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Improving IDP theoretical chemical shift
accuracy and efficiency through a combined
MD/ADMA/DFT and machine learning approach†

Michael J. Bakker, a Arnošt Mládek,a Hugo Semrád,ab Vojtěch Zapletala and
Jana Pavlı́ková Přecechtělová *a

This work extends the multi-scale computational scheme for the quantum mechanics (QM) calculations

of Nuclear Magnetic Resonance (NMR) chemical shifts (CSs) in proteins that lack a well-defined 3D

structure. The scheme couples the sampling of an intrinsically disordered protein (IDP) by classical

molecular dynamics (MD) with protein fragmentation using the adjustable density matrix assembler

(ADMA) and density functional theory (DFT) calculations. In contrast to our early investigation on IDPs

(Pavlı́ková Přecechtělová et al., J. Chem. Theory Comput., 2019, 15, 5642–5658) and the state-of-the art

NMR calculations for structured proteins, a partial re-optimization was implemented on the raw MD

geometries in vibrational normal mode coordinates to enhance the accuracy of the MD/ADMA/DFT

computational scheme. In addition, machine-learning based cluster analysis was performed on the

scheme to explore its potential in producing protein structure ensembles (CLUSTER ensembles) that

yield accurate CSs at a reduced computational cost. The performance of the cluster-based calculations

is validated against results obtained with conventional structural ensembles consisting of MD snapshots

extracted from the MD trajectory at regular time intervals (REGULAR ensembles). CS calculations

performed with the refined MD/ADMA/DFT framework employed the 6-311++G(d,p) basis set that

outperformed IGLO-III calculations with the same density functional approximation (B3LYP) and both

explicit and implicit solvation. The partial geometry optimization did not universally improve the

agreement of computed CSs with the experiment but substantially decreased errors associated with the

ensemble averaging. A CLUSTER ensemble with 50 structures yielded ensemble averages close to those

obtained with a REGULAR ensemble consisting of 500 MD frames. The cluster based calculations thus

required only a fraction of the computational time.

1 Introduction

In recent years, interest in IDPs has increased among scientists
due to their association with many incurable maladies.1 Alzheimer’s
has been linked to TAU proteins and a-synuclein possibly
contributing to neurodegeneration.2,3 The aggregation of amy-
loid proteins in fibrillar aggregates are key events in the propa-
gation of Parkinson’s. Characterizing the conformational
dynamics involved in these disordered proteins is essential to
understanding their functions.4 Human tyrosine hydroxylase 1
(hTH1) is an IDP regulated by two phosphorylation sites (S19 and

S40).5 Phosphorylation plays a significant role in the function of
many disordered proteins as observed in recent investiga-
tions.6–8 Understanding the changes in the phosphorylated IDPs
will make great strides toward understanding the functions of
these proteins.

Structural characterization of IDPs has been the focus of
many scientists in the field, and traditionally, X-ray crystallo-
graphy has been the method used to understand the 3D density
distribution of electrons in proteins. Unfortunately, large and
unstable proteins (such as IDPs) are notoriously difficult to
crystallize, thus alternative techniques must be implemented
such as NMR spectroscopy.9

To appropriately simulate the flexibility inherent in bio-
molecules, theoretical methods usually employ MD trajectories
to generate a conformational ensemble.10–12 There are several
advantages in carrying out a computational simulation that
experiments cannot provide. An increased computational capa-
city in the wake of the technology era means such tools have
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never been more efficient. In lieu of expensive high-end equip-
ment needed for experimental investigations, computations
also complement experimental results well, providing insight
into quantum influences and atom-level molecular dynamics.
A quantum level of theory is particularly useful in these systems
as it better represents and accounts for polarization and
charges. These influences can help to interpret phosphoryla-
tion changes, which by the central dogma of molecular biology
helps to understand the protein’s purpose and prospective
defects.

There are complications with incorporating a quantum level
of theory, predominantly the system’s size. The emergence and
advancement of fragmentation techniques13–18 throughout the
past decade has greatly facilitated biomolecular NMR calcula-
tions and made them more readily available than ever. The
techniques provide a recipe for the automated construction of
molecular clusters that represent fragments of the amino acid
sequence in the proteins of interest. This process is facilitated
using software making it possible to generate molecular clus-
ters quite expeditiously. This is in large contrast to earlier
studies19–22 that typically designed model systems to represent
the desired part(s) of a bio-molecule de novo for each system
of interest and tailored them to the purpose of a given study.
This involved a great deal of effort and time investment in order
to first test the prospective model systems, and second to
program a tool that constructs the models from the bio-
molecule Cartesian coordinates.21 This was especially relevant
when multiple biomolecule structures were subject to compu-
tations, i.e. studies that combine QM calculations with MD
simulations.19,20,23

Fragmentation techniques are incredibly resource efficient.24

They provide a quick workaround which allows computations
exponentially faster. One such method – the ADMA25 – shows
great promise. ADMA operates by separating the protein mole-
cules into fragments14 (see a more detailed explanation in
the Methodology section). ADMA has already been employed
successfully to approximate the effects of distant parts of a
given macromolecule in the QM calculations of each fragment
when tested upon small oligopeptides.26 Additionally, it was
shown to be capable of computing various molecular properties
as well as electron densities relatively accurately.27 An alter-
native fragmentation technique for NMR calculations, the
automated fragmentation quantum mechanics/molecular
mechanics approach (AF-QM/MM), has been proposed by
He et al.28–31 The ADMA and AF-QM/MM techniques have
become paramount in the field of NMR calculations but other
fragmentation techniques exist as well including the fragment
molecular orbital method,32,33 combined fragmentation method,34

generalized energy-based fragmentation,35 systematic mole-
cular fragmentation analysis,36 and molecules-in-molecules
fragmentation-based method.18

The first applications of fragmentation techniques to struc-
tured proteins13,14 and nucleic acids37,38 have already been
observed. In the context of NMR property calculations, proof-
of-concepts were provided by comparing the fragment-based
and full system calculations. For NMR CSs, dependence on the

level of theory, basis set39 and solvent models39 was studied
along with the effect of conformational sampling by both
classical40 and ab initio41 MD.

