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Disentangling enantiosensitivity from dichroism
using bichromatic fields

Andres F. Ordonez ab and Olga Smirnova ac

We discuss how tensorial observables, available in photoelectron angular distributions resulting from

interaction between isotropic chiral samples and cross polarized o–2o bichromatic fields, allow for

chiral discrimination without chiral light and within the electric-dipole approximation. We extend the

concept of chiral setup [A. F. Ordonez and O. Smirnova, Phys. Rev. A, 2018, 98, 063428], which explains

how chiral discrimination can be achieved in the absence of chiral light, to the case of tensorial

observables. We derive selection rules for the enantiosensitivity and dichroism of the bl,m coefficients

describing the photoelectron angular distribution valid for both weak and strong fields and for arbitrary

o–2o relative phase. Explicit expressions for simple perturbative cases are given. We find that, besides

the known dichroic non-enantiosensitive [R. E. Goetz, C. P. Koch and L. Greenman, J. Chem. Phys.,

2019, 151, 074106], and dichroic-and-enantiosensitive bl,m coefficients found recently [P. V. Demekhin,

Phys. Rev. A, 2019, 99, 063406], there are also enantiosensitive non-dichroic bl,m coefficients. These

reveal the molecular enantiomer independently of the relative phase between the two colors and are

therefore observable even in the absence of stabilization of the o–2o relative phase.

1 Introduction

More than two centuries after the pioneering observations of
Biot and Arago,1 the interaction between light and chiral
matter2 remains a very active field of research.3–7 This research
effort is fueled not only by the interest in finding new ways of
manipulating light and matter but also by the homochirality of
life. While the molecule–molecule interactions that take place
in biological systems are often strongly enantiosensitive,8 the
enantiosensitive response in ‘‘traditional’’ light–matter inter-
actions is usually very weak. This weakness, which limits the
potential of light-based applications, is prevalent in situations
where the electric–dipole approximation is well justified but the
chiral effects appear as small corrections such as the magnetic-
dipole interaction.9 Besides ingenious methods to cope with
such situations,10–12 weakly enantiosensitive responses can be
avoided from the outset by relying on chiral effects occurring
within the electric–dipole approximation.13,14

Among the chiral electric–dipole effects, photoelectron
circular dichroism (PECD)15–19 is very well established and
has been shown to consistently yield strongly enantiosensitive
signals across many molecular species20 and different

photoionization regimes.21,22 In PECD, isotropically oriented
chiral molecules are photoionized using circularly polarized
light and the photoelectron angular distribution displays a so-
called forward–backward asymmetry (asymmetry with respect
to the polarization plane). This asymmetry is both enantiosen-
sitive (opposite for opposite enantiomers) and dichroic (oppo-
site for opposite polarizations), and results from the lack of
mirror symmetry of the chiral molecules (and thus of the light-
matter system) with respect to the plane of polarization. For an
isotropically oriented achiral molecule and within the electric-
dipole approximation (i.e. ignoring light-propagation effects),
the light-matter system is mirror-symmetric with respect to the
polarization plane and therefore forward–backward asym-
metric observables resulting from a single-molecule response
are symmetry-forbidden. For a randomly oriented chiral mole-
cule the mirror symmetry of the light-matter system is absent
and there are usually no further symmetries preventing the
emergence of forward–backward asymmetric observables. In
the one-photon case, the forward–backward asymmetry results
from the non-zero molecular rotational invariant describing
the average circular polarization of the photoionization-dipole
vector field.23

