that of a parabolic barrier,
while the well depths have a Gaussian random component
such that

P bUj

� �
/ exp �

b2 Uj � Uj

� �� �2
2e2

" #
(4)

where, bhUji is the mean well depth of all the wells taken to be
�1 in all computations described below. e2 denotes the var-
iance of the random part of the potential. The model barrier
potentials used in this work are plotted in Fig. 1 and consist of
5, 11, 21 and 31 microstates respectively. We used e = 0.3 for all
the calculations. We note that the free energy profiles used
throughout this work are continuous. The term ‘‘rugged’’
corresponds to the randomness of the well depths of the
microstates. The concept of ruggedness in free energy land-
scapes is well established, as may be seen in some representa-
tive publications.42,47–49,61–64

Fig. 1 Plots of the discretized potential barriers and wells used in the numerical study of the master equation dynamics. Panels (a)–(d) show the profiles
for 5, 11, 21 and 31 micro-wells respectively. The brown dotted line denotes the smooth parabolic barrier background. 1, 2 and 3 denote different
realizations of stochastic well depths. Reduced units are used for the energies and distances.
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To obtain the transition path time distribution from the
diffusion equation, one needs to consider that the trajectories
enter the transition region by crossing the left boundary located
at �L and arrive at the right boundary L without returning to
the left boundary. The transition path time distribution p(tTP) is
then defined as

p tTPð Þ ¼ p L; tð ÞÐ1
0 dtp L; tð Þ

(5)

where, p(L,t) is the numerically determined histogram of times
with a bin width or equivalently a (reduced) time interval of Dt =
0.2. In all cases considered, the distribution decayed by the time
T = 10 so that 50 time bins were sufficient. It should be stressed,
that any single trajectory was stopped the first time it reached the
right boundary. The histogram is then taken for all transition path
trajectories. The mean transition path time htTPi is defined as

tTPh i ¼
ð1
0

tp tTPð Þdt: (6)

The calculation of the transition path time does not require
a smooth potential when it is evaluated using the master
equation. To obtain the transition path time distribution from
the master equation, we use an algorithm based on the kinetic
Monte Carlo simulation.65 The master equation approach is the
same as the nearest neighbor jump model for a continuous
time Markov chain where transitions from one state to another
are governed through the forward and backward jump prob-
abilities. The detailed steps are as follows. First, using the
Arrhenius law, we evaluated the jump probability for going
forward PF and backward PB from the j-th well

PF ¼
exp �b Ujþ1=2 �Uj

� �� �
exp �b Ujþ1=2 �Uj

� �� �
þ exp �b Uj�1=2 �Uj

� �� �
PB ¼

exp �b Uj�1=2 �Uj

� �� �
exp �b Ujþ1=2 �Uj

� �� �
þ exp �b Uj�1=2 �Uj

� �� �
(7)

where, Uj�1/2 denotes the barrier height in either direction and
Uj is the well depth of the jth micro-state. Then we generate a
uniform random number r1 A [0,1]. If r1 o PF, a forward jump
occurs, otherwise the jump is backwards. For the Markov
process used, the waiting time distribution is exponential.
The waiting time for the jump or escape from any one of the
microstates was obtained by choosing a second random num-
ber r2 A [0,1] as

Dt ¼ �ln r2
ktot

(8)

where, ktot = kF + kB. The forward (kF) and backward (kB) jump
rates are defined as follows

kF ¼ n exp �b Ujþ1=2 �Uj

� �� �
kB ¼ n exp �b Uj�1=2 �Uj

� �� � (9)

Here, the frequency prefactor n is taken to be a parameter in the
theory, its magnitude is chosen such that the time scales agree
with experiment.

We assume that initially at t = 0 the system is located at the
j = 0 micro-state. We then impose absorbing boundary condi-
tions at the j = 0 micro-state and at the j = N micro-state. The
time is then advanced in steps of Dt and is stopped when the
system reaches the final microstate. The histogram of final
time values then gives the transition path time distribution
with the condition of absorbing boundary at both ends.

