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Nanosecond solvation dynamics of the hematite/
liquid water interface at hybrid DFT accuracy
using committee neural network potentials†

Philipp Schienbein * and Jochen Blumberger *

Metal oxide/water interfaces play an important role in biology, catalysis, energy storage and photo-

catalytic water splitting. The atomistic structure at these interfaces is often difficult to characterize by

experimental techniques, whilst results from ab initio molecular dynamics simulations tend to be

uncertain due to the limited length and time scales accessible. In this work, we train a committee neural

network potential to simulate the hematite/water interface at the hybrid DFT level of theory to reach the

nanosecond timescale and systems containing more than 3000 atoms. The NNP enables us to converge

dynamical properties, not possible with brute-force ab initio molecular dynamics. Our simulations

uncover a rich solvation dynamics at the hematite/water interface spanning three different time scales:

picosecond H-bond dynamics between surface hydroxyls and the first water layer, in-plane/out-of-

plane tilt motion of surface hydroxyls on the 10 ps time scale, and diffusion of water molecules from the

oxide surface characterized by a mean residence lifetime of about 60 ps. Calculation of vibrational

spectra confirm that H-bonds between surface hydroxyls and first layer water molecules are stronger

than H-bonds in bulk water. Our study showcases how state of the art machine learning approaches

can routinely be utilized to explore the structural dynamics at transition metal oxide interfaces with

complex electronic structure. It foreshadows that c-NNPs are a promising tool to tackle the sampling

problem in ab initio electrochemistry with explicit solvent molecules.

1 Introduction

Interfaces between transition metal oxides and liquid water
attracted much attention from various research disciplines
ranging from heterogeneous catalysis, colloid chemistry, biology,
energy storage to photocatalysis.1–8 Depending on the microscopic
property of interest, experimental techniques are available which
can elucidate liquid/solid interactions: structural properties, such
as the surface termination and the formation of water layers at
the surface can be obtained from crystal truncation rod (CTR)
experiments.9 Sum frequency generation (SFG)10–13 and attenu-
ated total reflection (ATR) IR14 spectroscopy can measure the
molecular vibrations at the interface and therefore give valuable
insights into the dynamics at the interface. Such experiments can
also be used to monitor the H-bond composition at an oxide
metal/water interface as a function of pH.15 When it comes to
interpreting experiments, atomistic molecular dynamics (MD)

simulations are an invaluable tool to provide a bottom-up picture.
For example, it was recently unveiled that rapid O atom exchange
happens across the ‘‘r-cut’’ (1%102) hematite/water interface16 in a
joint experimental and computational study, proving that this
interface is highly reactive.

Force field MD simulations have often been conducted on
oxide/water interfaces, see e.g. ref. 17. However, metal oxide
interfaces are generally reactive, be it O atom exchange16 or
frequent proton transfer between the metal oxide and water,18

and some materials feature a complex electronic structure.19

Such effects are generally not captured by standard non-
polarizable force fields. It is therefore desirable to employ
ab initio MD (AIMD, also called ‘‘DFTMD’’) simulations,20

where the full electronic structure is explicitly considered using
DFT. Such simulations have already been done for numerous
systems,21–33 where mostly hybrid DFT functionals have been
used. A large disadvantage of hybrid functionals is, that they
are generally much more expensive compared to GGA func-
tionals. MD simulations based on hybrid DFT are therefore
computationally demanding and also limited to short times
(about 10 picoseconds) and relatively small system sizes.
Sampling dynamical properties, e.g. rate constants or residence
lifetimes, require that the event of interest happens frequently
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along the MD trajectory. However, if the desired process is slower
than the trajectory length (so-called ‘‘rare events’’), the corres-
ponding time correlation functions cannot reliably be converged.
Notably, dynamical properties can also suffer from finite-size
effects due to the limited size of the simulation box, which are,
e.g. well known for the self-diffusion coefficient in a periodic
simulation box.34–36

In the last years, Machine Learning (ML) models have been
introduced to run MD simulations with the aim to replace the
expensive DFT calculations by a computationally less expensive
model while keeping the error reasonably small. A widely
applied ML approach are Behler–Parrinello Neural Network
potentials (NNPs),37 where atomic energies are trained for each
atom species. The total energy of a given configuration is then
obtained as the sum of all atomic energies. Here, so-called
symmetry functions are used to transform the Cartesian coor-
dinates into a representation based on intermolecular distances
and angles only. Such NNPs have successfully been applied to a
number of systems, including bulk liquid water,38 metal/water
interfaces, e.g. Cu,39 and also metal oxide/water interfaces, e.g.
ZnO18 and LixMn2O4.40 Very recently, so-called committee Neural
Network potentials (c-NNP) have been introduced41 which are
based on Behler–Parrinello NNPs. In a nutshell, a committee (or
ensemble) of NNPs yields an average energy and a corresponding
variance. The variance can be interpreted as a measure how
‘‘good’’ the energy prediction of a given configuration is and
thereby allows active learning and automated fitting approaches
which dramatically reduce the number of expensive training data
needed compared to standard NNP training approaches.