Very recently, the response of chiral molecules to more
elaborate field polarizations has been investigated in the multi-
photon and strong-field regimes.24–26 In these works, encom-
passing theory24–26 and experiment,26 a bichromatic field with
frequencies o and 2o linearly polarized perpendicular to each
other yields a new type of enantiosensitive and dichroic
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asymmetry in the photoelectron angular distribution. The
Lissajous figure of this bichromatic field has an eight-like
shape for particular phase relations between the two colors,
and therefore ‘‘rotates’’ in opposite directions in the first and
second halves of its cycle, with the direction of rotation of the
field locked to the sign of its o component. For example, the
rotation is clockwise when the o component is positive and
counterclockwise when the o component is negative. The
observed asymmetry in the photoelectron angular distribution
corresponds to a correlation between the so-called forward–
backward direction and the up-down direction determined by
the o field (see Fig. 1 in ref. 24). So far, this asymmetry has been
analyzed on the basis of a subcycle PECD-like picture where
electrons detected in the upper hemisphere have an e.g. posi-
tive forward–backward asymmetry because they were produced
by a field rotating e.g. clockwise, while the electrons detected in
the lower hemisphere have a negative forward–backward asym-
metry because they were produced by a field rotating
counterclockwise.24,26 Extensions of this reasoning to account
for non-zero asymmetries for other relative phases between the
o and 2o components have been considered in ref. 25 and 26.

Here we approach the description of the photoelectron
angular distribution taking explicitly into account its tensorial
character, the role of tensorial detectors in forming the chiral
setup required to distinguish between opposite enantiomers,
and the symmetry of the light-matter system. In Section 2 we
discuss general considerations regarding how to distinguish
between opposite enantiomers in isotropic samples without
relying on the chirality of a light field. In Section 3 we discuss
how tensorial observables can be used for the construction of
chiral setups. In Section 4 we consider the interaction of an
o–2o cross polarized field with isotropic molecular samples
and derive selection rules for multipolar observables. Then we
consider the perturbative description of photoionization and
exploit the technique presented in ref. 23 to obtain explicit
formulas for some representative b̃l,m coefficients of the photo-
electron angular distribution displaying different combinations
of dichroism and enantiosensitivity. Finally, we list our conclu-
sions in Section 5. Analogous results but for the case of charge
multipoles induced via excitation of bound states are presented
in ref. 27.

2 Chiral probes

Distinguishing between the left version (L) and the right ver-
sion (R) of a chiral object invariably requires interaction with
another chiral object (say R0). The difference between the
interactions L + R0 and R + R0 is the essence of any enantio-
sensitive phenomenon. Here we are interested in phenomena
where light is used to distinguish between opposite enantio-
mers of isotropically oriented chiral molecules. In the simplest
case, one lets circularly polarized light of a given handedness
interact with a chiral sample and measures a scalar, namely the
amount of light that is absorbed. In this situation, known as
circular dichroism (CD), the chiral probe is the circularly

polarized light and its handedness (a pseudoscalar) is given
by its helicity, i.e. the projection of the photon spin (the
rotation direction of the light at a given point in space, a
pseudovector) on the propagation direction of the light (a
vector). Another canonical example is optical activity, where
one passes linearly polarized light through a chiral sample and
measures the rotation of the polarization plane. In this case one
measures an angle (a pseudovector). To measure it one must
define a positive and a negative direction in the laboratory
frame. Although such definition is just as arbitrary as defining
what is left and what is right, it is a fundamental step in the
measurement process. Once it has been defined, the handed-
ness of the probe is given by the projection of the positive unit
angle pseudovector on the propagation direction of the light
(see Fig. 8 in ref. 14). That is, the chiral probe in this case is the
chiral setup formed by the (achiral) light and the (achiral)
detector (which encodes the definition of positive and negative
rotations) together. This shows how a chiral setup may probe
the handedness of a molecule in the absence of chiral light.