2.2 Numerical results

The diffusion equation is solved by iterating eqn (3) with a
reduced time step 10�3 for 106 trajectories imposing an absorb-
ing boundary at the initial and final positions. Our earlier
work37 indicated that the experimentally measured transition
path barrier height is B3kBT so we use the same in our
numerical studies presented in this paper. We will study the
dynamics for a smooth reduced parabolic barrier

bU(x) = �bUTPx2; �1 r x r 1 (10)

where x = x̃/L.
For the master equation dynamics the rate for the nearest

neighbor jump is evaluated using eqn (10) where the value of the
prefactors (n) are chosen to take the (reduced) values of 18, 90, 320
and 700 for the models with 5, 11, 21 and 31 microstates,
respectively. These prefactors assure that the magnitude of the
mean transition path times obtained from both diffusion and
master equation models are the same. They are obtained for each
model using the relation between the diffusion coefficient (D) and
the jump rate (k) for a one dimensional system random walk39,66

D ¼ 1

2
kl2 (11)

where l is the distance between the nearest neighbor microwells.
The barrier heights for each microstate model are taken so

as to fit the parabolic barrier shape. However, as described
above, the well depths are obtained from a Gaussian distribution
with a mean well depth bhUji =�1. As a result the average barrier
height for the nearest neighbor jump is assumed to be 1.

The transition path time distribution obtained from the
diffusion equation is compared with the results obtained from
the master equation in Fig. 2. The brown dotted line shows the
distribution obtained from the diffusion equation. In each
panel, the solid red, dot-dash green and dashed blue lined show
the transition path time distributions obtained from the master
equation for three different realizations of the random wells.
Panels (a)–(d) correspond to 5, 11, 21 and 31 microwells used in
the master equations. Each distribution was obtained from 106

trajectories propagated for up to 3 � 103 time steps. Comparison
of the plots shows that the master equation distributions con-
verge to the diffusion equation result as the number of micro-
states increases, irrespective of the precise realization of the
random well depths. The resulting mean transition path times
(see eqn (15)) are compared in Table 1. These mean time values
show that although the mean time is roughly the same, it does
change somewhat randomly, depending on the model used.

For a more quantitative comparison of the distributions we
computed the Pearson correlation function and mean squared
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deviations of the master equation models with respect to the
diffusion equation. The Pearson correlation function and mean
squared error are defined as

Pxy ¼

P
i

xi � �xð Þ yi � �yð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i

xi � �xð Þ2
P
i

yi � �yð Þ2
r (12)

M ¼ 1

N

XN
i¼1

xi � yið Þ2 (13)

where xi and yi denote two different data sets. If Pxy = 1 and M =
0, the two data sets are identical. The quality of fitting is
examined for the best fit results obtained from the different
runs shown in Fig. 1 using master equation dynamics.

The resulting quality of fit is provided in Table 2. The fitting
parameter is calculated only for the best fits obtained from
different realizations of random microstate well depths in the
models. As noted qualitatively from Fig. 1, it is evident from
Table 2 that the correlation between data sets increases and the
mean squared error decreases as the number of microstates
increases. The trend suggests the validation of the diffusion

equation as a model for the transition path dynamics, provided
that one may assume a sufficient number of microstates brid-
ging the path from the unfolded to the folded states. When the
number of microstates is greater than 20 the quality of the
fitting coefficients is almost unity and remains unchanged.

3 Fitting the experimentally measured
data with master equation modeling

In our earlier study, we showed that when analyzing the
experimentally measured transition path time distribution
using the SE and absorbing boundary conditions one observes

Fig. 2 Comparison of the normalized (to unity) transition path time distributions found using the diffusion and master equations for different potential
barrier models consisting different numbers of microwells 5, 11, 21 and 31 respectively. 1, 2 and 3 indicate different barrier realizations. (a–d) Denote plots
for different models with different prefactors for the rate of a jump (n) (a) 5 microstates with n = 18 (b) 11 microstates with n = 90 (c) 21 microstates with
n = 320 (d) 31 microstates with n = 700.

Table 1 Comparison of the mean transition path times obtained from the
diffusion equation and master equation models presented in Fig. 1.
Reduced units are used throughout

Diffusion equation Master equation

0.42 0.36 (1), 0.42 (2), 0.34 (3) (5 microstates)
0.39 (1), 0.41 (2), 0.36 (3) (11 microstates)
0.41 (1), 0.39 (2), 0.35 (3) (21 microstates)
0.42 (1), 0.38 (2), 0.36 (3) (31 microstates)
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a long time tail. We found that a simple bell shaped potential of
mean force cannot account for it. It was necessary to add a
potential well around the barrier top. This well served as a
‘‘trap’’ accounting for the long time tail.37 Here we will show
that good agreement with experiment is obtained also when the
dynamics is governed by the master equation.

