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Geometrical picture of the electron–electron
correlation at the large-D limit

Kumar J. B. Ghosh, ab Sabre Kais b and Dudley R. Herschbach *c

In electronic structure calculations, the correlation energy is defined as the difference between the

mean field and the exact solution of the non relativistic Schrödinger equation. Such an error in the

different calculations is not directly observable as there is no simple quantum mechanical operator,

apart from correlation functions, that correspond to such quantity. Here, we use the dimensional scaling

approach, in which the electrons are localized at the large-dimensional scaled space, to describe a

geometric picture of the electronic correlation. Both, the mean field, and the exact solutions at the

large-D limit have distinct geometries. Thus, the difference might be used to describe the correlation

effect. Moreover, correlations can be also described and quantified by the entanglement between the

electrons, which is a strong correlation without a classical analog. Entanglement is directly observable

and it is one of the most striking properties of quantum mechanics and bounded by the area law for

local gapped Hamiltonians of interacting many-body systems. This study opens up the possibility

of presenting a geometrical picture of the electron–electron correlations and might give a bound on

the correlation energy. The results at the large-D limit and at D = 3 indicate the feasibility of using the

geometrical picture to get a bound on the electron–electron correlations.

1 Introduction

Dimensional scaling, as applied to electronic structure calculations,
offers promising computational strategies and heuristic perspec-
tives with physical insight of the electronic structure of atoms,
molecules and extended systems.1–4 Taking the spatial dimen-
sion of the physical space as a variable other than D = 3 can make
a problem much simpler and then one can use perturbation
theory or other techniques to obtain the results at D = 3. The
D-scaling technique was used first in quantum chromodynamics5

and then applied to the Helium atom.2–4 In this approach, we
solve the problem at the D - N limit and then add terms in
powers of d = 1/D. Using different summation techniques6 can
obtain highly accurate results for D = 3. The dimensional scaling
approaches were extended to N-electron atoms,7 renormalization
with 1/Z expansions,8 random walks,9,10 interpolation of hard
sphere virial coefficients,11 resonance states12 and dynamics of
many-body systems in external fields.13,14 We refer the reader to
the book ‘‘Dimensional scaling in chemical physics’’15 for more
details of the approach and applications.

In computational physics and chemistry, the Hartree-Fock
(HF) method16 is a self-consistent field approximation to determine
the wave function and the energy of a quantum many-body
system in a stationary state. This method is based on the idea
that we can approximately describe an interacting electronic
system in terms of an effective single-particle model. Moreover,
this simple approximation remains the starting point for more
accurate post Hartree–Fock methods such as coupled clusters
and configuration interactions.

The Hartree-Fock method assumes that the exact N-body
wave function of the system can be approximated by a single
Slater determinant of N spin-orbitals. In quantum chemistry
calculations, the correlation energy is defined as the difference
between the Hartree-Fock limit energy and the exact solution of
the nonrelativistic Schrödinger equation.17 Other measures of
electron correlation also exist in the literature, for e.g. the
statistical correlation coefficients.18 Recently the Shannon
entropy is also described as a measure of the correlation
strength.19,20 Electron correlations have wide implications on
atomic, molecular,21 and solid state physics.22 Observing the
correlation energy for large systems is one of the most challenging
problems in quantum chemistry because there is no simple
operator in quantum mechanics that its measurement gives the
correlation energy. This leads to proposing the entanglement as
an alternative measure of the electron correlation for atoms and
molecules.23 All the information needed for quantifying the
entanglement is contained in the two-electron density matrix.
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This measure is readily calculated by evaluating the von Neumann
entropy of the one electron reduced density operator. As an
example, one can see the calculation of the entanglement for
He atom and H2 molecule with different basis sets.23 The advan-
tage of this proposal is that entanglement is directly observable,
and it is one of the most striking properties of quantum
mechanics.