Circular dichroism and optical activity have in common that
the handedness of the chiral probe relies on the propagation
direction of the light. Since that propagation direction is
immaterial within the electric-dipole approximation, unless
one considers corrections to the electric-dipole approximation
the probe ceases to be chiral and both effects vanish. To the
extent that such corrections are typically small at the single
molecule level, these effects are also correspondingly small. In
order to obtain bigger enantiosensitive signals at the single-
molecule level, a probe which is chiral within the electric-dipole
approximation is required. Furthermore, if the result of the
measurement is a scalar (like in circular dichroism), the light
itself must be chiral. The concept of light which is chiral within
the electric-dipole approximation, i.e. locally-chiral light, has
been recently developed in ref. 6. If the result of the measure-
ment is a polar vector, such as a net photoelectron current
along a Cartesian axis, then the detector required to measure
the vector must define (again, in an arbitrary fashion) a positive
and a negative direction. In addition, if the polarization of the
light allows the definition of a pseudovector, as is the case for
example for circularly polarized light, where the pseudovector
indicates the photon’s spin, then one can define a chiral setup
with its handedness given by the projection of the light
pseudovector on the positive direction defined by the detector.
This type of chiral setup is common to a series of recently
discovered phenomena that range from rotational
dynamics28–30 to photoionization,15–18 and it was recently dis-
cussed in ref. 13. In what follows we will extend the concept of
chiral setups, to include those that rely on tensors of rank 2
(relevant for the results in ref. 24–26) and higher.

3 Tensor observables and chiral setups

Second and higher-rank tensors emerge naturally for observa-
bles which depend on a vector. Charge densities and photo-
electron angular distributions (PADs) offer exactly such kind of
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observable and, as any other function which depends on a
vector, they can be expanded as

Wð~kÞ ¼
X
l;m

~bl;m kð Þ ~Ym
l ðk̂Þ; (1)

where
-

k is the photoelectron momentum and we have chosen to
do the expansion in terms of real spherical harmonics Ỹm

l . In
the case of a charge distribution we replace the photoelectron
momentum

-

k by the position -
r and b̃l,m could be a time

dependent quantity.27 The b̃l,m coefficients not only encode all
the information contained in W(

-

k) but are also examples of
tensors of rank l (see e.g. Section 4.10 in ref. 31).

In principle, the measurement of a particular b̃l,m coefficient
can be performed directly by using a detector with a structure
that reflects the corresponding Ỹm

l . For example, a detector for
b̃0,0 would simply sum the counts in all directions. A detector
for b̃1,0 would have two plates arranged as in Fig. 1a and b, so
that it would add all the counts on one of them (red) and
subtract all the counts on the other (blue). The choice of which
plate adds and which plate subtracts is what physically defines
the ẑ direction of the laboratory frame. A detector for b̃2,�2

would have four plates arranged as in Fig. 1c, with a pair of
opposite plates adding counts and the other pair subtracting
counts. In this case, the detector defines the directions that
correspond to a positive correlation between x and y, and those
that correspond to a negative correlation between x and y.
Analogously, a detector for b̃3,�2 has eight plates arranged as in
Fig. 1d, and distinguishes positive from negative correlations of
x, y, and z.

The combination of a b̃l,m-specific detector and the Lissajous
figure of the electric field can make up a chiral setup as shown
in Fig. 1a, c and d. These setups are non-superimposable on
their mirror images. This is particularly simple to see in Fig. 1a,
c and d for reflections with respect to the polarization plane,
which do not change the Lissajous figure but do swap blue and
red plates. The chirality of these setups allows them to distin-
guish between opposite enantiomers of a chiral molecule. This
is in contrast with the setup in Fig. 1b, which is symmetric with
respect to reflection in the polarization plane and thus is not
chiral and cannot distinguish between opposite enantiomers of
a chiral molecule.

Of course, a chiral setup is only relevant if the light-matter
system is indeed asymmetric enough that it can yield a corres-
ponding non-zero b̃l,m. In other words, the concept of a chiral
setup answers the question of how we can distinguish opposite
enantiomers without relying on the chirality of light, but it is
the lack of symmetry of the light-matter system itself the
deciding factor which determines the emergence of an enan-
tiosensitive observable in the first place (see e.g. Fig. 2 in
ref. 13). We now turn to the analysis of a specific family of
Lissajous figures to illustrate this in detail.