For the diffusion equation solution a piecewise continuous
potential is constructed. For the DNA hairpin the parameters
are taken to assure the measured activation energy of B10kBT.
The potential chosen is:

Region-I

8.1(x + 2)4 � 9.1; �3 r x r �1 (14)

Region-II

�92.571(x + 0.825)2 + 1.835; �1 r x r �0.795 (15)

Region-III

3.493x2 � 0.456; �0.795 r x r 0.795 (16)

Region-IV

�92.571(x � 0.825)2 + 1.835; 0.795 r x r 1 (17)

Region-V

8.1(x � 2)4 � 9.1; 1 r x r 3 (18)

A similar piece-wise continuous potential is constructed for
the PrP protein. Here, the Arrhenius activation energy is B5kBT
and the potential is.

Region-I

3.4(x + 2)6 � 4.4; �3 r x r �1 (19)

Region-II

�40.8(x + 0.75)2 + 1.55; �1 r x r �0.68 (20)

Region-III

4.2x2 � 0.592; �0.68 r x r 0.68 (21)

Region-IV

�40.8(x � 0.75)2 + 1.55; 0.68 r x r 1 (22)

Region-V similarly, on the right side of region-III (eqn (20)) is

3.4(x � 2)6 � 4.4; 1 r x r 3. (23)

These two potentials are plotted in Fig. 3. The parameters
related to the equations for the free energy for both proteins
are obtained using the fact that the transition path covers half
of the distance between the folded and unfolded minima.

Assuming that the start and end points of the transition region
are �1 and using the known experimental activation energy,
one can readily determine region I of the potential. Parameters
for regions II and III are obtained using the conditions of
continuity of the potential and its derivative. The well depth in
the central region is chosen such that the mean transition path
time would agree with the known experimental time. As the
potential is symmetric the parameters for regions IV and V are
the same as regions II and I respectively.

To apply the master equation modelling, the potentials are
discretized using either 11 or 21 microstates keeping the
potential energy profile defined by the potentials shown in
Fig. 3. The resulting surfaces are shown in Fig. 4. The upper two
panels show the microstate structure used for the DNA hairpin
with 11 and 21 wells. As in Fig. 1 we employed three different
random realizations of the profile of the microstates, these are
shown as the solid (red) line, dotted (green) line and dashed
(blue) line. The same is shown for the PrP protein in the bottom
two panels of the figure.

One may well ask how does one determine the number of
microstates needed for a given system. The method we are
suggesting, which is based on knowledge of the experimental
time distributions is as follows. One initiates the fit with a
small number of microstates of the order of 3–5, choosing an
odd number of microstates to maintain symmetry. One then
must ascertain whether the experimental mean time agrees
with the model as well as use quantitative measures such as the
Pearson correlation coefficient (PCC) and mean squared error
(MSE) to assure that the simulation gives good agreement with
the measured time distribution. As the number of microstates
is increased, one will find that the fitting measures saturate.
The number of microstates needed to simulate the experiment is
the number needed to reach the saturation region. Inspection of
Table 1 shows that in the cases studied here, 21 microstates are
needed for the quantitative description of the transition path
time distribution.

Table 2 Comparison of fitting coefficients for transition path time dis-
tributions obtained with the diffusion and master equations

No. of microstates PCC(Pxy) MSE(M)

5 0.92 0.13
11 0.96 0.06
21 0.98 0.03
31 0.98 0.03

Fig. 3 Model potential energy surfaces for the DNA hairpin and PrP
protein. The transition path covers half of the distance between the
minima of the folded and unfolded states. The transition path region is
extended to obtain a full potential energy surface where the barrier height
is fitted to the experimental estimate.14
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A comparison between the theoretical transition path time
distributions obtained from the diffusion and master equations
with the experimentally measured distributions for the DNA
hairpin and PrP protein molecules is shown in Fig. 5. The
experimental distributions are adapted from ref. 14 and nor-
malized to unit area, as are the theoretical distributions shown
in the figure. The time scale is reduced, using the experimen-
tally fitted frequency factor 6 � 104 s�1 for the DNA hairpin and
3 � 103 s�1 for the PrP protein. The frequency factor n is chosen
as n = 90 for the 11 microstates model, while n = 320 is chosen
when using 21 microstates. The solid (red), dotted (green) and
dashed (blue) lines are for the three different realizations of the
microwells, shown in Fig. 4.