Entanglement is a quantum mechanical property that
describes strong correlations between quantum mechanical
particles that has no classical analog and has been studied
extensively in the field of quantum information and quantum
computing.24–29 Moreover, scientists studied numerous properties
of the entanglement entropy,30–33 addressing many interesting
topics of physics, for example black hole physics,34–36 distribution
of quantum correlations in quantum many-body systems in one
dimension30,37,38 and higher dimensions,39–42 complexity of quan-
tum many-body systems and their simulation,43,44 and topological
entanglement entropy.45–49

In this article we describe a geometric interpretation of
correlation energy calculated at large-D limit and at three
dimensions and establish a relation between the correlation
energy and the area law of entanglement. In Section 2, we
describe the area law of entanglement. In Sections 3 and 4, we
describe the relation between the area difference and the corre-
lation energy of the atomic/ionic systems and metallic hydrogen
at the large-D limit. In Section 5, we consider the helium atom
and the metallic hydrogen at D = 3, where the electrons are not
localized unlike in the D - N limit. Finally, in Section 6, we
make some concluding remarks. We adopt Hartree atomic units
for our calculations.

2 Area law of entanglement

In classical physics, concepts of entropy quantify the amount of
information that is lacking to identify the microstate of a
physical system from all the possibilities compatible with the
macrostate of the system. In quantum mechanics, we define the
entanglement entropy or geometric entropy,50–52 which arises
because of a very fundamental property called entanglement.
In quantum many-body systems, for a pure state r = |ci hc|, the
von Neumann entropy is a good measure of entanglement and
defined as50

S(r) = �tr[rlog2r] (1)

Generally, a quantum state |ci of n-qubits (spin 1
2) is

represented as a vector in C2
� ��n ;

jci ¼
X
i1 ;...;in

Ci1;...;in ji1; . . . ; ini: (2)

This is a very complex wave function with complex coefficients

Ci, in Hilbert space of dimension C2n . One way to find a
possible efficient representation, is to examine a bipartite
system with a local gapped Hamiltonian, summing over nearest
neighbor interacting particles, as shown in Fig. 1.53–57 The
entanglement entropy between the interior state X and the

exterior state Xc scales as the size of the boundary for every
region X,

S(X) r constant � Area(X). (3)

Recently, the area law of bounding the entanglement entropy
of the ground state energy was examined for local integrating
particles with large gapped energy spectrum.53–57 It is shown that
the ground state of a chain of d-dimensional spins with a
boundary L and spectral gap d is bounded by an area law

S1DðLÞ ¼ exp O logðdÞ=dð Þð Þ ¼ constant; (4)

where Oð. . .Þ is used to denote a bound up to a numeric constant
of order unity. The area law for the entanglement entropy and
ground state of local Hamiltonian was further extended to two
dimensional lattice.58–62 Here, we use the area law as a heuristic
approach to guide us to discuss having a possible bound on the
electronic correlation energy as one can obtain a well define
geometrical picture of the localized electrons at the large-D limit,
for both the mean field and the exact electronic structure.

3 Correlation energy and the surface
area for atomic systems at the large-D
limit

At the large-D limit, one can obtain a simple formula for the
electronic structure of N-electron atoms.7 At D - N limit, the
electrons are localized in the scaled space with equidistant rm

from the nucleus and equiangular with respect to each other,
which means that there is no shell structure. This simple
geometrical picture holds for a wide variety of atoms and ions

Fig. 1 The area law of the entanglement entropy: We have n-qubits (spin
1
2 particles) in two-dimensional space interacting with local Hamiltonians
(sum over nearest neighbor integrating particle) and the question is what is
the entanglement between the interior shaded area X and the exterior
system Xc. The conjecture of the area law is that the entanglement is
bounded by the size of the boundary as shown above. The number of
qubits in Fig. is for the demonstration purpose only (just a cartoon).
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including all neutral atoms with Z o 14 and all positive ions
with N/Z t 0.936.7 In the Hartree–Fock limit all electrons are
orthogonal to each other. The electronic energy eHF