In this work, we have trained a c-NNP for the hematite/liquid
water interface at the hybrid DFT level of theory to uncover the
structural dynamics of water at the interface over multiple time
scales, from pico to nanoseconds. Hematite (Fe2O3, ‘‘rust’’) is
one of the most abundant metal oxide compounds on earth.42

In the field of photocatalysis, the potential use of hematite for
water splitting2,7 as a source of ‘‘green’’ hydrogen motivated
numerous studies including nanostructuring43 and doping.44

Despite all the efforts, hematite still suffers from slow reaction
kinetics and a large overpotential which hinders its usage in
real photoelectrochemical cells.2,45 To address these practical
problems, a deep understanding of the atomistic processes
(structural and dynamical) at the hematite/liquid water inter-
face is key. Hematite is known to feature a complex electronic
structure due to the antiferromagnetic spin pattern19 and the
interface is a highly reactive region,16 where charge transfer
and polarization effects are expected to be of major importance.
We opt to describe the hematite/water system with a modified
hybrid HSE06 functional, where the fraction of exact exchange
is reduced from 25 to 12%. This functional was shown to give
excellent agreement with experimental measurements for a
wide range of different properties including crystal structure,
band gap, antiferromagnetic ordering and spin density
distribution.26,46 The trained c-NNP model allows us to signifi-
cantly extend the simulation time (up to nanoseconds) and the
size of the simulation box (up to about 3000 atoms). We show
that such time and length scales are required to converge

important dynamical properties such as mean residence life-
times and diffusion coefficients of surface water molecules.
This is clearly out of scope for explicit AIMD simulations,
especially when using hybrid DFT, without the aid of ML. Note
that even longer simulation times and larger boxes are generally
possible using ML, but do not add any significant additional value
to the physical properties discussed in this study. Using the c-NNP
simulations, the aim of this paper is to explore the dynamics of
water molecules at the hematite(001) surface. In particular, we are
interested in (i) rate constants for exchange of water molecules
between the surface and the bulk liquid, (ii) the intramolecular
vibrational signature of surface water molecules compared to bulk
water, (iii) self-diffusion of water at the interface, and finally,
(iv) which time and length scales are required to converge such
properties.

2 Computational details

A general issue in the context of machine learning potentials is
the generation of the training set, i.e. to select the configura-
tions used to train the model. Recently, automated, entirely
data-driven approaches to select configurations into the training
set have been successfully applied in many different applications,
see e.g. ref. 47–49. It could be shown that such automated fitting
generally improves the accuracy of the training, reduces the risk of
overfitting, and also minimizes the number of configurations
needed for training.41,50,51 Herein, we employ eight independent
Behler–Parrinello Neural Network potentials which together form
a committee, following the training protocol introduced in ref. 41
and 51. To calculate the energy of a single configuration, each of
the eight NNPs is evaluated and the average of all committee
members yields the total energy of the given configuration. Most
importantly, also the variance of the energy can be calculated
which is a measure of how well the committee members agree on
that predicted energy. A large variance indicates that the predicted
energies of the individual committee members are very different
and therefore the committee as a whole is uncertain about the
total energy of that configuration. As such, the variance can be
interpreted as a measure of how good this configuration is known
and it can be used to identify ‘‘most unknown’’ configurations
which is utilized in the training protocol, see below.

Here, we train our c-NNP based on a two-step procedure:
In our previous work,26 about 15 ps of AIMD simulation data
have been generated in total. From these available previous
data, we randomly selected 20 configurations and trained a
c-NNP. Thereafter, this c-NNP is used to predict the energies of
all configurations of the same 15 ps AIMD trajectory. The 20
‘‘most unknown’’ configurations are automatically selected,
added into the training set, and a new c-NNP is trained. This
cycle was repeated 10 times, such that 200 configurations are
contained in our training set in total. In the second step, we
further use an active learning procedure41,51 to systematically
explore the phase space further and iteratively improve the
quality of the c-NNP. In that protocol, we run a MD simulation of
the hematite/water interface using the above trained preliminary
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c-NNP. While doing so, it is possible that new areas in the phase
space are visited, which have not been included in the training set
of the c-NNP yet. This manifests in an increase of the variance
because the committee members start to extrapolate beyond the
known training set and thus disagree on the energy. Importantly,
the c-NNP does not constrain the MD to sample only that portion
of potential energy surface which is already known, but allows to
explore unknown regions. This is also desired to iteratively
include more and more training data to mimic the full accessible
DFT potential energy surface at a given temperature as close as
possible. In full analogy to step one, we now take the 10 most
unknown configurations (the ones with the largest variance) from
the MD simulation. The forces for these unknown configurations
are then calculated by explicit DFT calculations using the hybrid
HSE06 functional52 with 12% HFX46 supplemented by D3 disper-
sion corrections;53 the details of the electronic structure calcula-
tions are described in Section S1 in the ESI.† We then compute
the RMSE between the calculated energies/forces from the c-NNP
and the explicit DFT calculation. If the RMSE is small enough, the
training of the c-NNP is finished. Otherwise, the 10 new DFT
energies and forces are added to the training set, a new c-NNP is
trained and the whole process is repeated until the desired
accuracy is met. Note that by adding only the most unknown
configurations to the training set it is also ensured that only such
configurations enter which are sufficiently different from the
existing training set, i.e. which have not been added before. This
way, 200 configurations were added to the training set such that
the final training set is composed of only 400 statistically inde-
pendent configurations.

