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Many molecular design tasks benefit from fast and accurate calculations of quantum-mechanical (QM)
properties. However, the computational cost of QM methods applied to drug-like molecules currently
renders large-scale applications of quantum chemistry challenging. Aiming to mitigate this problem, we
developed DelFTa, an open-source toolbox for the prediction of electronic properties of drug-like
molecules at the density functional (DFT) level of theory, using A-machine-learning. A-Learning corrects
the prediction error (A) of a fast but inaccurate property calculation. DelFTa employs state-of-the-art
three-dimensional message-passing neural networks trained on a large dataset of QM properties. It
provides access to a wide array of quantum observables on the molecular, atomic and bond levels by
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predicting approximations to DFT values from a low-cost semiempirical baseline. A-Learning
outperformed its direct-learning counterpart for most of the considered QM endpoints. The results
suggest that predictions for non-covalent intra- and intermolecular interactions can be extrapolated to
larger biomolecular systems. The software is fully open-sourced and features documented command-
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Introduction

The electronic structure of drug-like molecules is responsible
for various drug-relevant properties, such as molecular recogni-
tion in protein-ligand complexes,"” drug-induced photo-
toxicity,”* reactivity for covalent ligand-protein interaction,®®
cell membrane permeability,” or three-dimensional (3D)
conformation energies.'® However, despite advances in density
functional theory (DFT) approaches,'™"* which are widely
regarded as a compromise between accuracy and computational
cost,"** calculating quantum-mechanical (QM) properties at
this level of theory for many or for sizable molecules remains a
computationally expensive task. Cheaper alternatives such as
force fields'” and semiempirical methods'®"” have become
popular alternatives, albeit with reduced accuracy. To overcome
some of these issues, there has been a recent surge of interest in
quantum machine-learning (QML), a set of techniques which
aim to approximate quantum observables through statistical
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modeling approaches.'® > Geometric deep learning in particular,
a discipline focused on the investigation of neural network
architectures that incorporate symmetry information into their
design,”?° has become an active topic of research. Recent
advances in geometric deep learning, such as the development
of E(3)-equivariant neural networks, have led to improved predic-
tion accuracy of energies,®*>® forces for molecular dynamics
simulations,?*' and wave functions in the form of local bases
of atomic orbitals.***

In parallel to these developments, A-QML (delta-QML)
approaches, which aim to learn corrections between computa-
tionally inexpensive QM methods and more accurate, albeit
more expensive ones, have been shown to deliver promising
results.®> Machine-learned corrections of this kind have been
reported for both coupled cluster theory***” via DFT, and for
DFT via the semiempirical family of methods GFN-XTB,**?° as
well as for other combinations.”® However, despite their
encouraging performance, to the best of our knowledge there
are currently no open-source implementations of A-QML or
readily available trained models, which limits their widespread
adoption. Addressing this need, we present DelFTa, an open-
source deep-learning toolbox that enables both fast and
accurate approximations of molecular electronic properties
on the DFT*"** level of theory. Models were trained on the
QMugs®® dataset, which consists of ~2 M molecular confor-
mers with of a comprehensive array of QM observables both at
semiempirical and DFT levels of theory for each structure.
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Fig.1 Overall idea behind the DelFTa software package. A-learning
models were trained to predict the correction (A) between observables
computed with a lower-cost semiempirical baseline method (GFN2-xTB)
and the corresponding DFT-level reference method (@B97X-D/def2-SVP).
Visualization inspired by ref. 34.

Specifically, QM observables were learned at the ®B97X-D/def2-
SVP level of theory, either directly or via A-learning through
corrections to the semiempirical GFN2-XTB method'”** ™
(Fig. 1). To this end, E(3)-invariant three-dimensional (3D)
message-passing neural networks (MPNNs) were employed,
which are able to learn properties at either the global molecular,
atom, and bond levels*® (Fig. 2) and whose predictions are
invariant to translations or rotations of the input molecule. The
potential utility of the presented DelFTa approach is threefold:

(1) The models provided expand the A-QML prediction
landscape for drug-like molecules by providing access to
commonly-used properties such as formation energies, as well
as previously-unreported ones, such as energies of the highest
occupied and lowest unoccupied molecular orbitals (HOMO
and LUMO, respectively), HOMO/LUMO gaps, dipole moments,
Mulliken partial charges, and Wiberg bond orders for covalent
and non-covalent bonds.