The protein fragmentation has only recently been employed42

for NMR CS calculations in IDPs. The fragmentation by ADMA
was applied to frames generated by a classical MD and the NMR
chemical shifts were computed through DFT calculations. The
study demonstrates that the accuracy of the MD/ADMA/DFT
approach depends on multiple factors, including the quality of
MD geometries, the size of structural ensembles employed for
DFT calculations and the CS referencing.

Further improvements of fragment-based NMR calculations
for IDPs are desired due to their potential in assisting the
interpretation of experimental NMR data.9 IDPs are highly
flexible biomolecules and the measured NMR data thus corre-
spond to a structural ensemble rather than a singular
structure.43 The search for a set of structures that matches
the experimental CSs is typically carried out through an itera-
tive procedure. Algorithms were devised44,45 that provide an
initial guess of structures. For the proposed structural ensem-
ble, CSs are predicted by fast computer-assisted tools and
compared to the experiment. The procedure runs in a loop
until self-consistency is reached between the proposed struc-
tural ensemble and the experimental NMR data set.46 So far,
the computer-assisted tools have been primarily based on the
combination of empirical or QM CS hypersurfaces, semi-
classical calculations, neural network models, machine learning,
and sequence homology. The main disadvantage of all of these
tools is the fact that they are trained exclusively for structured
proteins with standard residues only. Efficient and accurate QM
calculations of NMR CSs promise more versatility, as they can
be applied to an arbitrary system including IDPs with post-
translationally modified amino acids such as phosphorylated
serine, threonine and tyrosine.

Fragmentation techniques significantly speed up NMR
calculations of biomolecules as they facilitate the replacement
of a large system by a series of small computationally tractable
molecules. Even still, MD/fragmentation/DFT calculations
remain demanding. High computational costs stem from the
need to include hundreds23,40,41,47 of MD-generated protein
structures to achieve accurate results. In a conventional
approach, MD snapshots are progressively added to the struc-
tural ensemble with a constant time interval.21 Since classical
MD simulations of IDPs require a long time scale, the number
of snapshots rapidly increases. A potential solution to this
problem could be the application of a machine learning tool,
cluster analysis.48 Using this tool, large sets of data can be
evaluated and ‘‘clustered’’ based on their comparative relative
properties. The applicability of this tool has already been
shown in bioinformatics investigations. It stands to reason that
given the immense size of the trajectory at hand, cluster
analysis can be employed to seek out and assess repeating
or significant geometries from a trajectory. Cluster analysis
relies on grouping a set of objects in such a way that the
individual data points of the groups are similar based on a
variable or property, e.g. the root-mean square deviation
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(RMSD). Upon completion, a cluster of PDB files is generated
that is sorted by the size of the clusters.

While the efficiency of MD/DFT calculations can potentially
be improved by cluster analysis, the accuracy is contingent on
the quality of MD geometries.42 Classical MD simulations
typically used in MD/DFT studies give only approximate bond
lengths and angles, yet a partial molecular geometry
re-optimization is usually avoided21,40,42 for several reasons.
First, as the size of the structural ensemble and that of the
molecular clusters grows, calculations of ensemble-averaged
CSs become intractable when both geometry optimization and
NMR calculations are performed. Second, re-optimization by
conventional methods becomes impractical,49 especially for
complex molecular clusters as previously described.42

2 Objectives

This work pursues the design of an improved MD/ADMA/DFT
approach for the calculation of NMR CSs in IDPs. We investigate
two principal areas of potential improvement. First, we refine the
computational scheme for 1H, 13C, 15N, and 31P NMR calculations
in IDPs by implementing a partial geometry re-optimization
through the sparsely used normal mode optimization (NMO)
technique. Second, we seek to increase the efficiency of the
computational scheme by employing cluster analysis in the
construction of structural ensembles for fragment-based DFT
calculations of CSs. Cluster analysis has not been applied in the
context of MD/QM calculations before. We analyze its perfor-
mance by comparing the ensemble-averaged CSs obtained from
structural ensembles devised using the cluster analysis and the
conventional approach, respectively. For both methods, we
examine the variations of CSs within the structural ensembles,
compare the ensemble averages with one another as well as
with the experiment while inspecting the standard deviations
of the mean at the same time. The extent of agreement or
disagreement with the experiment for CSs computed with
different model chemistries is explored through the application
of multiple referencing schemes. To pursue the objectives
detailed above, the doubly phosphorylated disordered part of
the hTH1 protein was modelled. CSs calculations were carried
out on its two phosphorylated serine sites, pS19 and pS40.

3 Methodology
Molecular dynamics simulation

A classical MD trajectory was simulated for a 53-amino acid
fragment representing the unstructured part of the hTH1
regulatory domain. The ESI of ref. 42 includes the initial
structure used for the MD simulation. A 100 ns trajectory of
the doubly-phosphorylated hTH1 fragment with phosphory-
lated serines pS19 and pS40 was already obtained in our
previous investigation.42 Herein, the length of the simulation
was extended to 1 ms to achieve better sampling of hTH1 over
time. The MD simulation was carried out in the Gromacs50–52

simulation package using the protein Amber99SB-ILDN force

field53,54 and phosphoserine parameters (charge �2) obtained
from the work of Homeyer et al.55 The solvation of hTH1
employed a rhombic dodecahedral box and the TIP4P-D
water56 model. A minimum distance of 4 nm was used between
the box walls and solute. The system’s charge was neutralized
by adding Na+ and Cl� ions; the concentration of the salt was
adjusted to the physiological concentration of 150 mM. The
simulations were performed under periodic boundary conditions.
More details about the MD setup can be found in a previous
work.42

Ensemble selection

Two principal methods were applied to the MD trajectory in
order to select an ensemble of MD frames for subsequent NMR
calculations. First, snapshots were extracted at regular time
intervals of 2 ns, which led to a total of 500 snapshots
(REGULAR ensemble). Second, in order to reduce the number
of calculations, the MD trajectory was subjected to cluster
analysis using Gromacs, based on the k-nearest neighbor
machine learning algorithm.57 This algorithm relies on the
assumption that similar things exist in proximity (Fig. 1).