All c-NNP simulations have been conducted using CP2k54

and the training of the individual Behler–Parrinello NNPs
forming the committee has been done using n2p2.55 The final
c-NNP used for production was validated against the previous
explicit AIMD simulations26 and unknown data which was
generated by the c-NNP simulations. Thereby, we ensure that
the trained c-NNP mimics the explicit AIMD correctly as elabo-
rately shown in Section S2 in the ESI.† For the final c-NNP we
obtain a total force RMSE with respect to the unknown valida-
tion set of 149.8 meV Å�1. This RMSE agrees well with previous
trainings of NNPs, where similar force RMSEs have been
obtained, e.g. for liquid water at a Cu slab (207.5 meV Å�1),39

LixMn2O4
40 (240.0 meV Å�1) or liquid water at MoS2 slabs51

(190.1 meV Å�1).
It is well known in the literature that PBE functionals tend to

overbind water–water interactions56–59 resulting in too rigid
structures and slower dynamics than experimentally measured.
This also holds true for PBE derived functionals, such as the
HSE06 and PBE0 hybrid functionals.60,61 One possible way to
counteract this overbinding effect is to increase the simulation
temperature until the correct experimental quantities are recov-
ered. For PBE (and derived hybrid functionals) an effective
simulation temperature of 400 K has been shown to reproduce
the structural dynamics, in terms of radial distribution func-
tions and the self-diffusion coefficient, of bulk liquid water at
ambient conditions satisfactorily.56,60–62 Indeed, we elaborately
show in Section S4 in the ESI† that HSE06-D3 water at 400 K

slightly overestimates the dynamics, but still slightly overbinds
the structure and thus offers a very good compromise to describe
ambient liquid water at 300 K correctly in terms of both, the
structure and the dynamics. For this reason, we opt to run all
simulations in this paper at that effective simulation temperature
of 400 K to correctly model the structural dynamics of real liquid
ambient water at 300 K.

The trained c-NNP makes possible the use of larger system
sizes. We employ four different system sizes to explore the
water dynamics at the hematite/water interface: the first (and
smallest) box is taken from our previous simulations26 contain-
ing 93 water molecules and a height (box length perpendicular
to the hematite surface) of about 47 Å and a surface area of
about 10 � 10 Å2. We then expanded the dimension perpendi-
cular to the slab to 80 Å and increased the number of water
molecules to 208 while keeping the water density constant at
0.996 kg L�1. Finally, we increased the surface area of the
hematite surface by a factor of two (‘‘(1 � 2)’’, 416 water
molecules, 1560 atoms) and by a factor of four (‘‘(2 � 2)’’, 832
water molecules, 3120 atoms). A more detailed description and
illustration of the employed boxes is given in Section S3 and
Fig. S2 in the ESI.† For each box, a c-NNP simulation in the
canonical (NVT) ensemble is conducted for a total trajectory
length of 1 ns. From this NVT simulation we took 10 equidi-
stant configurations as starting points for subsequent simula-
tions in the microcanonical (NVE) ensemble. The NVE
simulations were run for 400 ps each using a timestep of
0.5 fs. All the presented results in the following are averaged
over 10 NVE simulations of the largest box, (2 � 2), except
explicitly stated otherwise. We opted to use only the NVE
simulations to obtain the presented results herein, because
there are some properties (vibrational density of states, diffu-
sion coefficient) which are calculated from atomic velocities.
Within a NVT simulation, these velocities might be affected by
the thermostat introducing artificial effects in those properties.
Arguably, the influence of most thermostats is generally small,
especially if the simulations are well equilibrated. However, if
additional NVE simulations are affordable, this issue is guaran-
teed to be circumvented. Moreover, from a practical point of view,
many independent NVE simulations can trivially be parallelized
and block averaged.

Noteworthy, the hematite slab is terminated with hydroxide
groups, see Fig. S2 in the ESI.† Given the length of the generated
trajectories, one might expect that some of the OH groups
dissociate during the simulation, but we do not find any of such
dissociations. One might wonder if this could be a problem of
the employed c-NNP potential instead of conducting explicit
AIMD simulations. Generally, NNPs have shown to be reactive,
e.g. at the ZnO/water interface,18 where proton transfer from the
surface to the adjacent water molecules could be sampled using
NNPs. Moreover, our employed active learning scheme described
above, allows the MD to freely explore the phase space and does
not put any constraint on the potential energy. Therefore it is
more likely that dissociation does not occur due to physical
reasons. The pKa value describing the deprotonation of these
hematite(001) OH groups has been estimated before29 to be
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18.5 indicating that the deprotonation is highly improbable; in
fact, a terminal deprotonated O� group would even be a quite
strong base. This explains why the terminal OH groups do not
dissociate along the trajectories, even when going to nano
second time scales.