(2) We investigate several key concepts of QML for applications
in drug-relevant chemical space; namely, (i) the advantages and
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limitations of A — compared to direct-learning, (ii) the utility of
multi- over single-task learning paradigms for molecular proper-
ties, (iii) the dependence of prediction errors on training set size,
and (iv) the extrapolation capabilities of the trained machine-
learning models to non-covalent intra- and intermolecular inter-
actions in biomolecules.

(3) We provide a fully open-sourced and user-friendly soft-
ware package via command-line and Python APIs that includes
all trained models, as well as extensive documentation and
tutorials. Interested researchers will be able to use the provided
models, train new ones, or build upon them.

The DelFTa approach enables access to a variety of QM
properties at DFT accuracy in a fast and user-friendly manner
can be routinely used in numerous relevant applications in
molecular modeling and design.

Methods

Reference dataset and dataset splits

DelFTa was built upon the QMugs*® data collection, which
comprises ~2 M conformers of over 665 k molecules extracted
from the ChEMBL database (release 27),*” to obtain training,
validation, and test sets. It includes QM properties at two levels
of theory, namely the semiempirical method GFN2-xTB'”**~*¢
and DFT (0B97X-D/def2-SVP*"*?),

Each molecule in the QMugs dataset, associated with a
unique ChEMBL identifier, was assigned to either training,
validation or test sets, with all conformers of one molecule
becoming part of the same set. A validation set composed of
~29 k molecules was used for hyperparameter optimization
and early stopping. All optimized models were tested on three test
sets of ~29 k molecules each (~ 88 k individual conformers). As
in the QMugs dataset, some molecules with distinct ChEMBL
identifiers are represented with the same SMILES*® notation (i.e.,
the same 2D molecular graph), all molecules with the same

3D conformation < ’
GFN2-xTB

calculation

\

DET.

A- / direct-learning using
3D message-passing neural
networks

Single-task prediction
Formation energy
Mulliken partial charges
Wiberg bond orders

Multi-task prediction

HOMO energy
LUMO energy
HOMO-LUMO gap
Dipole

J

Fig. 2 Schematic of the A-learning concept and application. A three-dimensional (3D) molecular conformation is used as an input to either a single- or
multi-task trained message-passing neural network (MPNN). When a A-learning endpoint is requested, an additional GFN2-xTB calculation is carried out,
and the network is tasked with predicting the correction (A) between this baseline value and its ®B97X-D/def2-SVP analogue. If a direct-learning
prediction is requested, the network outputs an approximation to the ®B97X-D/def2-SVP value, without using the GFN2-xTB baseline.
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SMILES were assigned to the same test set to avoid information
leakage (see ref. 43 for details).

While the production models available in the DelFTa
application were trained on the entire QMugs dataset, model
performance was also benchmarked for different training set sizes
featuring both single molecular conformations per molecule
(100, 1 k, 10 k, 100 k and ~547 k training samples) as well as
multiple ones (~1.6 M individual conformers of ~547 k distinct
molecules). For the formation energy models, all conformers of
the same molecule were grouped within the same train-validation-
test splits, correspondingly yielding training set sizes of approxi-
mately 300, 3 k, 30 k, 300 k and 1.6 M samples. Fig. S1 (ESIt)
shows a schematic of the data splitting approach.

Neural network architecture and training details

The 3D-MPNNs used in this work are based on the E(3)-
Equivariant Graph Neural Network (EGNN) architecture.>”*°
A-learning models for all endpoints y;, at either global, node, or
edge levels, associated with the i-th molecular conformation,
were trained to predict the difference y?* between DFT-computed
properties (yP*" € R¥) and GFN2-xTB equivalents (y7™>*"® ¢
R"), specifically:

ylA :y?FT _ inFNfoTB. (1)

Direct-learning models were trained on y;*" values only.

Molecular conformations were represented as fully-connected
3D graphs G = (V,£,R), where V corresponds to its set of
nodes (v; € V), € to its set of adjacent edges (¢; € £) and R to
associated Cartesian coordinates in 3D space (r; € R?). Initial
node features v} were obtained via a linear embedding of the
respective atom types. Edge features r; were obtained via a
sinusoidal and cosinusoidal encoding of the pairwise diatomic
distances |r; — er§ (i.e., a Fourier-like encoding scheme).