Snapshots of the MD simulation were clustered around the
RMSD values. The choice of a cutoff value is highly dependent
on the model and the criteria involved. For the calculations
presented in this paper, an RMSD cutoff of 0.45 Å was selected
as it represents 430% of the total ensemble in the 50 most
populous clusters and 490% in the 500 most populous clusters
(see Table 1). Provided in the discussion below are the results of
cluster analyses performed with an RMSD cutoff ranging from
0.25 Å to 0.45 Å. RMSD is defined as

RMSDðv;wÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i

jjvi � wijj2
s

; (1)

where v and w are two sets of Cartesian coordinates and n is the
number of atoms in the system of interest. Based on the cluster
analysis, 50 MD snapshots (CLUSTER ensemble) representing

Fig. 1 Graphical representation of the influence of selecting an RMSD
cutoff on the cluster analysis output. A higher cutoff value will result in
larger clusters, but over representation can be a problem if the individual
points in the cluster do not share enough properties.
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the 50 most populous clusters were selected for the NMR
calculations.

Protein fragmentation

All snapshots from the two generated structural ensembles
(REGULAR and CLUSTER, see above) were subjected to protein
fragmentation using ADMA14 performed with a Python suite of
codes. Details of the fragmentation procedure were described
previously.14,40,42 In short, the protein is split into a set of
fragments. Two fragments per amino acid are generated, one
for the backbone and one for the side chain. The only excep-
tions to this rule are alanine, glycine, and proline that are
represented by one fragment only. In order to account for the
effects of the chemical environment, the fragments are
expanded with the surrounding protein parts, water molecules
and ions. We employ a distance cutoff to determine the size of
the surroundings included in the calculation. Bonds broken
by the cutoff are saturated with protons. An example of a
molecular cluster generated by ADMA is shown in Fig. 2.

Since we focus on NMR calculations of phosphorylated
sites in hTH1, we only employ the protein fragments that are

generated for the two phosphoserines (pS). The fragmentation
produces one fragment for the backbone and one fragment for
the side chain of pS, respectively. Thus, two fragments were
made each for pS19 and pS40. The number of geometries
employed in further calculations was therefore (N snapshots
in the ensemble) � (4 fragments). Prior to the geometry
optimization and/or NMR calculation, fragments are embedded
into the surroundings of neighboring macromolecule moieties,
water molecules and ions. The surroundings within the radius
(r) from atoms of the original fragment are included. The radius
value was chosen such that the first solvation shell of both the
amide and phosphate groups falls within the radius. An inspec-
tion of the radial distribution function for the distance between
the water and amide protons shows that the end of the first
solvation shell is at 3.5 Å (Fig. 3a). At the same time, the
boundary between the first and second solvation shell of the
phosphate group lies at B3 Å (Fig. 3b). A radius of r = 3.5 Å
for the explicit treatment of the protein surroundings was
selected. This results in molecular clusters consisting of up to
B130 atoms.

Geometry optimization

Geometries of molecular clusters constructed from the protein
fragments were partially optimized in vibrational normal mode
coordinates using the Qgrad program.49,58 Only low-frequency
(o300 cm�1) normal modes corresponding to changes of
torsion angles were frozen during the optimization. The partial
optimization in normal modes ensures that only bond lengths

Table 1 Overview of the cluster analysis. Columns a, c and e give the
number of frames encompassed by the 50, 100, and 500 most populous
clusters, respectively, and columns b, d and f show the percent represen-
tation of these ensembles of the total trajectory (1 ms)

RMSD
cutoff/Å

a b c d e f

50 % 50 100 % 100 500 % 500

0.25 1373 9.15 2218 14.79 6023 40.15
0.27 1654 11.03 2630 17.53 6963 46.42
0.29 1968 13.12 3061 20.41 7868 52.45
0.31 2256 15.04 3499 23.33 8844 58.96
0.33 2570 17.13 3944 26.29 9760 65.06
0.35 2905 19.37 4184 29.22 10 677 71.18
0.37 3273 21.82 4384 32.39 11 522 76.81
0.39 3580 23.87 5315 35.43 12 385 82.56
0.41 4004 26.69 5853 39.02 13 140 87.59
0.43 4372 29.14 6335 42.23 13 750 91.66
0.45 4760 31.73 6872 45.81 14 226 94.83

Fig. 2 Example of a molecular cluster produced by the ADMA fragmen-
tation procedure for a pSer residue of hTH1.

Fig. 3 Radial distribution for the distance of water molecule oxygen from
the backbone nitrogen (top) and phosphate oxygen (bottom).
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and valence angles are re-optimized while the overall geometry
of the molecular cluster is preserved. The optimization employs
the B3LYP/6-31G(d,p)59–66 level of theory.

NMR calculations

CS calculations were performed for both optimized and
non-optimized molecular geometries using the Gaussian1667

implementation of the GIAO formalism within the Coupled
Perturbed DFT method.68–72 The calculations employed the
B3LYP59–61 density functional. The choice of the DFT approxi-
mation is further commented on in the discussion. For the
CLUSTER ensemble calculations, the B3LYP functional was
combined with the 6-311++G(d,p)66,73–76 as well as IGLO-III77–81

basis set. The REGULAR ensemble calculations used the former
basis set only. The B3LYP/6-311++G(d,p) level of theory offers a
good compromise between accuracy and computational costs.
It previously provided adequate performance within the MD/
ADMA/DFT framework,42 or more broadly, the fragmentation/
DFT scheme13,29,30,47 for the computation of CSs in proteins.
IGLO-III was tested as it belongs to the most common basis
sets21,22,77,82 applied in computational NMR spectroscopy. Pre-
liminary calculations also employed the Jensen’s pCS-383 basis
set. However, the calculation revealed high computational costs
and convergence difficulties. It was therefore concluded that the
application of pCS-3 is not computationally tractable within the
MD/DFT framework, where typically large numbers of structures
have to be involved in the ensemble averaging of CSs. In order to
account for the solvent effects, the explicit solvent within the first
solvation shell (see above) was used. The conductor-like implicit
solvent model developed within the framework of the polarizable
continuum model (CPCM)84,85 based on the self-consistent
reaction field (SCRF) is placed on top of the explicit solvent.