4 x–2x cross polarized field

Consider a two-color field of the form
-

E(t) = Eo cos(ot)x̂ + E2o cos(2ot + f)ẑ (2)

This field is illustrated in Fig. 2 for different phases† f. If we
denote rotations by p around the z axis by R̂p

z and time shifts of

Fig. 1 Chiral (a, c and d) and achiral (b) setups consisting of a Lissajous figure and detectors. Counts on red/blue detectors are added/subtracted.
The color of the Lissajous figure indicates the phase of the oscillation. (a) A field circularly polarized in the xy plane and a detector for b̃1,0. (b), (c), and
(d) A cross-polarized o–2o field in the xz plane and a detector for b̃1,0, b̃2,�2 and b̃3,�2, respectively.

Fig. 2 Lissajous curves of the field (2) for different values of f. The
position of the red arrow indicates t = 0.

† Our choice of axes, which differs from ref. 22–24, simplifies Table 1. Our choice
of phase coincides with that in ref. 24 and differs from the one in ref. 22 and 23.
Note that some of the plots of Fig. 2(a) in ref. 24 are labeled with the wrong phase.
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p/o by Tp/o, then the joint system (field and isotropic chiral
molecules) is invariant with respect to R̂p

zT̂p/o. Clearly, the result-
ing observables must also be invariant with respect to
R̂p

zT̂p/o. That is, the symmetry-allowed b̃l,m coefficients must satisfy
R̂p

zT̂p/ob̃l,mỸm
l = b̃l,mỸm

l . This corresponds to two scenarios: either
R̂p

zỸm
l = Ỹm

l and b̃l,m contains only frequencies 2no, or
R̂p

zỸm
l = �Ỹm

l and b̃l,m contains only frequencies (2n + 1)o, where
n = 0, 1, 2, . . .. Furthermore, since a reflection ŝy with respect to the
y = 0 plane swaps the enantiomers while leaving the field invariant,
an enantiosensitive b̃l,m is associated to a Ỹm

l satisfying ŝyỸ
m
l = �Ỹm

l .
And, since a rotation R̂p

x of p around the x axis changes the phase f
in the field by p while leaving the molecules invariant, a dichroic‡
b̃l,m is associated to a Ỹm

l satisfying R̂p
xỸm

l = �Ỹm
l . These properties,

which are valid independently of the ionization regime, are sum-
marized in Tables 1 and 2.

Evidently, the values of l and m that determine whether a
given b̃l,m is symmetry-allowed and whether it is enantiosensi-
tive and/or dichroic depends on how the field is oriented with
respect to the axes. The choice made here [eqn (2)] yields the
rather simple conditions in Tables 1 and 2. Conditions corres-
ponding to other choices are given in Appendix A for the sake of
comparison with ref. 24–26.

Tables 1 and 2 reveal two important features. First, the
spatial structure of the response depends on whether it oscil-
lates with a frequency which is an even (including zero) or an
odd multiple of the fundamental frequency (see also ref. 32).
Second, in contrast to a circularly polarized field where dichro-
ism goes hand in hand with enantiosensitivity, the symmetry of
the field (2) leads to four types of signals:

(i) Non-dichroic and non-enantiosensitive.
(ii) Dichroic and enantiosensitive.
(iii) Dichroic and non-enantiosensitive.
(iv) Enantiosensitive and non-dichroic.
Type (i) and type (ii) signals are well known from traditional

CD and PECD. Type (iii) signals are well known in atoms
subject to light fields whose Lissajous figure is not symmetric
under spatial inversion.33 They have also been recently calcu-
lated for the case of randomly oriented chiral molecules34 for
parallel polarizations of o and 2o. Here, type (iii) signals are
due to the asymmetry of the field (2) along the z direction (see
Fig. 2). Type (iv) signals are more exotic but apparently they can
also occur in the context of magnetic effects beyond the electric-

dipole approximation,35,36 where to the best of our knowledge
they remain to be confirmed by experiment. As we will show
next, photoionization may prove to be a better candidate for
experimentally measuring type (iv) signals.