An Equivariant Graph-Convolutional Layer (EGCL) was
applied over all edges e; of the graph. It uses the node
embeddings of v} at layer 1 as well as their respective atomic

positions r; to produce updated node representations vi™:

vit! = EGCL(v,r;,£), (2)
using the following message-passing mechanism:
mi/ = ¢e <v57 V;, V,'/')7

m; = Zm;-,-, (3)

v§+l = ¢h (va mi)?

where ¢, ¢ are node and edge non-linear transformations,
respectively, modeled with multilayer Perceptrons
linearized with the SiLU activation function,’” m; the computed
edge message features, and m; the aggregated message features
per node.

After five message-passing steps, node features v; were sum-
pooled for extensive properties (i.e., formation energy), and
mean-pooled for intensive ones®' (i.e., dipole, orbital energies,
HOMO-LUMO gap) and then mapped to their corresponding

non-
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target shapes via an additional multi-layer Perceptron. In the
specific cases of the node- or edge-based endpoints (ie.,
Mulliken partial charges and Wiberg bond orders), the learned
node-level v; and message-level features m;; were used directly
for prediction.

While we employed MSE losses for the intensive properties
and Mulliken partial charge models, the ones used for the
formation energy and Wiberg bond order endpoints were
composed of two terms. Similar to previous work,**?%** in
the case of formation energy (eqn (4)) a first loss term
minimized the error on the absolute formation energy yaps,
while a second term minimized the relative energy differences
between the different geometries of the same molecule y,:

A 2 A 2
Ltorm = ”yabs _yabs‘|2+ﬁ||yre] _.VrelHZ' (4)

Specifically training the model to differentiate between
conformer energies was motivated by the relevance of this task
in identifying the most stable conformers within an ensemble or
assessing reaction barriers.>® In the case of Wiberg bond orders
(eqn (5)), the first term minimized the error on covalent bonds
Yeovs and the second term that on non-covalent interactions ypon:

A 2 A 2
[’Wbo = Hycov _ycovH2+/LHynon _ynonHZ' (5)

Both ff and A values were optimized on the validation set and
setto f=1,and 1 =5 x 10> (see ESIT Section 1 for further
details). The following network hyperparameters were used in
all models considered in this study: (i) node dimension v; = 128,
(ii) message passing dimension my = 32 for molecular and
atomic models and 64 for the Wiberg bond order models, (iii)
number of sinusoidal and cosinusoidal distance encoding
features: 32, (iv) number of EGCLs: 5, and (v) number of global
multi-layer Perceptrons: 3, each containing 256 hidden units.
Because most of the considered endpoints feature different
numerical ranges, which could cause optimization instability
issues during the training of the multi-task models, a min-max
standardization strategy was applied using the 1st and 99th
percentiles of each endpoint, thereby also avoiding outlier
scaling problems.

Networks for all endpoints, and for both A- and direct-
learning models, were trained using the Adam stochastic
gradient descent optimizer™® with a starting learning rate of
102 and 10~* for all single-task and multi-task models, respec-
tively. An early-stopping strategy that monitored the monotonic
decrease of the chosen loss function on the chosen validation set
was adopted (see ESIT Section 1 for further details).

Processing of biomolecules

The structures were retrieved from the Protein Data Bank
(PDB)*®> and preprocessed with the MOE software®® (version
2019.0102). Since bond orders are intrinsically local properties,
and in order to make DFT calculations feasible, atoms which
were farther away than one additional residue from the non-
covalent interactions of interest were removed and the resulting
radicals were padded with hydrogens (see ESIt Section 4 for
further details). QM reference values were obtained via Psi4®’
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(version 1.3.2) using the ®B97X-D functional and the def2-SVP
basis set.