As may be observed in all panels of the figure, good agree-
ment between theory and experiment is obtained, irrespective
of the theoretical model used. As few as 11 microstates are
sufficient to account for the measured distributions. These
results further validate the need to include a trap in the
transition path region that leads to the long time tail in the
time distribution. In this context, following our work, Wood-
side and co-workers recently observed brief pauses in the
transition paths, indicating the existence of ruggedness or traps
in the transition region, negating models based on a simple
barrier free energy profile.59 These results further verify our
claim that the transition path barrier height is B3kBT barrier

height37 rather than B1kBT as found in ref. 14. We believe that
our result is realistic, especially when keeping in mind that the
activation energy for the folding–unfolding transition is of the
order of B10kBT while the transition path begins and ends at
half the distance between the minima of the folded and
unfolded bio-molecules.

The respective mean (reduced) transition times obtained
from the diffusion and master equations are compared with
experiment in Table 3 using the diffusion equation and the
three different realizations of the microstates, as shown in
Fig. 4. As may be seen from the table, the agreement between
theory and experiment is reasonable, for all models considered,
although it improves when using 21 microstates instead of 11.

4 Discussion

The most common framework used to analyze bio-molecular
folding and unfolding processes is the diffusion equation.
Many theoretical studies have used a Smoluchowski equation
in the presence of a potential barrier to describe transition path
properties. The major thrust of the present work was to obtain
insight as to why a diffusion equation is at all a valid tool. Why
is it justified on a more microscopic level? What is the micro-
scopic source of friction which governs the diffusion dynamics?

Fig. 4 Microstate profile of the potentials used to simulate the experimentally measured transition path time distributions. For further explanations, see
the text.
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It is well accepted that the free energy landscape along the
reaction path is not ‘‘smooth’’ but rugged with many micro-
states along the way. To account for this we presented results
based on numerical solution of a master equation for the
nearest neighbor hopping transition between microstates in
the presence of absorbing boundary condition. In this picture,
the friction comes from the mean residence time of the system
in each of the microstates before escaping them. The mean
residence time is long as compared to internal motion within a
bio-molecule, leading to diffusive like dynamics as evidenced
by comparison with a suitably chosen diffusion equation.

The comparison between transition path time distributions
obtained using the diffusion and master equation dynamics
shows that agreement increases with the number of micro-
states. One can obtain quite good agreement between mean
transition times even for less than ten microstates, however

inspection of the transition path time distribution shows that
typically one would need two dozen microstates to obtain
similar results. On the other hand, analysis of experimentally
measured transition path time distributions showed that one
can mimic the experimental results using as few as 11 micro-
states. This comparison also further validates our recent con-
clusion that the long time tail found in the experimental
distribution indicates the existence of an intermediate well
along the reaction path whose well depth is a few kBT. The
master equation simulation also confirms that the transition
path barrier is B3kBT height as also obtained from an analysis
based on the diffusion equation.37

The present study suggests that in principle, there is no
need to use the simplistic diffusion equation dynamics to
analyze transition path time distributions. A master equation
approach, which is arguably more realistic due to the rugged

Fig. 5 Comparison between experimental and theoretical (diffusion and Master equations) normalized transition path time distributions. Panels (a and b)
show the comparison for the DNA hairpin using 11 and 21 microstates respectively. Panels (c and d) show the same for the PrP protein.

Table 3 Comparison of experimental and theoretical mean transition path times for the DNA hairpin and PrP protein. Further explanations are given in
the text

Experiment Diffusion equation Master equation

DNA hairpin 1.62 � 0.12 1.69 1.73(1), 1.54(2), 1.47(3) (11 microstates)
1.51(1), 1.68(2), 1.69(3) (21 microstates)

PrP protein 1.50 � 0.30 1.53 1.46(1), 1.34(2), 1.57(3) (11 microstates)
1.51(1), 1.45(2), 1.50(3) (21 microstates)
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energy landscape inherent to it, may lead not only to similar
conclusions, but may also provide more insight as to the
dynamics. For example, the well needed to obtain agreement
with the long time tail experimental data itself is not ‘‘smooth’’
as in the diffusion equation, but contains a number of micro-
states along it, as may be discerned from Fig. 4.

On the other hand, the diffusion equation has the distinct
advantage that sometimes, as with a parabolic21 or cusped
barrier the solution is analytic.33,34 The fact that the master
equation dynamics may lead to diffusion dynamics provides
some justification for employing such analytic models, which
shed light on the diffusional dynamics.

Finally, we do note that also the Markov modelling pre-
sented in this paper is an idealised description of the transition
between folded and unfolded conformations of bio-molecules.
Perhaps the present study provides further impetus for mole-
cular dynamics studies on ‘‘realistic’’ force fields which include
all molecular degrees of freedom.23,67,68 These may then be
compared with Markov and diffusion equation studies.
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