3 Results

The layering of the water molecules at the hematite(001) sur-
face has already been discussed in our previous publication26 in
detail, however, understanding the structure is key for the
following analyses, therefore the main conclusions of our
previous, short AIMD simulations are briefly summarized here.
In Fig. 1 we show the atom density of water molecules as
a function of distance to the hematite slab which is located at
0 Å by convention. To further illustrate the interface we also
present a snapshot from our c-NNP simulation. In a nutshell,
we find that the terminating oxide hydroxyl groups are either
oriented parallel to the slab (maximum at 0 Å, ‘‘in-plane’’
orientation) or point towards the liquid phase (maximum at
around 1 Å, ‘‘out-of-plane’’ orientation). We find that a first
water layer is clearly formed as deduced from the prominent
peak of the O density around 2.5 Å. The second peak of the O

density is located around 5.5 Å and both maxima are separated
by a broad minimum indicating that the first layer is well
distinguishable from the water molecules beyond. The OH
bonds of the water molecules can point towards the oxide slab
which is indicated by a prominent maximum of the H atom
density around 1.7 Å. If the oxide hydroxyl group points towards
the liquid phase or if a water OH group points towards the
oxide, H-bonds are formed in between which is illustrated by
the simulation snapshot.

In Fig. 1 we also compare the atom densities as obtained by
the previously published explicit AIMD simulations (pico-second
timescale) with the ones obtained by the new c-NNP simulations
(nano-second timescale). First, we deduce that the trained c-NNP
simulations qualitatively recover the very same layering as
the explicit AIMD simulations as expected. Quantitatively, we
observe that the immediate layering at the slab up to about 3 to
4 Å is described well with the explicit AIMD simulations.
At distances further away, the structure becomes much less clear
because the density simply is not fully converged statistically.
The c-NNP simulations adding about three orders of magnitude
more data are fully converged also at large distances. In terms of
the structure, explicit AIMD simulations are therefore sufficient
to properly describe the immediate surrounding of the slab
(in terms of the statistical quality of the results), however, did
not provide enough data to converge the structure at larger
distances.

The kinetics of water exchange between the first and second
or higher water layers can be obtained using the stable-state-
picture (SSP) introduced by Laage and Hynes.63 Within this
technique, a time correlation function

CðtÞ ¼ 1� 1

N

XN
i

pðiÞr ð0ÞpðiÞp ðtÞ
D E

(1)

is introduced, where p(i)
r (t) and p(i)

p (t) are step functions, being
unity if the probed water molecule i is in the reactant state (first
solvation layer) or in the product state (settled outside the first
layer), respectively, at time t and zero otherwise. The sum runs
over all water molecules N which are settled in the first
solvation layer at t = 0; see Section S6 in the ESI† for the
geometrical definition of the layers. The special feature of the
SSP is, that the reaction is only counted as complete, if
the product state minimum is narrowly reached, i.e. the mole-
cule is deeply ‘‘settled’’ in the product state. Thereby, it is
highly unlikely that the same molecule immediately moves
back into the reactant state (‘‘recrossing’’) and we obtain that
time until the molecule finally left the first solvation layer. The
exponential decay of C(t) yields the average residence lifetime,
t, in the first layer and the corresponding rate constant k = 1/t.

In Fig. 2 C(t) is shown as a function of time. We observe that
the time correlation function slowly but systematically con-
verges from a total trajectory length of 200 to 400 ps. Note that
the shortest length considered here is already about ten times
longer than the original AIMD simulations26 and is thus clearly
out of scope for present-day AIMD simulations at hybrid
DFT level. The inset shows the resulting residence lifetimes t

Fig. 1 Side view of the water layering at the hematite slab (top), in the
previously26 used 10 � 10 � 47 Å box, see Section S3 in the ESI† for details,
where Fe, O, and H atoms are painted ochre, red, and white, respectively.
The blue horizontal lines illustrate the periodic box. Atom densities
(bottom) obtained from the c-NNP simulations trained to mimic the hybrid
HSE06 functional in this work of H atoms (filled blue curve) and O atoms
(filled purple curve). For reference, the previously published atom densities
obtained from explicit AIMD simulations of the terminal hydroxyl H atoms
(black solid line), of the water H atoms (red solid line) and of the water O
atoms (orange solid line) are shown. All atom densities are normalized by
their respective value in bulk ambient water. The average location of the
interfacial oxide O layer is set to a distance of 0 Å by convention.
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determined from the respective correlation functions as a
function of the total trajectory length. At 200 ps we find a
residence lifetime of about 32.5 ps, whereas at 400 ps we find
one of about 49 ps. The residence lifetimes fit remarkably well
using a standard exponential ‘‘limited growth’’ function ( f (t) =
S � (S � A) exp[�kt], where S, A, and k are fitting constants and
S marks the upper limit) which yields a residence lifetime of
about 58.3 ps for an infinitely long simulation. The error bars
are obtained by block averaging over the N water molecules in
eqn (1). Here, we have averaged over 485 water molecules being
in the first solvation layer at t = 0; recall that the data is
collected from 10 independent NVE simulations of 400 ps each
(4 ns in total), where each trajectory contained 3120 atoms
(largest box investigated). To decrease the statistical error
further, even larger simulation boxes or even more trajectories
would therefore be required. Given the size of the error bars for
the obtained residence lifetime, we estimate the error of our
extrapolated result to be about 10 ps.