N and dis-
tance from the nucleus rHF

m of an N-electron atom are described
by the following formulas:

eHF
1 ¼ �

N

2
1� 23=2 N � 1ð Þl
h i2

; (5)

rHF
m = [1 � 23/2 (N � 1) l]�1, (6)

with l = 1/Z, where Z is the nuclear charge. For larger atoms the
global minimum of the Hamiltonian HN no longer has a maximal
symmetry and the solutions display a kind of meta-shell structure,
but one which is apparently unrelated to the normal three
dimensional shell structure.7

After adding the inter-electronic correlation in the picture
the electrons are no more orthogonal to one another. Therefore,
the inter-electronic angle yN becomes slightly larger than p/2,
although their equi-distance property from the nucleus rN still
holds. At D - N limit the relevant quantities can be calculated
by the following formula:

The exact energy is given by

e1 ¼ �
1

2

1� x
1� x=N

� �3

N �Nxþ xð Þ; (7)

the inter-electronic angle

y1 ¼ arccos
x

x�N

� �
; (8)

and the electronic distance

r1 ¼
1� x=N
1� x

� �2

N �Nxþ xð Þ; (9)

where the parameter x is the smallest positive root obtained by
solving the following quartic equation

8NZ2x2 (2 � x)2 = (N� x)3. (10)

We solve the above sets of eqn (5) and (7) numerically and
calculate the correlation energy at D - N limit which is
defined by

eCorr
N = |eN � eHF

N |. (11)

For example, from the above eqn (5)–(9), we obtain the
following results for the helium-atom rHF

m = 1.214737, eHF
N =

�0.6776966, rN = 1.213927, yN = 1.663309 rad, eN =
�0.68444228, and eCorr

N = 0.0067456.
Next, we draw the following geometrical pictures of the two

localized electrons of the helium-atom at D - N. We first
construct a right angle triangle with two equal sides equal to
rHF

m and another isosceles triangle with two equal sides equal to
rN and the inter-electronic angle yN.

In Fig. 2, the nucleus is fixed at the point A. The points B and
C describe the positions of the two electrons at HF-limit,
whereas the points D and E describe the positions of the two

electrons with correlation. At HF-limit ABpAC however the
correlation angle +EAD 4 p/2.

The area of the isosceles triangle was calculated with the

simple formula DADE ¼ 1

2
AE � AD� sinðffEADÞ. Then we

calculate the magnitude of the area difference (Darea) between
the DABC and DADE for the helium atom Darea = 0.00413417.
In Fig. 2 we show the area difference as the difference between
the stripped areas.

For three-electron atoms we construct the three triangles
DABC, DACD, and DADB (see Fig. 3). The point A is the
position of nucleus and the points B, C, D are three localized
electronic positions. The sides AD = AC = AB. At HF-limit, the

Fig. 2 The geometry of the localized electrons in a helium atom is
described at large-D limit. Without inter-electronic correlation the electrons
B and C are orthogonal with respect to the nucleus A. Whereas, with
correlation the inter-electronic angle +DAE becomes slightly larger than
p/2. At the top panel (a), we draw the triangles formed by the two electrons
and the nucleus with (DCAB) and without correlation (DDAE). At the bottom
(b), the area difference between the two triangles is described by the striped
red region.
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angles +BAC = +CAD = +BAD = p/2, whereas, with correlation
+BAC = +CAD = +BAD 4 p/2.

As an extension of the above, we construct N-triangles for
N-electron atoms and compute the total areas for both HF and
with inter-electronic correlation. Then we compute the area
difference for N-triangles between HF and electronic-correlation.

In Fig. 4, we describe the area difference which is computed
from the N-triangles of the N-electron atom.

We compute the correlation energies for N-electron atoms,
using eqn (5) and (7), and plot this in Fig. 5 along with the area
differences obtained above.