Results

Predictive performance

Test-set learning curves of models trained with varying
training-set sizes are shown in Fig. 3. Mean absolute errors
(MAES) w.r.t. DFT reference values decreased with increasing
training set size, generally resulting in linear correlation
recorded on log-log plots due to their inverse power law
relationship.’®® For most of the considered endpoints, the
A-learning models consistently achieved a better predictive
performance (lower MAEs) than their direct-learning counterparts.
This performance gap was observed for most training set sizes,
highlighting the usefulness of A-learning in low-data regimes. For
the prediction of formation energy and relative conformer energy
differences, the A-learning models achieved performance surpass-
ing chemical accuracy (1 keal mol " = 43.4 meV) for all training set
sizes larger than 300 k conformers, while direct-learning models
required 1.6 M training points. For all computationally intensive
molecular endpoints (i.e. those not depending on the system
size, such as orbital energies or dipoles), the performance of
multi-task models was superior to that of their single-task
counterparts, with the exception of direct-learning on LUMO
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energies for which both single- and multi-task models achieved
similar performance.

The predictive performance of the models trained on 1.6 M
training conformers was analyzed in more detail. Table 1 shows
MAEs w.r.t. the ®B97X-D/def2-SVP reference values obtained for
the test sets, and compares them to those of the semiempirical
baseline method GFN2-xTB. For all considered endpoints and
models, the DFT reference values were more closely approxi-
mated with the proposed machine-learning models than with
GFN2-XTB. For most of the considered endpoints, the A-learning
approach yielded lower MAEs than its direct-learning counter-
part. However, the direct-learning approach achieved a slightly
lower MAE (35.0 meV vs. 36.7 meV for A-learning) for the
prediction of HOMO energies, which can be attributed to the
fact that HOMO energies calculated with the DFT and GFN2-xTB
methods, respectively, correlated to a lesser degree than other
considered endpoints. Scatter plots showing A-predicted proper-
ties versus their DFT reference values are provided in Fig. 4.
Direct-learning approaches also yielded higher accuracies than
the semiempirical baseline GFN2-xTB for all considered end-
points (see Fig. S2, ESIT).

Utility of A-learning

While A-learning models generally outperformed their direct-
learning analogues in our experiments, the observed performance
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Fig. 3 Learning curves of A- and direct-learning model for extensive (panels A and H) and intensive (panels B—E) molecular properties, and for atom- and
bond-centered properties (panels F and G). These show the mean absolute error (MAE) as a function of training set size (axes in logarithmic scale) computed on
the three test sets comprised of ~29 k molecules (~88 k conformers). For the energy models (panels A and H), all conformers of the same molecule are
grouped within the same train-validation-test splits (see Methods). For intensive molecular properties (panels B—E), learning curves are shown for both single-

task and multi-task learning paradigms. Chemical accuracy thresholds are indicated for energy and orbital energy models (1 kcal mol™ ~ 43.4 meV)
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Table 1 MAEs (+1 standard deviation) for the baseline (GFN2-xTB) as well as the A- and direct-learning models w.r.t. the DFT reference values (#B97X-
D/def2-SVP). Results computed for ~88 k molecules (~263 k conformers) from the three test sets. Wiberg bond order results only for bonds where
GFN2-xTB values were available. The lowest MAE w.r.t. reference values are highlighted

DelFTa
Property Unit GFN2-xTB A-learning Direct-learning
Formation energy meV 86343 (+ 39) 21.78 (£ 0.10) 33.50 (£ 0.05)
HOMO energy meV 2115.4 £ (0.5) 36.7 (£ 0.1) 35.0 (+ 0.1)
LUMO energy meV 7773.0 (& 0.7) 27.8 (+ 0.2) 36.8 (& 0.2)
HOMO-LUMO gap meV 5658 (& 1) 47.3 (£ 0.2) 52.9 (4 0.1)
Total molecular dipole D 0.622 (£ 0.002) 0.0946 (£ 0.0006) 0.1588 (£ 0.0006)
Mulliken partial charges e 0.0610 (£ 0.0000) 0.0027 (£ 0.0000) 0.0029 (£ 0.0000)
Wiberg bond orders — 0.0592 (4 0.0001) 0.0011 (£ 0.0000) 0.0017 (£ 0.0000)
Conformer pairwise energy difference meV 73.6 (£ 0.4) 22.29 (£ 0.06) 34.27 (£ 0.08)
0 —4 - 6 14
Eform / €V Enomo / eV 4] ELumo / eV Egap / €V max
y, 5 12
0.0218 eV / ~61(0.0367 eV 24[0.0278 eV ' 0.0473 eV .
500 { 863429 eV 21154 eV / 04 7.7730 eV / 191 sesreev = -
-8 5 s 8 E
[aa) —4 6 o) ?)
a ~1000 o ' -6 . E a
I —12 ’ -8 ’ ’ &
Z -10 2
5 —1500 +- -14 124 0 min
@) ~1500  —1000 500 0 14 -12 -10 -8 -6 —4 “12-10-8 ~6 ~4-2 0 2 4 6 0 2 4 6 8 10 12 14 max
q,
9] 40 — 25 - as 3 , “? )
= Total molecular Mulliken partial Wiberg bond orders Conformer pairwise . 2 a
< . 20 30 2 : ik
j 304 dipole / D charges / e energy difference - <
= 15 25 / eV 3 w Z
o) 5 , . 1 g @
10 20
Q 0 o o~
10 05 15 A
f 0.0 . 1.0 » = min
0 e X 0.0946 D 0.0027 e v 0.0011 72 0.0223 eV MAE DelFTa
S oe20p | %0 0.0610 ¢ 03 0.0592 0.0736 eV MAE GEN2-xTB
% 6 m 2 a3 0 “looso00 05 10 15 20 25 00 05 10 15 20 25 30 35 s 2 -1 o 1 2 3