Having determined the residence lifetime, we now turn to
H-bond dynamics at the interface. H-Bond lifetimes have been
computed from MD simulations for a long time, however, they
are no physical observables and depend on the H-bond defini-
tion used. Moreover, lifetimes itself can be defined in many
different ways, e.g. ‘‘continuous’’ and ‘‘intermittent’’ lifetimes64

or within the more sophisticated reactive-flux methodology,65

and their interpretation is slightly different. Here, we employ

the continuous H-bond lifetime definition64

CHBðtÞ ¼
1

Npairs

XNpairs

ij

hijð0ÞhijðtÞ
� �

(2)

where the sum runs over all Npairs H-bond pairs existing at t = 0
and hij(t) is a step function, equal to unity if the H-bond exists
up to time t and zero otherwise. The H-bond lifetime, tHB, can
again be determined from the exponential decay of CHB(t).
To determine if two water molecules are H-bonded we employ
a geometrical H-bond criterion (elaborately discussed in Sec-
tion S7 in the ESI†) which has successfully been used before for
a wide variety of water states, such as ambient liquid water62,66

or supercritical water.67,68 In Fig. 3 we present CHB(t) for
H-bonds, where both water molecules are located in the bulk
phase, where at least one water molecule is located in the first
solvation layer, and between hematite and water. As the two
CHB(t) of H-bonds between bulk water molecules and between
interfacial water molecules are on top of each other, we deduce
that the H-bond lifetime does not depend on the location of the
participating water molecules. We find an average water–water
tHB of 1.28 � 0.09 ps which agrees well with previous values of,
e.g. 1.41 ps using the RPBE-D3 GGA functional,67 and 1.2 ps
using the BLYP-D3 functional.69 Using the much more sophis-
ticated reactive-flux technique,65 Luzar and Chandler estimated
a H-bond lifetime of 1.4 ps for liquid ambient water. In case of
H-bonds between the metal oxide and the adjacent water
molecules, we find a slightly larger lifetime of 1.58 � 0.30 ps.

Previously we have reported that the exposed terminal OH
groups at the hematite surface can interchange between an
‘‘in-plane’’ (IP) and ‘‘out-of-plane’’ (OOP) configuration,26 where

Fig. 2 Time correlation functions according to eqn (1) describing the
residence lifetime of water molecules in the first solvation layer at the
hematite surface as a function of total simulation time, where the brown,
light brown, light green, and green curves correspond to total simulation
times of 200, 300, 350, and 400 ps, respectively. The inset shows the
corresponding residence lifetimes t which have been determined by fitting
an exponential function (see text) to the respective correlation function as
a function of total simulation length, using the same color code. The black
solid line shows an exponential growth function which fitted to all t values
to extrapolate towards an infinite simulation length. The black horizontal
dotted line indicates the limit of that growth function of 59.3 ps corres-
ponding to an infinite total simulation length.

Fig. 3 Continuous H-bond lifetime correlation functions64 CHB(t), see
eqn (2), for H-bonds between two water molecules in the bulk phase
(solid blue), between water molecules where at least one is located in the
first solvation layer (dashed red), and between water and the hematite
surface (green). The inset shows the residence lifetime of a terminal
hematite O–H group in the IP or OOP state, respectively, see Fig. 1 which
was calculated using the steady-state picture63 and eqn (1).
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the OH bond vector is parallel or perpendicular to the surface
plane, respectively (see Fig. 1). As shown in Section S6 in the
ESI,† these two states are clearly separated by a transition state.
We can therefore again apply the SSP in eqn (1) as employed
above for the residence time of water molecules in the first
solvation layer. The corresponding time correlation function is
shown in the inset of Fig. 3 and yields an average lifetime of
11.26 � 3.28 ps. The latter quantity describes how long the OH
group resides in the IP or OOP configuration until it inter-
changes and is settled in the respective other state. We find that
the correlation function is converged after roughly 300 ps total
simulation time. Therefore an extrapolation to an infinite simu-
lation duration, as it was done above for the residence time in
the first solvation layer, see Fig. 2, is not necessary. Conse-
quently, the IP/OOP interchange lifetime is significantly shorter
compared to the average residence time of water molecules in
the first layer lifetime, but substantially longer than the inter-
facial H-bond lifetimes.