We also compute the inverse of the electronic correlation
energies and the inverse of the area difference obtained from
the above prescription and plot these in Fig. 6.

In Fig. 5 and 6, we see that the area difference is a close
estimate to the correlation energy at the large-D limit. On the
other hand, it was shown by Loeser et al.7 that the correlation
energy at D = 3 is a good approximation to the correlation
energy at D - N. Therefore the correlation energy is bounded
by the area difference of the electronic triangles between the

HF-limit and with correlation at large-D limit. We plot the
known accurate correlation energies at D = 363–66 and with
the correlation energies obtained at D = N.

In Fig. 7, we see that the correlation energies at D = 3 are
bounded by the corresponding area differences at D - N

limit, with the only exception for N = 2.

4 Electron correlation and the surface
area for metallic hydrogen at the large-
D limit

In 1935, Wigner and Huntington predicted the metallization of
hydrogen,67 a phase of hydrogen that behaves like an electrical
conductor. Ever since this has been a major quest for condensed
matter physics, pursuing theory68–72 and extreme high-pressure
experiments.73–78 Dimensional scaling and interpolation as
applied to metallic hydrogen was investigated in articles.68,79

With appropriate scaling, energies will be in units of 4/(D � 1)2

Hartrees, and distances in units of D (D � 1)/6 Bohr radii. we

Fig. 3 Geometry of a three-electron atom at D - N limit. The point A is
the position of nucleus and the points B, C, D are three localized electronic
positions.

Fig. 4 The area differences calculated for N-electron atoms at D - N

limit. Because of special symmetry at the large-D limit, area difference per
number of electrons is the same.

Fig. 5 The electronic correlation energies (in Z2 Hartree) for neutral
atoms from N = 2 to N = 14 in blue, and the area difference in purple.
The green points are the difference between the above two results.

Fig. 6 The inverse of the electronic correlation energies for neutral atoms
from N = 2 to N = 14 in blue, and the inverse of area difference in purple.
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consider the lattice to be simple cubic (SC). With scaling and
simplifications, the Hartree–Fock one-electron Hamiltonian in
the D - N limit in a lattice of hydrogen atoms with clamped
nuclei can be written as:68

H ¼ 9

8r2
� 3

2r
þWðr;RÞ; (12)

where r is the scaled electron-nucleus distance, R is the nuclear
position and

Wðr;RÞ¼3

4

X
l;m;n2L0

1ffiffiffiffiffiffiffiffiffiffi
s2R2
p � 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2R2þr2
p þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2R2þ2r2
p ; (13)

with integers (l, m, n) are given by the lattice symmetry

s2 = l2 + m2 + n2. (14)

For any specified lattice type and scaled lattice constant R,
the minimum of eqn (12) with respect to r gives the energy
per electron. The whole lattice is three-dimensional, noted
L0 minus the one site (0,0,0). The single variable r is the orbit
radius and R is the lattice spacing.

We introduce the inter-electronic correlation at D - N

limit by opening up the dihedral angles from their Hartree–
Fock values of exactly p/2 rad. The dihedral angles in the
correlated solution is determined by two effects, namely, the
centrifugal effects, favoring p/2 rad, and interelectron repulsions,
favoring p rad. Although the final effect turns out to be the angles
very close to p/2 rad. For the calculation purpose we assume the
inter-electronic correlation is up to third nearest neighbor, which
is a very legitimate assumption. We assume the lattice structure to
be simple cubic (SC).

At D - N limit, the Hamiltonian with inter-electronic
correlation can be written as:68

Hcorr ¼HHF þ
9

8r2
G0

G

� �ð3Þ
�1

 !
þ 3

2
W
ð3Þ
D ; (15)

where

W
ð3Þ
D ¼ 6DWðr;R; g100Þ þ 12DWðr;

ffiffiffi
2
p

R; g110Þ
þ 8DWðr;

ffiffiffi
3
p

R; g111Þ; (16)

with

DWðr; sR; glmnÞ ¼
1

2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2R2 þ 2r2 1� glmnð Þ

p � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2R2 þ 2r2

p
 !