NMR referencing

The chemical shielding s is converted to the d-scale using
various referencing schemes. 1H and 13C CSs are referenced
to tetramethylsilane (TMS) computed at the same level of theory
as the atom of interest (X)

dcalc
X = scalc

TMS � sX. (2)

Three different referencing schemes were used for the 15N CS
calculations: Nref1 references the computed chemical shield-
ings to the absolute 15N chemical shielding of liquid ammonia
employing the calculated 15N chemical shielding of CH3NH2

86

used as a secondary standard (the multi-standard approach)87

dcalcX ¼ scalcCH3NH2ðgasÞ � scalcX þ ðsexpNH3ðliqÞ � sexpCH3NH2ðgasÞÞ; (3)

where scalcCH3NH2ðgasÞ is the chemical shielding of methylamine
computed in the gas phase, sexp

NH3ðliqÞ ¼ 244:6 ppm is the

absolute 15N chemical shielding of liquid ammonia at
25 1C,88 and sexp

CH3NH2 gasð Þ ¼ 249:5 ppm is the experimental
15N chemical shielding of methylamine.89

Nref2 employs the absolute 15N chemical shielding of liquid
ammonia at 25 1C41,82,88

dcalcX ¼ sexpNH3ðliqÞ � scalcX ; (4)

while Nref3 uses the 15N chemical shielding of NH3 calculated
at the same level of theory as the molecule of interest14,29,39,40

dcalcX ¼ scalcNH3ðgasÞ � scalcX : (5)

Similarly, three referencing schemes were also applied for
31P NMR CS calculations. Pref1 references the 31P chemical
shifts to 85% H3PO4 using the secondary standard PH3 as
proposed by van Wüllen90

dcalcX ¼ scalcPH3ðgasÞ � scalcX þ ðsexp
H3PO4ð85% solutionÞ � sexp

PH3ðgasÞÞ; (6)

where scalcPH3ðgasÞ is the chemical shielding of 31P in PH3 calcu-

lated at the same level of theory as the parent molecules
constructed from the protein structure, sexp

H3PO4ð85% solutionÞ is the

absolute experimental chemical shielding of the 85% H3PO4

(328.4 ppm)91 and sexp
PH3ðgasÞ is the absolute experimental

chemical shielding of PH3 (594.5 ppm).91 Pref2 for 31P employs
the absolute experimental chemical shielding of the 85%
H3PO4 (328.4 ppm)91 as the standard reference

dcalcX ¼ sexp
85%H3PO4ðliqÞ � scalcX (7)

and Pref3 references the 31P CSs to the chemical shielding of
31P in H3PO4 calculated at the same level of theory

dcalcX ¼ scalcH3PO4ðgasÞ � scalcX : (8)

Ensemble averaging of CSs

The results in this work are reported as ensemble-averaged CSs.
For the REGULAR ensemble, the statistical average is calcu-
lated as

x ¼
XN
i¼1

xi=N; (9)

where xi is the value of the CS for a given atom type in the i-th
frame of the ensemble while N = 500 is the ensemble size. The
statistical distribution of the CSs within the ensemble is then
expressed as the standard deviation of the sample mean s%x
defined as

sx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NðN � 1Þ
XN
i¼1
ðxi � xÞ2

vuut : (10)

For the CLUSTER ensemble, we employ the following for-
mula for the weighted average

xw ¼

PN
i

wixi

PN
i

wi

(11)
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where wi is the weight of the corresponding cluster in the MD
trajectory and N = 50. The formula for the standard deviation of
the mean then reads

sxw ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

wiðxi � xwÞ2

M � 1

M

PN
i

wi

vuuuuuut (12)

where M is the number of nonzero weights and N is the number
of observations. We take into consideration that the ensembles
employed for the statistical averaging are much smaller than
the true population of the IDP in question. We therefore report
the average CSs as the 95% confidence intervals (CI) given
by the formula

CI = %x � zs%x (13)

or

CI = %x � zs%xw
, (14)

respectively. Eqn (13) and (14) use the z-value of 1.96 from the
standard normal z-table. The term zs%x is called the maximum
error of estimate (MEE). We compare the computed ensemble-
averaged CSs with the experimental CSs (see the ESI of ref. 5 for
1H, 13C, and 15N CSs and ref. 92 for 31P CSs). CSs are calculated
for HA, HB1, HB2, HN, CA, CB, C0, N, and P atoms (Fig. 4).

4 Results and discussion
Molecular dynamics

The dynamic behavior of the hTH1 regulatory domain has been
studied in detail elsewhere (e.g. ref. 93). Here we examine the
trajectory properties most relevant to the objectives outlined.
First, we inspect the time dependence of the f and c angles
(Fig. 5) for the 500 frames selected to represent the continuous
trajectory. The torsion angles fluctuate rapidly within the
equilibrated state, which demonstrates the flexibility of the

system. The plot implies that no specific conformation prevails
in the trajectory and that no dominant conformational switches
occur. To further support this evidence, we plot the time
dependence of the radius of gyration (Rg), see Fig. 6. The initial
value of Rg corresponds to an extended state from which the
simulation was started. Rg then fluctuates between B70.6 Å and
B71.5 Å. The fluctuations indicate that the protein is not
collapsed in one or a few conformational states and that the
conformational space of the protein is sampled as much as
possible. This can be even better demonstrated by the analy-
sis of secondary structure propensities. We apply the Define

Fig. 4 Labeling of atoms in the phosphorylated serine. For naming of the
oxygens, Og is used for the serine and the phosphate oxygens are O1P,
O2P and O3P.