A common (indirect) measure of the H-bond strength in
liquid water is the spectral signature of the intramolecular OH
stretch vibration.70 If a strong H-bond is formed between two
water molecules, the intramolecular OH bond is weakened,
causing a red-shift of the frequency and vice versa. Note that the
intermolecular H-bond stretch can also directly be measured in
bulk water using IR spectroscopy in the THz frequency range,
also at elevated temperatures and pressures.68,71 Still, the
intramolecular OH stretch has been used more frequently in
the past, because it is readily available from the vibrational
density of states (VDOS) of the H atoms,24,68,72 while the
intermolecular H-bond mode does not appear in the H or O
VDOS at all since charge transfer and polarization effects play a
crucial role.71 The H VDOS is computed as usual from the
Fourier transform of the velocity time auto correlation function
of H atoms

LHðoÞ ¼
ð1
�1

e�iot
XNH

i

~v
ðiÞ
H ð0Þ~v

ðiÞ
H ðtÞ

D E
; (3)

where -
v(i)

H (t) is the velocity of the i-th H atom at time t and the
sum runs over all selected H atoms NH. We again distinguish
between water molecules being in the first solvation layer at the
hematite surface and bulk water molecules. Note that as soon
as a water molecule leaves the first solvation layer according
to the SSP, see above, we stop evaluating its corresponding
H VDOS. Given that h-v(i)

H (0)-v(i)
H (t)i converges within a couple of

pico seconds and this is well within the mean residence time of
a water molecule in the first solvation layer (see Fig. 2), water
molecules stay sufficiently long to obtain reasonable time
correlation functions. Note that the calculated VDOS can be
used to qualitatively interpret measured vibrational spectra,
such as IR, Raman, ATR, or vibrational SFG spectra. However,
the VDOS does not exactly correspond to these techniques since
it only captures the motion of masses, while all named spectro-
scopies obey different selection rules, e.g. dipole moment
changes which can also modulate the spectrum.

In Fig. 4 we show LH(o) considering only H atoms belonging
to water molecules in the first layer compared to H atoms
belonging to water molecules in the bulk liquid phase. We find
that the OH stretch peak of bulk water molecules is centered
around 3500 cm�1 (black line). In case of the first layer water
molecules we further differentiate between OH vibrations
which are perpendicular to the surface and vibrations which
are parallel to the surface (blue line). This can trivially be
achieved by computing the time correlation functions in
eqn (3) for each Cartesian component individually; note that
the hematite surface is constructed such that it is parallel to the
xy plane. We find that water OH bonds which are oriented
perpendicular to the hematite surface are significantly red-
shifted compared to those which are oriented mostly parallel
to the slab. This observation can be understood in terms of
the structure (see Fig. 1), where we showed that water actively
donates H-bonds to the hematite slab. In such a case, the water
OH bond points towards the surface and the bond vector is
consequently also oriented perpendicular to the surface plane.
By dissecting the spectrum into parallel and perpendicular
contributions, we can thus deduce that H-bonds donated to
the hematite slab are stronger compared to H-bonds between
water molecules. Recall that the intramolecular OH stretch
vibration is an indirect measure of the H-bond strengths.70

A red-shift of that band indicates that the intramolecular
vibration is weakened due to a stronger intermolecular H-bond.
Remarkably, we cannot find any difference in H-bonding for
water/water H-bonds, even if at least one of the two molecules
is in the first solvation layer. This implies that the water/water
H-bond network at the surface is not changed compared to bulk,
but only the hematite/water H-bonds differ from H-bonds in bulk
liquid water.

Fig. 4 Vibrational density of states (VDOS) of H atoms (LH(o), eqn (3))
showing the intramolecular OH stretch of water molecules located in the
pure bulk phase (black) and in the first solvation layer at the hematite
surface. In the latter case, the VDOS is split into its xy components (blue)
and z component (red) which are parallel and perpendicular to the surface,
respectively.
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The dynamics of water molecules in a simulation box are
commonly quantified in terms of the self-diffusion coefficient.
To compute the diffusion coefficient we use the Green–Kubo
formulation74

DPBC ¼
1

dNW

XNW

i

ð1
0

dt ~við0Þ~viðtÞh i; (4)

where -
vi(t) is the center of mass velocity of the i-th water

molecule, d is the dimensionality, and the sum runs over all
NW water molecules of interest. Using the Green–Kubo (or
equivalently the Einstein relation), the self diffusion coefficient
perpendicular to the surface is not reasonably defined. The
reason is, that the particle is confined between the two limiting
hematite slabs in that dimension. Therefore, we restrict our-
selves to discuss the self-diffusion coefficient only in the two
dimensions parallel to the surface, D8

PBC, which can again
trivially be achieved by evaluating eqn (4) only along the xy
components. Moreover we again distinguish between water
molecules in the first layer at the hematite surface and bulk
water molecules. Technically, this distinction is made by
checking if a molecule is in the first layer at time zero or not;
recall that the velocity time correlation function converges
quickly, see above. Therefore, water molecules stay long enough
in the first solvation layer to yield a converged velocity auto
correlation function.

In Fig. 5 we show D8
PBC as a function of the simulation box

size. Remarkably, it significantly depends on the size of the
simulation box: upon increasing the dimension perpendicular
to the surface from 47 to 80 Å the diffusion coefficient is greatly
enhanced and after increasing the surface area from 100 to
400 Å2 the diffusion coefficient decreases again. Surprisingly, in
case of the 10 � 10 � 80 box, we find a diffusion coefficient of
the bulk molecules around 7 which is more than twice as large
as the diffusion coefficient calculated for a cubic bulk water box
using the very same c-NNP as for the hematite/water interface
(dashed horizontal line, see ESI† for details). Simultaneously,
the error bars behave the same way. We further observe, that
the diffusion coefficient of water molecules being in the first
layer is generally smaller compared to the one of water mole-
cules being in the bulk phase, irrespective of the simulation
box size.