:

(17)

The HHF is the Hamiltonian in Hartree–Fock approxi-
mation defined in eqn (12). The quantity glmn = cos ylmn, with
ylmn are the dihedral angles which are very close to p/2. The

Gramian ratio
G0

G

� �ð3Þ
is defined as68

G0

G

� �ð3Þ
’ 1þ 6g100

2 þ 12g110
2 þ 8g111

2

þ ðhigher order terms in gÞ: (18)

We optimize the above Hamiltonian (15) with respect to the
parameters g100,g110,g111, keeping the values of r and R from the
HF-Hamiltonian.79

Fig. 7 The electronic correlation energies for neutral atoms from N = 2 to
N = 14 in blue, the area differences in purple, and correlation energies at
D = 3 in green. Note that the energies are represented in the Z2 Hartree.

Fig. 8 At the top panel (a), we plot the energy obtained at D - N with
inter-electronic correlation in blue, compared with the HF energy as a
function of R in green. At the bottom (b), we plot the correlation energy as
a function of R.
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In Fig. 8, we plot the minimum values of the Hamiltonian
(15) at D - N limit as function of R and compare with the
values obtained from the HF-Hamiltonian. We also plot the
correlation energies Ecorr ¼Hcorr �HHF as a function of R.
In the left hand side of Fig. 8, we see that the ground state
energy becomes positive for R o 1.28, therefore makes the
system unstable. Therefore, R 4 1.28 can be think of a
physically stable region for metallic hydrogen at D - N limit.

In the simple cubic lattice at D -N limit, the electrons also
forms a cubic structure. With each reference electron there are
6 nearest neighbors at a distance R, 12 second nearest neigh-

bors at a distance
ffiffiffi
2
p

R, 8 third nearest neighbors at a distanceffiffiffi
3
p

R and so on. At HF-limit the nearest neighbours (N1i for i = 1,
2,. . . 6) are orthogonal to each other with respect to the
reference electron (O). For correlation the dihedral angles
between the electrons becomes slightly greater than 901. The
following figure describes a cross section of a MH in SC lattice
with reference electron O. In HF limit we consider 6 square
surfaces for 6 neighbouring electrons at a distance R, 12 square

surfaces for 12 neighbouring electrons at a distance
ffiffiffi
2
p

R, and 8

square surfaces for 8 neighboring electrons at a distance
ffiffiffi
3
p

R.
Whereas, with inter-electronic correlation each square becomes
a rhombus.

In Fig. 9, we plot the area difference due to the electronic
correlation. The area difference between the square and the
rhombus formed by each nearest neighbor is equal to R2(1 �
cos y), where y = g100 � 901 is the angle deviation from 901 due
to correlation effect. The area difference for each next nearest
neighbor is equal to 2R2 (1 � cos y2), with y2 = g110 � 901, and so
on. The total area difference due to the correlation up to the
third nearest neighbor is given by:

Darea ¼ 6R2 1� cosðg100 � 90�Þð Þ þ 24R2 1� cosðg110 � 90�Þð Þ

þ 24R2 1� cosðg111 � 90�Þð Þ:
(19)

We vary the lattice parameter R and calculate the area
difference for each value of R. In Fig. 10, we plot the correlation
energy per electron for metallic hydrogen in SC lattice at large-D
limit and the area difference described above as a function of
the lattice parameter R.

In Fig. 10, we see that the correlation energy per electron is
bounded by the area difference in the physically stable region
(i.e. total ground state energy e 4 0).