Fig. 5 Time dependence of f(C0(i � 1)–N(i)–CA(i)–C0(i)) and c(N(i)–
CA(i)–C(i)–N(i + 1)) angles in (a) pS19 and (b) pS40.

Fig. 6 Time dependence of Rg over the 1 ms MD trajectory of hTH1.
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Secondary Structure of Proteins (DSSP) algorithm which tracks
the intra-backbone hydrogen bonds of a protein to assign
secondary structures and relay this information over the course
of the trajectory. From the DSSP scan (Fig. 7), we were able to
determine that very little stable secondary structures exist
within the fragment of the protein. Small b-sheets form towards
the 0.8 ms mark, but they soon dissipate. Interestingly, the
appearance of this secondary structure is noted in the residue
quite close to the phosphorylation site, a possible indicator of
its role in post-phosphorylation. To inspect how the sampling
of the conformational space evolves beyond the 1 ms, we have
extended the trajectory up to 2 ms and ran the DSSP calculation
again. The outcome of the DSSP analysis for the second micro-
second of the simulation time is shown in Fig. S5 (ESI†).
It reveals that although new structures do emerge, their lifetime
is rather short as none of them survives longer than 0.1 ms. The
extended simulation does not show any dramatic changes to
the protein behavior.

Cluster analysis

The cluster analysis technique was originally introduced as a
method to improve efficiency, i.e. to reduce the computational
costs. If calculations can be done on a smaller set of frames and
still provide similar levels of accuracy, the method is justified.
Of the 15 individual cluster analysis runs (Table 1) the clusters
obtained from a cut-off value of 0.45 Å were selected. This
cluster analysis allows for the representation of approximately
one third of the total trajectory. As there is no definitive answer
of how to cut a dendogram (cluster analysis is essentially an
exploratory approach to facilitating data analysis) the interpre-
tation of an RMSD cut-off is entirely context dependent. Further
investigations may attempt a variety of cut-offs and test the
values using a silhouette plot or computing the cophenetic
correlation, although this preliminary value was computed to
describe the efficacy for cluster analysis as a tool to facilitate
data analysis. To demonstrate the ergodicity expressed in each
cluster ensemble, Ramachandran plots were generated for the
two phosphorylated fragments, pS19/pS40 (Fig. 8a–c), and
compared to those generated by 500 uniformly selected frames
(Fig. 8d). Made evident by Fig. 8d, there are two primary regions

in which this IDP exists in, and by expanding the cluster
analysis to include both the magenta and blue regions, it
provides better agreement between the clusters and a complete
conformational ensemble.

Choice of the DFT functional

The B3LYP functional employed here is a common choice for
NMR chemical shift calculations in organic molecules94,95 as
well as proteins39,41,82,96 although it is known to suffer from
various problems.97–100 Of particular concern is the failure of
the functional to appropriately describe van der Waals disper-
sion interactions.101 The problem is severe but it is a deficiency
that plagues not only B3LYP but virtually all (semi)local95,102–104

as well as global hybrid functionals.105 Empirical dispersion
corrections106,107 are available for B3LYP but they do not
contribute to the NMR chemical shielding tensor.18,95

Dispersion effects can alternatively be factored into the
calculations through the use of DFT approximations that
include the non-covalent interactions by construction. Double
hybrid functionals108 belong to this category but they are
computationally expensive.109 Implicitly, i.e. through fitting to
non-local data sets, dispersion interactions are incorporated in
the Minnesota functionals.101,110,111 The performance of
two Minnesota M06-family functionals has been tested within
the AF-QM/MM fragmentation scheme for protein NMR
calculations.112 As mentioned above, the scheme is an alter-
native to the ADMA fragmentation employed here. He et al.112

computed the HN protein CSs using M062X, M06L as well as
using B3LYP, B3PW91, mPW1PW91, OB98, and OPBE. The best
results were produced by OPBE but the overall performance
of all the inspected functionals was very similar. RMSE with

Fig. 7 DSSP analysis from a 1 ms MD trajectory of hTH1.

Fig. 8 Ramachandran plots demonstrating the conformational ensem-
bles obtained from running a cluster analysis with RMSD cut-off values at
(a) 0.25 Å, (b) 0.35 Å, (c) 0.45 Å and (d) 500 frames selected at regular
intervals.
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respect to the experimental values ranged from 0.47 ppm (OPBE),
through 0.48 (M062X), 0.49 (B3LYP, OB98), 0.50 (M06L,
mPW1PW91) to 0.53 ppm (B3PW91). That is, M06-functionals
were not significantly better than the other functionals and
the RMSE for B3LYP differed only by 0.01 ppm from that for
M062X and M06L. It can be expected that the same functionals
would perform equivalently if they were combined with ADMA.
Explicitly, B3LYP, mPW91PW91, HCTH and VSXC functionals
have been previously tested39 within the ADMA scheme. The
mPW1PW91 functional in conjunction with a valence triple-zeta
basis set was identified as the best model chemistry while B3LYP
was a close runner-up for all nuclei using the same basis set.

It has been suggested113 recently that the GGAs, meta-GGAs
and hybrid-GGAs usually used for NMR calculations should
be replaced with long-range corrected DFT approximations.
Although the long-range corrections can potentially improve
the results, they will also increase the computational costs.
The higher demands are not prohibitive, but it is an aspect
that becomes increasingly important in combined MD/DFT

calculations within which hundreds of calculations must be
averaged out.

While in principle many potentially more accurate (than
B3LYP) DFT approximations exist, their application in multi-
scale MD/DFT calculation may not be fruitful. It has been
shown many times before21,40,47,112,114,115 that the main errors
do not stem from the model chemistry. Instead, effects of
conformational averaging and solvent within the first solvation
shell are the source of major inaccuracies.41 The relatively
lesser influence of the DFT functional on the results is partially
a consequence of error cancellations facilitated by the choice of
a suitable NMR reference and the referencing scheme as we
have thoroughly discussed in our previous publication.42 Based
on all the considerations explained above, we chose B3LYP as a
compromise between computational costs and accuracy.