The behavior of DPBC
xy as a function of the simulation box size

implies the presence of significant finite-size effects. It is well-
known for cubic simulation boxes that the diffusion coefficient
depends on the simulation box size and there are formulae
available to quantify this finite-size effect as well as to extra-
polate the value to its value at infinity.34,35 Finite-size effects for
confined systems are less well-known, however, they have been
reported.36 The authors find that for wide, thin pores, i.e. when
the simulation box size in the confined direction is large, but
the corresponding surface area is small, DPBC

xy ‘‘can be several
times larger than Dbulk’’.36 The opposite effect, i.e. that
DPBC

xy converges to its bulk value, is observed when the surface
area is large compared to the length of the confined dimension.

Qualitatively, we exactly find this behavior and thus ascribe it to
a finite-size effect arising due to the confinement.

Moreover, we applied the given finite-size correction equation36

(see eqn (S2) in the ESI†) to estimate the error of the self-diffusion
coefficient as a function of system size. The correction term
requires knowledge of the viscosity, Z, which we estimated from
pure bulk liquid water simulations, see Section S5 in the ESI†
for details. Due to the strong interactions between water
and the hematite slab, we expect that the viscosity of bulk
water molecules and molecules in the first solvation layer are
different. Therefore, we only applied the correction to bulk
water molecules in the hematite/water box and not to those
water molecules being in the first solvation layer. Due to these
two approximations (Z estimated for pure bulk water and the
probable dependence of Z on the distance from the slab), we
interpret the finite-size correction only as an estimate of the
error of D as a function of system size. Inspecting Fig. 5 again,
we indeed find that the finite-size correction is largest for the
80 Å box, where the surface area (about 10 � 10 Å) is compar-
ably small with respect to the 80 Å in the perpendicular
dimension. In contrast, for the largest box (20 � 20 � 80 Å)
the finite-size correction is quite small. Therefore, we conclude
that the calculated self-diffusion coefficients with the latter box
should be a reliable estimate. This conclusion is further sup-
ported by available experimental self-diffusion coefficient of
pure bulk liquid water which closely agrees with the calculated
one in the largest box. Importantly, when using explicit AIMD
simulations, usually only a single simulation box is affordable.
Fig. 5 shows that if a unsuitable simulation box is chosen

Fig. 5 Self-diffusion coefficient D8
PBC computed by eqn (4), but only

considering the x and y Cartesian components which are parallel to the
hematite surface as a function of system size. The simulation boxes and
simulation sizes are given in Section S3 in the ESI.† The red and orange
bars show D8

PBC of water molecules located in the first solvation layer at the
surface and in the bulk liquid phase, respectively. The error bars are
obtained by block averaging. The horizontal black dashed line represents
the experimental self-diffusion coefficient of pure bulk liquid water (2.61 �
10�5 cm2 s�1) obtained by NMR measurements.73
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accidentally, the calculated self-diffusion coefficients can poten-
tially be far off due to substantial finite-size effects.

4 Discussion

Merging all presented results together yields a rather complete
picture of liquid water dynamics at the hematite(001) surface.
First of all, we find that water molecules reside about 55–65 ps
(see Fig. 2) at the hematite surface on average, i.e. substantially
longer than the average H-bond lifetime. This implies that the
H-bond network between first layer waters and surface hydro-
xyls breaks and reforms many times until a molecule leaves
the surface for bulk. Generally, it seems that the first layer is
therefore tightly bound to the hematite surface. The bond
strengths of H-bonds can be assessed using H-bond lifetimes.
Here, we indeed find that the H-bond lifetime between water
and hematite (1.58 ps, see Fig. 3) is slightly larger than the
H-bond lifetime between two water molecules (1.28 ps). Moreover,
strong H-bonds are further supported by the VDOS, where we
found a substantial red-shift (see Fig. 4) of the intramolecular OH
bond of water molecules in the first solvation layer pointing
towards the hematite slab. Generally, such red-shift of the intra-
molecular OH bond is assigned to a stronger intermolecular
H-bond.70

A similar red-shift of the intramolecular OH stretch of water
was also measured previously at the Al2O3(11%20)/water interface
by vibrational SFG spectroscopy12 and assigned to strongly
H-bonded species. By computing the VDOS of interfacial water
molecules at Al2O3(0001) and SiO2(0001) interfaces, it could
also be shown that H-bonds donated to and accepted from the
oxide material can show different spectral signals.24 Two dif-
ferent bands could indeed also be measured by vibrational SFG
spectra at the Al2O3/water interface and their respective band
strengths change as function of pH value.15