DFT reference (wB97X-D/def2-SVP)

Fig. 4 Calculated versus DFT reference values (#B97X-D/def2-SVP). Mean absolute errors (MAEs) computed for A-learning models and for the GFN2-
XTB baseline in ~88 k test-set molecules (~263 k conformers). A-learning predictions obtained using the models trained on the 1.6 M conformer
training set, and in the multi-task setting for all intensive endpoints. Wiberg bond order results only for bonds where GFN2-xTB values were available.

Colorbars scaled individually for each property.

difference was not uniformly distributed across the endpoints. To
investigate under which conditions the A-learning paradigm is
advantageous over direct-learning, we analyzed the relative
performance difference between the two approaches as a function
of the Pearson correlation coefficient r between baseline (GFN2-
XTB) and reference (0B97X-D/def2-SVP) values. Fig. 5 indicates
that the relative performance advantage of A-learning is positively
correlated to the correlation r between baseline and reference
This result confirms the intuitive understanding
that A-learning provides a larger performance advantage over
direct-learning the more information the baseline method
provides.

values.

Non-covalent interactions in biomolecules

Many tasks in medicinal and bioorganic chemistry encompass the
study of non-covalent intra- (e.g. secondary-structure-stabilizing)
and intermolecular (e.g. protein-ligand) interactions.*>*'

This journal is © the Owner Societies 2022

Modelling of non-covalent interactions with semiempirical meth-
ods has previously been shown to be challenging.®> Given the
biological relevance of these molecular interactions, it is desirable
to develop QML models which can accurately extrapolate from
small molecules (e.g., bioactive ligands) to larger biomolecules
(e.g., peptides), foregoing the need for the expensive DFT calcula-
tions associated with structures of such size.

Towards that end, we preliminarily investigated the general-
ization capabilities of direct-learning QML models for selected
biomolecular systems with crucial non-covalent interactions by
comparing predicted Wiberg bond orders to DFT reference
values. A-learning models were not considered in these analyses,
as bond order values for many non-covalent interactions of
interest are not provided by the GFN2-XTB semiempirical method.
The investigated structures (Fig. 6) include a hydrolase B-turn,* a
B-sheet and an o-helix of ubiquitin,”* glutamate in a glutamate
dehydrogenase binding pocket,®® an uracil-adenine base pair in

Phys. Chem. Chem. Phys., 2022, 24,10775-10783 | 10779
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def2-SVP) methods. The solid line shows a least-squares linear fit.

an RNA structure,”® and a transcription factor binding to a
cytosine-guanine base pair of a DNA structure.®”

By training only on monomers of drug-like molecules and
their intramolecular interactions, as included in the QMugs
dataset, the models successfully extrapolated to non-covalent
intra- and intermolecular interactions in biomacromolecules
including monomers and dimers. For instance, weak hydrogen
bonds (Wiberg bond order <0.1), such as the ones found in
a-helices (Fig. 6(C)), as well as strong hydrogen bonds (Wiberg
bond order <0.1), such as the ones found in the RNA base pairs
(Fig. 6(E)), B-turns/sheets (Fig. 6(A) and (B)), and in the glutamate
binding pocket (Fig. 6(D)), were accurately predicted. However, we
observed reduced predictive capabilities for some interactions
such as hydrogen bonds with phosphate groups (Fig. S4, ESIt).