Basis set effect

Table 2 shows that 6-311++G(d,p) and IGLO-III produce almost
identical results for the CSs of all protons, which is also

Table 2 Ensemble averaged CSs (in ppm) calculated for the CLUSTER ensemble and REGULAR ensemble, and performed without geometry
optimization and with geometry optimization

Res. Atom

CLUSTERa REGULARb

NMRc NMRc NMRc OPTd

6-311++G(d,p) IGLO-III 6-311G++(d,p) 6-311++G(d,p) Exp.k

pS19 HN 7.64 � 0.23 7.56 � 0.24 7.26 � 0.31 8.22 � 0.28 8.859
HA 4.85 � 0.09 4.7 � 0.11 4.77 � 0.23 4.75 � 0.09 4.316
HB1 4.25 � 0.08 4.1 � 0.12 4.21 � 0.22 4.24 � 0.06 3.905
HB2 3.9 � 0.07 3.81 � 0.09 3.92 � 0.21 4.07 � 0.06 3.905

C 176.21 � 1.33 157.88 � 1.40 176.21 � 2.10 183.21 � 0.53 174.3
CA 64.8 � 1.04 53.78 � 1.01 64.18 � 1.41 64.34 � 0.46 66.8
CB 65.13 � 0.68 53.34 � 0.82 66.86 � 1.24 68.29 � 0.45 59.1

Ne 118.89 � 1.85 109.31 � 1.86 119.28 � 2.62 123.08 � 1.30 119.7
Nf 132.73 � 1.85 123.14 � 1.86 133.12 � 2.62 136.92 � 1.30 119.7
Ng 146.16 � 1.85 136.58 � 1.86 146.55 � 2.62 150.36 � 1.30 119.7

Ph �34.53 � 0.98 �87.25 � 1.21 �33.87 � 0.38 0.81 � 0.17 3.76
Pi �3.39 � 0.98 �59.74 � 1.21 �2.73 � 0.38 31.95 � 0.17 3.76
Pj �40.45 � 0.98 �96.8 � 1.21 �39.79 � 0.38 �5.11 � 0.17 3.76

pS40 HN 7.06 � 0.16 6.98 � 0.16 6.97 � 0.29 7.96 � 0.22 8.841
HA 4.66 � 0.09 4.64 � 0.09 4.84 � 0.23 4.74 � 0.07 4.238
HB1 4.22 � 0.07 4.13 � 0.1 4.05 � 0.23 4.81 � 0.06 3.904
HB2 3.94 � 0.11 3.84 � 0.14 3.67 � 0.26 4.60 � 0.06 3.904

C0 177.12 � 1.24 159.09 � 1.18 178.22 � 1.68 182.22 � 0.53 174.4
CA 62.91 � 0.88 52.34 � 0.92 63.76 � 1.48 63.12 � 0.49 66.3
CB 64.29 � 0.85 52.59 � 0.87 65.07 � 1.19 70.14 � 0.36 59.8

Ne 115.40 � 1.99 106.24 � 2.11 118.77 � 2.32 123.80 � 1.41 117.2
Nf 129.24 � 1.99 120.08 � 2.11 132.61 � 2.32 137.63 � 1.41 117.2
Ng 142.68 � 1.99 133.52 � 2.11 146.05 � 2.32 151.07 � 1.41 117.2

Ph �33.5 � 1.04 �86.62 � 1.16 �31.39 � 0.70 0.45 � 0.23 4.18
Pi �2.36 � 1.04 �59.12 � 1.16 �0.24 � 0.70 31.60 � 0.23 4.18
Pj �39.42 � 1.04 �96.18 � 1.16 �37.30 � 0.70 �5.46 � 0.23 4.18

a CLUSTER ensemble. b REGULAR ensemble, and performed. c Without geometry optimization. d With geometry optimization. e 15N CSs were
referenced using Nref1 (eqn (3)). f 15N CSs were referenced using Nref2 (eqn (4)). g 15N CSs were referenced using Nref3 (eqn (5)). h 31P CSs were
referenced using Pref1 (eqn (6)). i 31P CSs were referenced using Pref2 (eqn (7)). j 31P CSs were referenced using Pref3 (eqn (8)). k Experimental
values of 1H, 13C, and 15N CSs are taken from the ESI of ref. 5, 31P CSs are taken from ref. 92.
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demonstrated by overlapping CS histograms (Fig. 9(d)–(g)). The
maximum 1H CS difference between the two basis sets amounts
to 0.15 ppm. The basis set has a much more pronounced
impact on the 13C CSs. For almost all carbon atoms calculated,
the Pople basis set performed notably better in terms of a
quantitative agreement with the experiment as can be seen in
Table 2 and Fig. 9(a)–(c). Curiously, some calculations per-
formed with 6-311++G(d,p) produce divergent results. For
instance, the weighted averages computed with the Pople basis
set for C0 and CB (176.21 ppm and 65.13 ppm) in pS19 are
overestimated compared to the observed experimental values
(174.3 ppm and 59.1 ppm) while the CB CS from 6-311++G(d,p)
(64.8 ppm) is underestimated relative to the experiment
(66.8 ppm). The CS histograms obtained with the IGLO-III basis
are shifted toward smaller CS values for all carbon atom types
(Fig. 9(a)–(c)). The CS of 15N largely depends on the choice of
the NMR reference (Table 2). The 15N CS in pS19 calculated
using Nref1 and 6-311++G(d,p) is less than 1 ppm away from
the experimentally obtained data. For IGLO-III, the best agree-
ment with the experiment is achieved when Nref2 is applied.
Nref1 previously gave the best results for CS calculations with

B3LYP/6-311++G(d,p) model chemistry.42 The same level of
theory best performs in 31P CS calculations when employed
along with Pref2 (Table 2 and ref. 42). However, all referencing
schemes for 31P yield calculated 31P CSs far from the experi-
ment when the IGLO-III basis set is used. We can thus conclude
that B3LYP calculations with 6-311++G(d) exhibit a superior
performance compared to calculations with IGLO-III.