Besides the H-bond kinetics at the interface, also the
in-plane/out-of-plane kinetics of the terminal OH groups play
an important role. We find that the IP/OOP interchange occurs
every 11 ps on average (see Fig. 3). Note that this value,
obtained from extensive sampling, is about one order of
magnitude slower than previously reported by short explicit
AIMD simulations.26 In contrast, the average H-bond lifetime
between a terminal OH group and a water molecule is 1.58 ps.
The difference between these two values (about one order of
magnitude) indicate that the IP/OOP interchange and H-bond
dynamics between the hematite slab and adjacent water mole-
cules are two different dynamical processes which reside on
different time scales, but which must obviously be coupled.
Previously, we could show26 that there is a concerted IP/OOP
interchange involving many different surface hydroxyls. It is
suggestive, that this requires the first layer water molecules to
form some pre-organization H-bond network state, which is
capable to accept (or even to facilitate) such a concerted IP/OOP
interchange of multiple surface hydroxyl groups. This might
explain why the H-bond dynamics at the interface is faster than
the concerted interchange of multiple surface hydroxyls.

In our previous publication, H-bond lifetimes on the order
of 150 fs have been reported. We also came to the conclusion,
that H-bond lifetimes between the hematite and adjacent water
molecules are shorter compared to water/water H-bonds.26 This
seeming discrepancy between the previous and current H-bond
lifetimes can be understood in terms of the definition of the
employed H-bond criteria: previously,26 the renowned Luzar–
Chandler criterion has been used which had also been employed
before in conjunction with the reactive flux technique to deter-
mine H-bond lifetimes.65 However, this criterion does not cut
through the saddle point between H-bonded and non H-bonded
states, see Section S7 in the ESI.† Therefore, it is known to include
transient ruptures of the H-bond due to fast librational motion of
the water molecules.75 This means that as soon as a participating
water molecule slightly rotates out of the H-bond criterion (which
is guaranteed to happen on the librational motion time scale), the
H-bond is counted as broken. Note that the reactive flux techni-
que explicitly accounts for such short time bond ruptures65,75

such that the ultra-short discontinuities of the H-bond are not
counted as its rupture. Using the continuous H-bond definition64

together with the Luzar–Chandler geometrical H-bond criterion
therefore maps the librational motion which resides in between
300 and 1000 cm�1 in case of liquid ambient water,76 corres-
ponding to vibration periods in between about 34 and 111 fs.
Clearly, the H-bond lifetime on the order of 150 fs reported
previously falls into that time regime. It is known that the
libration frequency of a water molecule blue-shifts, i.e. the vibra-
tion becomes faster, if the H-bond strength increases.68 In this
work, we clearly show that the hematite/water H-bond is stronger
than a water/water H-bond and thus the librational motion of first
layer water molecules becomes faster than in bulk water. Since the
continuous H-bond definition employing the Luzar–Chandler
criterion exactly recovers that vibrational period, it is clear that
the previously calculated lifetime26 was found to be shorter than
the water/water H-bond lifetime.

Finally, the self-diffusion coefficient of first layer water
molecules is significantly smaller compared to water molecules
in the bulk phase (see Fig. 5) implying that water molecules in the
first layer are systematically hindered or slowed down. Clearly, in
case of hematite, the slowdown is mainly caused because of the
strong H-bonds across the hematite/liquid water interface, see
above. From a macroscopic perspective, a slowdown of the water
molecules at the interface comes at no surprise, because friction
is generally expected,36 also for solids which do not form any H-
bonds with water, such as graphene and boron nitride77 or
metals, such as Cu.39 However, the quantitative strength of this
slowdown clearly depends on the atomistic structure of the solid
and the strength of the interfacial interactions. It can also depend
on the exposed facet as shown in case of the Cu/water interface39

as well as on the exposed microstructure, e.g. if solid defects are
present at the interface.78

5 Conclusion

In summary, we have assessed the dynamics of water molecules
at the hematite interface in terms of residence and H-bond
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lifetimes as well as vibrational spectra and self-diffusion
coefficients. All data has been gathered from a total trajectory
length of 4 ns and a simulation box containing 3120 atoms
using a trained committee Neural Network potential emulating
hybrid DFT. We find that water molecules are tightly bound to
the hematite surface due to strong H-bonds between hematite
and water. We unveil three different time scales: water/water
H-bond network dynamics on the order of 1 ps at the hematite
slab which is not different from H-bond dynamics in pure bulk
liquid water, in-plane/out-of-plane interchange kinetics of sur-
face hydroxyl groups on the 10 ps time scale, and residence
lifetimes of water molecules in the first solvation layer of
55–65 ps time scales. Importantly, on the explicit AIMD time
scale the latter two events must clearly be regarded as ‘‘rare
events’’ and converging the associated time correlation func-
tions is impossible for explicit AIMD. Utilizing machine learn-
ing and active learning approaches (in this case c-NNPs) is
therefore mandatory to obtain converged, quantitative results.
This work offers a blueprint, how state of the art c-NNPs can
straightforwardly and routinely be applied for transition metal
oxide/liquid water interfaces featuring a complex electronic
structure. This approach will therefore be most helpful in
computationally demanding realms of e.g. ab initio electro-
chemistry with explicit water at the DFT level, where free energy
differences need to be reliably converged by thermodynamic
integration.
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