The correlation energy per electron (in Rydberg unit) in
metallic hydrogen at D = 3 was calculated by Neece et al.80,81

ecorr = �0.1303 + 0.0495ln(rs). (20)

In the above eqn (20), the lattice constant R is related to rs,
the standard solid state parameter, defined as the radius of a
sphere (in a0 Bohr units) in which contains on average one
electron. For the SC lattice,

4

3
prs3 ¼ R3: (21)

In Fig. 11, we plot the correlation energy of each electron in
metallic hydrogen as a function of R at D = 3 and compare with
the D = N result.

In Fig. 11, we see that the correlation energy per electron
(ecorr) at D - N is bounded by ecorr at D = 3. Although at D = 3,
there is no concept of the dihedral angles between electrons as
the electrons are not localized. We shall calculate the corres-
ponding area difference for metallic hydrogen at three dimen-
sions in the next section.

5 Correlation energy and the surface
area difference in the three-dimension

In the previous sections, we established that the correlation
energies are bounded by the area differences for N-electron
atoms and also for metallic hydrogen at the large-D limit.
In three dimensions, the picture is different, because at D = 3
the electrons are not localized compared to the D - N limit.
To establish the validity of the area law and correlation energy,
we consider the helium atom in three-dimensions. The two 1s

Fig. 9 The area difference for a single cell formed by each nearest
neighbor. N11, N12 are the positions of the two nearest electrons in HF
representation w.r.t. the reference electron O; whereas the primed ones
for e.g., N

0
12; N

0
21 are the relative positions of the first and second nearest

neighbor electrons respectively due to the inter electronic correlation. In
the right, the area difference is represented by the blue stripped region.

Fig. 10 The correlation energy per electron in metallic hydrogen at D -

N as a function of R in blue and the area difference in green.
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electrons in the helium atom at 3D are in spherical orbitals
with an average electronic radius hri. The average radius
changes from hrHFi (in HF approximation) to hrexacti (with
inter-electronic correlation). The area difference is the differ-
ence between the two spherical surfaces with radii hrHFi and
hrexacti respectively.

In the Hartree–Fock approximation, the average electronic
radius82,83 is given by hrHFi = 0.92724 a.u. On the other
hand, with inter-electronic correlation, a very accurate value
of hrexacti = 0.92947 was computed by Thakkar et al.84

The surface area difference between the two spherical
orbitals is calculated as

Darea = 4p (rHF
2 � rexact

2) = 0.0520. (22)

Whereas, the correlation energy of the helium atom63,64,85 in
atomic unit is given by |ecorr| = 0.04204. Therefore, the correla-
tion energy is bounded by the area difference in three-
dimensions also.

From DFT calculations the ground state energy (in Rydberg
unit) per electron in metallic hydrogen in simple cubic lattice at

D = 3 is expressed as86

eðrsÞ ¼
2:21

rs2
� 2:80604

rs
� 0:13993� 0:11679 lnðrsÞ; (23)

where rs is the average atomic radius of each hydrogen atom in
MH.

In Fig. 12, we see that the ground state energy becomes
positive for rs o 0.68, therefore makes the system unstable.
Therefore, rs 4 0.68 can be think of a physically stable region
for metallic hydrogen at D = 3.

Now, if we introduce inter-electronic correlation, the average
atomic radius in metallic hydrogen will change, i.e. the rs will
change. Therefore, we can think of the correlation energy as the
change in the ground state energy due to a change in the
atomic radius rs, i.e.

ecorrðrsÞ ¼
deðrsÞ
drs

Drs ¼ e0ðrsÞDrs; (24)

where ecorr (rs) is defined in eqn (20) and e (rs) is defined in
eqn (23). On the other hand, the change in the area per atom in
metallic hydrogen is given as

D(area)(rs) = D(4prs
2) = 8prsDrs = 8prsecorr (rs)/e0 (rs).

(25)

In Fig. 13, we plot the D(area) and ecorr as a function of rs. We
see that the correlation energy per electron in MH is bounded
by the area difference in the physically stable region (i.e. total
ground state energy e 4 0) in three-dimension also.