Effect of the geometry optimization

We chose NMO as optimization in Cartesian, internal or mixed
coordinates is very troublesome when applied to solute–solvent
molecular clusters. The reasons for the difficulties were
previously explained by Bour et al.49 and we also discussed
them in our previous work.42 NMO, on the contrary, has been
shown to perform very well for weakly-bonded systems.58 For
instance, it helped tremendously to accurately predict the
vibrational properties of various systems121–123 with hydrogen
bonds including the hydrated phosphate group in nucleic
acids.124 We recall that the normal mode as well as Cartesian
coordinates form a complete basis in the same linear vector
space.58 As a result, the two coordinate sets mostly exhibit a

Fig. 9 Comparison of CS histograms of both pS19 and pS40 computed with B3LYP/6-311++G(d,p) and B3LYP/IGLO-III for atoms: (a) C0, (b) CA, (c) CB,
(d) HA, (e) HB1, (f) HB2, (g) HN, (h) NRef1, and (i) PRef1 atoms. For reference, black lines are included to represent the experimentally obtained CSs.
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similar behavior. In the case of flexible molecules and
molecular clusters including hydrogen bonds, NMO proved to

perform better than the conventional optimization in Cartesian
coordinates.58

NMO increases the CA–HA and CB–HB1/HB2 bond lengths
by no more than 0.006 Å (Table 3). CSs of aliphatic protons
therefore barely change (Fig. 10(d)–(f)) upon optimization.
On the contrary, the CSs of the amide protons are affected
notably (Fig. 10(g)). For pS19, the HN CS increases from 7.26 �
0.31 ppm to 8.22 � 0.28 ppm and thus better agrees with the
experimental value of 8.859 ppm (Table 2). The HN CS change is
likely largely caused by the shortening of the HN� � �Hw hydrogen
bond. It has been recognized previously that the HN CS linearly
increases as the hydrogen bond becomes smaller.40 The CA CSs
seem very little influenced by the optimization (Table 2). This
suggests that the local environment of CA is well-parameterized
by the force field. This can be illustrated by CA–HA, CA–CB, and
CA–C0 bond lengths that change by no more than 0.005 Å
(Table 3) due to NMO. Just the CA–N bond length undergoes
a larger modification by 0.024 Å. In contrast to CA, the CS of CB
changes significantly by up to B7 ppm. NMO corrects the local
geometry of the neighboring phosphate group to a large extent
(see below), which results in a notable downfield shift of CB.

Table 3 Comparison of MD and NMO-optimized bond lengths (in Å)

Bond MD NMO Experiment

Backbone
CA–HA 1.090 1.095 1.090a

CA–C0 1.530 1.534 1.525 � 0.021b

C0–O 1.233 1.242 1.231 � 0.020b

C0–N n.a. n.a. 1.329 � 0.014b

N–H 1.010 1.021 1.023 � 0.006c

N–CA 1.483 1.459 1.458 � 0.019b

Side chain
CA–CB 1.527 1.526 1.530 � 0.020b

CB–HB1 1.090 1.094 1.090a

CB–HB2 1.090 1.096 1.090a

CB–OG 1.409 1.416 1.433 � 0.012d

P–OG 1.593 1.673 1.621 � 0.009d

P–O1P 1.466 1.536 1.531 � 0.002e

P–O2P 1.462 1.536 1.531 � 0.002e

P–O3P 1.473 1.536 1.531 � 0.002e

a Ref. 116. b Ref. 117. c Ref. 118. d Ref. 119. e Ref. 120.

Fig. 10 Histograms of CSs of the combined pS19 and pS40 fragments obtained for C0 (a), CA (b), CB (c), HA (d), HB1 (e), HB2 (f), HN (g), NRef1 (h), and
PRef1 (i) using the non-optimized and optimized geometries of the protein fragments. For reference, black lines are included to represent the
experimentally obtained CSs.
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The ensemble averaged CS of C0 grows from 176.21 ppm to
183.21 ppm (pS19) and from 178.22 ppm to 182.22 ppm (pS40).
It thus deviates substantially from the experimental values
of 174.3 ppm and 174.4 ppm, respectively as seen in Fig. 10(a).
We attribute the deviation observed after the geometry optimiza-
tion to the rectification of the carbonyl double bond length and
the CO� � �H–Ow hydrogen bond geometry. The 15N CSs obtained
for the optimized molecular geometries are larger by 4–5 ppm
compared to the CSs obtained from calculations with raw MD
geometries.

The most profound effect has been observed for the 31P
nuclei in the phosphoserine side chains, where the optimiza-
tion shifts the CS histograms by more than 30 ppm (Fig. 10(i)).
This is caused by NMO that alters the geometry of the solvated
phosphate group. For instance, the P–OG bond length
increases by 0.08 Å upon optimization. The P–O1P/O2P/O3P
bond length increases by up to 0.074 Å (Table 3). The MD force
field also provides P–O� � �Hw hydrogen bond lengths that are
both significantly shorter as well as longer than the optimized
values.21 Table 2 demonstrates that a quantitative agreement
with the experiment is for 31P CSs achieved with a different
referencing scheme when geometry optimization is employed.
While Pref2 performed best for NMR calculations with non-
optimized geometries, Pref1 is the superior reference for calcu-
lations based on optimized protein fragments. This conclusion
is in line with findings of our previous study42 that show how
various referencing schemes benefit from systematic error
cancellations.