4.1 Photoionization

The photoelectron angular distribution accumulated over many
cycles of the field (2) corresponds to a signal with zero
frequency and must satisfy the conditions given in Table 1
for frequencies 2no. For convenience, we list the properties of
the symmetry-allowed b̃l,m coefficients for l up to four in
Table 3. From this table we can see that e.g. b̃1,0 is dichroic
but not enantiosensitive, b̃2,�2 is enantiosensitive and dichroic,
and b̃3,�2 is enantiosensitive but not dichroic. Since Ỹ0

1(k̂) p kz,
Ỹ�2

2 (k̂) p kxky, and Ỹ�2
3 (k̂) p kxkykz, then b̃1,0 is associated to

asymmetry along the direction of the 2o field (ẑ), b̃2,�2 is
associated to correlations between the direction of the o field
(x̂) and the direction perpendicular to the polarization plane (ŷ),
and b̃3,�2 is associated to correlations of the three directions
corresponding to the o field (x̂), the 2o field (ẑ), and the
perpendicular to the polarization plane (ŷ).

In ref. 23 we showed that, in general, a b̃l,m coefficient is
enantiosensitive if and only if it results from interference between
pathways with N1 and N2 photons, respectively, and l + N1 + N2 is
odd; or if it results from a direct pathway and l is odd. These
conditions together with Table 2 tell us that a dichroic non-
enantiosensitive b̃l,m (with odd l) can only occur as the result of
interference between pathways involving an even and an odd
number of photons, respectively (so that N1 + N2 is odd and l +
N1 + N2 is even). For example, b̃1,0 contributes to the photoelectron
peak where absorption of two o photons interferes with absorption
of one 2o photon (see Fig. 3a). The same condition (odd N1 + N2)
applies for a dichroic and enantiosensitive b̃l,m (even l) such as b̃2,�2.
In contrast, an enantiosensitive non-dichroic b̃l,m (odd l) can occur
as the result of either a direct pathway involving at least one o
photon and one 2o photon, or as the result of interference between
two pathways both with an even or both with an odd number of
photons (even N1 + N2). For example, b̃3,�2 contributes to the
photoelectron peak corresponding to absorption of one o photon
followed by absorption of one 2o photon (see Fig. 3b) and vice versa,
or as the result of interference between absorption of two 2o
photons and four o photons.

As an example, let us calculate explicit expressions for b̃1,0,
b̃2,�2, and b̃3,�2. For the process depicted in Fig. 3a, the
interference between the two pathways gives rise to a non-
zero orientation-averaged b̃1,0 given by (see Appendix B)

b̃1,0(k) = A(1)*A(2)g1,0 f1,0 + c.c., (3)

where A(1) and A(2) are complex-valued constants depending on
detunings and pulse envelopes, c.c. denotes the complex con-
jugate, g1,0 is a (complex-valued) molecular rotational invariant,
and f1,0 is a setup (i.e. field + detector) rotational invariant. g1,0

is a scalar§ (in contrast to a pseudoscalar) and therefore b̃1,0 is

Table 1 Conditions imposed by symmetry on the b̃l,m coefficients
describing the photoelectron angular distribution (1) resulting from the
interaction between an isotropic molecular sample and the field (2)

b̃l,m (l,m) condition

Symmetry-allowed at 2no Even m
Symmetry-allowed at (2n + 1)o Odd m
Enantiosensitive m o 0

Dichroic
[(Odd l � m) and (m Z 0)] or
(even l � m) and (m o 0)

‡ Here we use the word dichroic in analogy to how it is used in the circularly
polarized case in PECD, where a change of p in the phase between the two
perpendicular components of the field leads to a change of sign of b1,0.