Benchmarking

We compared the implementation of the DelFTa deep-learning
architecture used in this work to the one originally reported in
ref. 27, for the QM9 dataset,®® a benchmark used in previous
QML studies, which features quantum observables for ~134 k
small molecules. The same DelFTa model architecture used for
the direct-learning of formation energies was retrained on the
QM9 training set (~100 k molecules), validated and tested on
its respective validation and test sets (~15 k molecules each).
The trained models achieved an MAE of 11.9 £ 0.7 meV in three
independent model runs, which is comparable to the originally-
reported performance (12 meV).>” The lower overall error of the
models trained on QM9 compared to those trained on QMugs
(11.9 meV and 33.5 meV, respectively) can be attributed to two
key differences between the datasets, namely atom type diversity
(10 different atom types in QMugs, 5 in QM9), and molecular
size (up to 100 heavy atoms in QMugs, and up to 9 heavy atoms
in QM09, respectively).

Since DelFTA models were trained on uncharged molecules but
had shown predictive capabilities for charged biomolecules, we
quantitatively investigated the models’ performance on 176
randomly-sampled charged conformers corresponding to 59 mole-
cules extracted from the test sets (see Table S2 for details, ESI).
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Compared to uncharged molecules, the predictive performance
decreased moderately for Mulliken partial charges and Wiberg
bond orders, and substantially decreased for other endpoints
(see Table S3, ESIt). Based on these results, we discourage the
use of the DelFTa models provided in the accompanying software
for out-of-distribution molecules.

Listing 1 A small snippet highlighting the main predictive
capabilities of the DelFTa Python package and its integration
with Pybel. Molecules, with or without associated 3D geometry,
can be supplied via a wide array of file types.

from delfta.calculator import DelftaCalculator
from openbabel.pybel import readstring

mol = readstring("smi", "CCO")
calc = DelftaCalculator()
predictions = calc.predict(mol)
print(predictions)

# >> {"E_form": -1.2884707,

"E_lumo": 0.18285048,

Finally, we explored the model performance (trained on
®B97X-D/def2-SVP DFT data) on a set of molecules whose
DFT reference values were computed with a more comprehensive
basis set (©0B97X-D/def2-QZVP). Calculations for 2,874 conforma-
tions corresponding to 958 distinct molecules with this larger
basis set did not indicate superior performance of A-over direct
learning (see Fig. S3 for details, ESI). Furthermore, Mulliken
partial charges on the ®B97X-D/def2-QZVP level of theory were
better approximated using GFN2-XTB than with either of the
provided machine-learning models. This was expected as GFN2-
XTB better approximates charges computed with the larger basis
set than the chosen DFT reference used throughout this study
(0B97X-D/def2-SVP).

Software

DelFTa is fully implemented in the Python programming
language® and uses the PyTorch”® (version 1.8.0) and PyTorch
Geometric packages’" (version 1.7.2) to enable model training
and inference. A minimalist code example for the usage of the
package is provided in Listing 1. Semiempirical calculations at
the GFN2-XTB'**™*¢ level of theory are computed via open-
source xtb binaries. All molecular manipulation routines
(including optional generation of initial 3D coordinates and
GFN2-xTB geometry optimization) are integrated into DelFTa
and handled via the Pybel package’® and OpenBabel”® Python
bindings. The software is fully open-sourced, available on
GitHub (https://github.com/josejimenezluna/delfta) under a
permissive AGPLv3 license, and distributed through the conda
package manager.”* A Docker’® container is also provided for
easier accessibility and to ensure long-term functionality.
Furthermore, DelFTa provides extensive documentation for its
code and APIs. Tutorials in the form of several didactic Jupyter
notebooks”® are also available.
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Hydrolase B-turn (PDB ID: 1SYB)

wB97X-D ML
a 0.1045 0.1084
b 0.1349 0.1325
¢ 0.1131 0.1171

Ubiquitin a-helix (PDB ID: 1UBQ)