6 Conclusion

Understanding quantum correlation in many-body states of
matter, a feature ubiquitous in different problems of physics
and chemistry, has gained renewed prominence in recent years.
Experimentally, different protocols have been proposed to
directly extract spatial correlation functions in phases like in
the Mott regime of a Hubbard Hamiltonian87,88 due to single-
site resolution and selective spin removal technique afforded by
quantum-gas microscopy in platforms like ultracold-atomic

Fig. 11 The correlation energy per electron in metallic hydrogen at D -

N as a function of R in blue and at D = 3 in green.

Fig. 12 Total ground state energy (in Rydberg unit) per electron in
metallic hydrogen at D = 3 as a function of rs.

Fig. 13 D(area) and ecorr are plotted as a function of rs in blue and green
respectively.
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lattices. Such techniques have also been used to study response
of magnetic field on an spin-imbalanced 2D lattice of fermions
wherein there is a competition to maintain the anti-
ferromagnetic checkerboard pattern and alignment with the
externally applied field leading to canted lattices.89 Even
dynamical correlation from retarded Green’s function can be
obtained experimentally using Ramsey interferometry as
illustrated in ref. 90 and in quantum simulator of over
100 trapped ions in a Penning trap through carefully designed
echo sequences as illustrated in ref. 91.

On the other hand, for atomic and molecular systems as
studied in traditional electronic structure as well as in this
report, different theoretical measures have also been proposed
to quantify the extent of deviation from the mean-field Hartree–
Fock state like von Neumann entropy with the eigenvalues of
the one-particle reduced density matrix (1-RDM)92 or the
Cumulant Expansion of the two-particle reduced density matrix
(2-RDM).93,94 The latter in particular affords many useful
characterization including its relationship to eigenvalues of
the 2-RDM itself and to long-range order,95 its relationship to
von Neumann entropy96 and its relationship to various orders
of cluster amplitudes for a Couple-Cluster (CC) based wavefunc-
tion ansatz.97 It has been successfully used to probe electronic
correlation in various problems98–100 and very recently in
capturing signatures of van der Waals interaction.101

Akin to the latter, in this paper we propose another metric
with a simple geometrical insight which can be theoretically
used to detect deviation from mean-field behavior and relate
the said quantity through an area law to the correlation energy.
This is timely as recently various studies23,102–104 have shown
that the entanglement, a quantum observable, can be used in
quantifying the correlation energy in atomic and molecular
systems. Moreover, a number of studies have shown that the
ground state of a local Hamiltonian satisfies an area law and is
directly related to the entanglement entropy.53–62 On the other
hand, the correlation energy of a system is the difference
between the ground state energies in the HF and the accurate
calculations. Therefore, the correlation energy is expected
be bounded by the area difference when we go beyond the
Hartree–Fock approximation to an exact representation. From
Fig. 5, we see that the area difference for atomic/ionic systems
at large-D limit is a close estimate to the correlation energy of
the system. In fact at large-D limit ecorr C D(area). In three-
dimension, for helium atom, the area difference (0.0520) is
close to the correlation energy 0.0420. From eqn (25), the
average correlation energy of metallic hydrogen in three dimen-
sions can be described as

ecorr (rs) = aD(area), (26)

with a = e0 (rs)/(8p rs). Combining the above results described in
the previous sections we can write an area law for correlation
energy as follows

ecorr r CD(area), (27)

with some proportionality constant C, which looks similar to
eqn (3), the area law for entanglement entropy.

In summary, we have shown that the correlation energy
might be bounded by an area law which is a close resemblance
of the area law conjecture of entanglement entropy. The
advantage of this proposal is that we establish a relation
between the correlation energy, which is an indirect measure,
and the entanglement, which is directly observable, and it is
one of the most striking properties of quantum mechanics.
Examining the electron correlation in terms of geometry
changes between mean field and exact solution might open a
new way to observe the correlation effect.
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