The inclusion of the geometry optimization affects the
compensation of various systematic errors. This is nicely illu-
strated by the fact that a different referencing scheme for
31P CSs has to be used after the optimization to achieve the
best quantitative agreement with the experiment. The extent to
which geometry optimization influences the efficiency of error
compensation differs among the atom types. It is probably the
reason why we do not observe a universal improvement of
computed CSs in comparison with experimental data for all
atoms when NMO is introduced. Nevertheless, we recall that
the present work only assesses a quantitative agreement with
the experiment. We assume that geometry optimization would
likely improve a qualitative agreement of computed and experi-
mental CS trends. However, the validation of qualitative trends
requires the computation of CSs for the full protein sequence.
This task is computationally extremely demanding and is thus
beyond the scope of the current paper. To sum up, geometry
optimization improves the MEEs for all CSs among both the
pS19 and pS40 fragments.

Effect of the ensemble type

The small size CLUSTER ensemble provides CS estimates that
are very close to the ensemble averages obtained with the much
larger REGULAR ensemble, see column no. 3 and 5 of Table 2.
The average 1H CSs differ by no more than 0.4 ppm between
the ensembles. The largest deviation observed for the 13C CS
amounts to 1.7 ppm. The 15N CSs are almost identical for pS19
while a difference of B4 ppm is found for pS40. 31P CSs differ

Fig. 11 Dependence of the average (a) N and (b) HN CSs and the
corresponding MEEs (represented by error bars) on the number of frames
in the REGULAR ensemble computed with geometry optimization. Plots
(c and d) show the decrease of MEEs for the N and HN CSs, respectively,
observed for the optimized molecular geometries.
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by at most B0.7 ppm (pS19) and B2 ppm (pS40) between the
two ensembles. The MMEs computed for the CLUSTER ensem-
ble are in many cases smaller than for the REGULAR ensemble,
due in part to an increased representation from the cluster
analysis. Fig. S1 (ESI†) reveals that histograms calculated with
the REGULAR ensemble typically display a broader distribution
of CSs while the CLUSTER ensemble leads to narrow profiles
with much higher percentage occurrences (Fig. S1(d)–(i), ESI†).
The REGULAR ensemble gives an MEE of 2.10 ppm for the C0

atom in pS19 while the CLUSTER ensemble leads to an MEE of
1.33 ppm only. MEE calculations for CA in pS19 yield the value
1.04 ppm (CLUSTER) vs. 1.41 ppm (REGULAR). The MEE of the
N atoms in pS19 increases from 1.85 ppm to 2.62 ppm when
replacing the CLUSTER ensemble by the REGULAR ensemble.
The MEEs can further decrease by performing geometry opti-
mization. Fig. 11 displays the running averages for the N and
HN CSs while running averages for other atom types are shown
in Fig. S2 and S3 (ESI†). The running average as well as its MEE
is compared for the non-optimized and optimized REGULAR
ensemble. The running averages converge sufficiently within
the 500 frames set and the MEEs decrease with time. The MEE
for the optimized REGULAR ensemble is smaller than that for
the non-optimized REGULAR ensemble (Table 2), e.g. the MEE
for the average 15N CS decreases from 2.62 ppm to 1.30 ppm
(pS19) and from 2.32 ppm to 1.41 ppm (pS40) upon optimization.
Similarly, the MEE drops from 0.38 ppm to 0.17 ppm for P and
from 2.10 ppm to 0.53 ppm for C0 in pS19.

5 Conclusions

Through the analysis of the data, an overall general preference
for the Pople, 6-311++G(d,p) was found over the IGLO-III basis
set. Each of the aliphatic H atoms’ CS averages had a deviation
from the experiment of around 0.5 ppm and an MEE of about
0.2 ppm. The C atoms had much greater agreement with the
non-optimized Pople, deviating by only 2 ppm in pS19, and
about 3 ppm in pS40 among CA and C0. Regardless of the
referencing scheme, 6-311++G(d,p) performed paramount
among the P CSs, with Pref2 giving the most accuracy. The
precision of 6-311++G(d,p) is noticeably better as observed in
the MEEs with minimal exceptions.

Interestingly, the results from the geometry optimization
produced varied degrees of success. The HN CSs improved
approximately by 1 ppm upon optimization in both p19 and
p40, deviating from the experimental value by between 0.6 and
0.9 ppm. Among the HA atoms there was a minimal change in
the accuracy between the non-optimized and optimized values
(increased deviation of 0.02 ppm in pS19 and a decrease of
0.1 ppm in pS40 from the experiment). The remaining non-
polar H CSs (HB1 and HB2) showed minute changes for pS19,
but a loss of accuracy by about 0.8 ppm to 1 ppm upon
optimization in pS40. There was an improvement in the MEEs
calculated for each of the H atoms, a trend which applies to
nearly all atoms computed. Among the carbon atoms, an
obvious favoritism appears for the non-optimized calculations.

The CSs for C0 atoms depreciated in accuracy by approximately
5–7 ppm. CA CSs were the only exception to this, showing small
or no improvement between the non-optimized and optimized
results. Once more, regardless of the referencing scheme, the N
CSs show a preference for non-optimized by approximately
4–5 ppm with Nref1. Finally, the P CSs, being the most sensitive
to geometry changes, deviated nearly 30 ppm between the
optimized and non-optimized CSs in both pS19 and pS40.
The conclusion from this investigation is that while optimiza-
tion may improve or depreciate the accuracy of the sample,
nearly across the board, all values of MEEs showed a reduction.

The success of the cluster analysis can be influenced by the
adjustment of specific parameters, as seen in the Ramachandran
plots. We can demonstrate that these parameters play a role in
appropriately representing the conformational phase space in a
trajectory. We have also validated the cluster analysis method
through CS computations. Among all the atoms in pS19, there
was an improvement in precision even including the particularly
sensitive P CSs. Not only did the data heavily support its ability
to create ensembles that preserve accuracy and relative precision,
but it also drastically reduces the computational cost of
the combined MD/ADMA/DFT framework. In fact, due to the
increased representation of frames in the cluster analysis, the
MEEs differ greatly between the values obtained from CLUSTER
and REGULAR ensembles.
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Soc., 2000, 122, 10390–10397.
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