wB97X-D ML
a 0.0764 0.0792
b 0.0624 0.0583
c 0.0651 0.0715
d 0.0795 0.0835
E RNA base pair (PDB ID: 2GQ7)
wB97X-D ML
a 0.1687 0.1377
b 0.1809 0.1638
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B Ubiquitin B-sheet (PDB ID: 1UBQ)
»B97X-D ML
a 01526  0.1651
b 0.1461  0.1382
c 01393  0.1296
d 00808  0.0713
e 00810 0.0784
" f 0.1078  0.1158
af g 01179  0.1230
D Glutamate dehydrogenase binding pocket
(PDB ID: 1BGV)
»B97X-D ML
a 0.1562  0.1397
b 0.1563  0.1398
c 0.1498  0.1223
d 0.0999  0.0978
e 0.0876  0.0975
f 01586  0.1494
g 02500  0.2898
F Transcription factor — DNA binding site
(PDB ID: 5GNJ)
»B97X-D ML
oo a 0.0933 0.0778
b 0.1254  0.0901
- c 00990  0.0840
A g d 00967  0.0836

Fig. 6 Non-covalent interactions in selected biomacromolecules. For panels (A-D), non-backbone residues resp. protein pockets shown semi-
transparently for visual clarity. Interactions with DFT-calculated Wiberg bond orders between 0.05 and 0.8 shown, and both calculated (#B97X-D/def2-
SVP) and predicted (ML, using models trained on 1.6 M datapoints) values tabulated. Interactions with solvent atoms and between atoms spaced less than
six covalent bonds apart not shown. White: hydrogen, gray: carbon, red: oxygen, blue: nitrogen.

On a computer with a consumer-grade graphics processing
unit, DelFTA predicts all considered endpoints at a speed of
approximately 50 and 5 molecules per second for the direct and
A-learning models respectively, with the latter approach mostly
bottlenecked by the additionally-required baseline GFN2-xTB
calculations.

Discussion

QML models were trained for a wide variety of endpoints on a
large dataset of quantum observables. Models were validated
for both A- and direct-learning, as well as single- and multi-task
paradigms. The results suggest that both A- and direct-learning

This journal is © the Owner Societies 2022

models have improved accuracy over the GFN2-xTB baseline in
approximating ®B97X-D/def2-SVP reference values. For the
majority of the considered endpoints, A-learning models dis-
played lower MAEs than their direct-learning analogues at
roughly the same computational cost as GFN2-xTB. Addition-
ally, the Wiberg bond order models were able to approximate
non-covalent interactions in larger biomolecular systems.

We foresee many applications for the hereby provided
models in both supervised and generative molecular pipelines.
For instance, featurization with quantum-derived properties,
such as partial charges and nuclear magnetic resonance shifts,
was shown to increase the performance of reactivity prediction
with graph neural networks in low-data regimes.”” Similar
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effects may also be anticipated in medicinal chemistry as the
electronic structure of drug-like molecules governs many
related properties. Potential examples include the influence
of (i) HOMO/LUMO energies on phototoxicity,”* (ii) dipole
moments on aqueous solubility’®”® and membrane
permeability,”®° and (iii) formation energies on 3D-conformer
ensembles® or site-of-metabolism prediction.®"

Future prospective applications will reveal the practical
applicability and usefulness of these models in drug discovery-
related tasks. The current limitations are twofold, concerning
the modelling performance and the models’ applicability
domain. With regard to modelling performance, we noted that
while the A-learning approach affords substantial improvements
over its direct-learning analogue w.r.t. target DFT reference
values, this does not necessarily hold in the case of HOMO
energies, probably owing to the limited correlation of the
baseline and reference methods. Furthermore, some of the
observations regarding the performance advantages do not neces-
sarily hold for reference values computed with a more compre-
hensive basis set. Limitations with regard to the applicability
domain mostly stem from the underlying QMugs dataset, which
was conceived with medicinal chemistry applications in mind. For
example, it does not feature organometallic complexes, polymers,
crystalline structures, or molecular systems including dimers,
radicals, excited electronic states, higher-order spin states, off-
equilibrium structures or charged molecules. Specifically for
charged molecules we observed substantially decreased predictive
performance in this study. Adequate models for these types of
molecular structures will require training data that specifically
covers the respective chemical space, and therefore remain a
subject of future work.
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