§ Explicit expressions for the molecular rotational invariants g1,�1, g2,�2, and g3,�2

are given in Appendices B–D.
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not enantiosensitive. The expression for f1,0 reads as

f1;0 � ẑ � ~E�2o
� �

~Eo � ~Eo

� �
¼ E2oE

2
oe

if; (4)

where
-

E2o � E2oe�ifẑ,
-

Eo � Eox̂. Eqn (4) shows that the setup
rotational invariant f1,0 is a scalar involving the field vectors

-

E2o

and
-

Eo, and the ẑ axis. As discussed in Section 3, the axis vector
ẑ is defined by the detector needed to measure b̃1,0. From
eqn (4) it is evident that f1,0 changes sign when f is shifted
by p, and therefore b̃1,0 is dichroic.

Similarly, the interference between the two pathways in
Fig. 3a gives rise to a non-zero orientation-averaged b̃2,�2 given
by (see Appendix C)

b̃2,�2 = A(1)* A(2)g2,�2 f2,�2 + c.c., (5)

where the molecular rotational invariant g2,�2 is a (complex-
valued) pseudoscalar and therefore b̃2,�2 is enantiosensitive.
The setup rotational invariant, given by

f2;�2 � x̂ � ŷ� ~E�2o

� �h i
~Eo � ~Eo

� �
¼ E2oE

2
oe

if; (6)

is also a pseudoscalar and it involves the x̂ and ŷ axes, which are
defined by the detector needed to measure b̃2,�2 (see Section 3). Just
like g2,�2 is a pseudoscalar that distinguishes between molecules with
opposite handedness, f2,�2 is a pseudoscalar that distinguishes
between chiral setups of opposite handedness. Note that the detector

for b̃2,�2 does not directly tell apart a positive x from a negative x, or a
positive y from a negative y. It only tells apart positive correlations of x
and y from negative correlations of x and y. This is consistent with the
invariance of f2,�2 with respect to a simultaneous inversion of x̂ and ŷ.
Furthermore, eqn (6) shows that f2,�2 changes sign when f is shifted
by p, and therefore b̃2,�2 is dichroic. We remark, that although the
right hand side of eqn (4) and (6) look exactly the same after
performing the vector operations, f1,0 and f2,�2 emerge from different
setup rotational invariants of a different physical nature: one is a
scalar involving only the ẑ axis, and the other is a pseudoscalar
involving correlation between the x̂ and ŷ axes.

We consider now the simplest process leading to the enan-
tiosensitive but not dichroic term b̃3,�2, i.e. we consider the
absorption of one o photon and one 2o photon, resonantly
enhanced through a bound state as shown in Fig. 3b. In this
case we get (see Appendix D)

b̃3,�2(k) = |A(2)|2g3,�2 f3,�2, (7)

where the rotational invariant g3,�2 is a (real-valued) pseudos-
calar, which makes b̃3,�2 enantiosensitive. The setup rotational
invariant f3,�2 is given by

f3;�2 � x̂ � ŷ� ẑð Þ½ � ~EL�
2o � ~E2o

� �
~EL�
o � ~Eo

� �
¼ E2

oE
2
2o: (8)

f3,�2 is also a pseudoscalar, however it does not record f and
b̃3,�2 is therefore not dichroic. The robustness of f3,�2 against
changes of f means that recording b̃3,�2 allows distinguishing
opposite enantiomers in the absence of stabilization of the o–2o
phase shift f.

Eqn (3)–(8) confirm our expectations based on general
symmetry arguments according to which b̃1,0 is dichroic and
non-enantiosensitive, b̃2,�2 is dichroic and enantiosensitive,
and b̃3,�2 is enantiosensitive and non-dichroic. In addition,
these equations show that b̃1,0, b̃2,�2, and b̃3,�2 are in general
not zero for the specific processes considered here. This is
important because although a given b̃l,m may be symmetry
allowed according to the general symmetry analysis above,
further ‘‘hidden’’ symmetries¶ involved in a specific process

Table 2 (l,m) conditions derived from Table 1 for non-vanishing enantiosensitive and/or dichroic b̃l,m coefficients

Symmetry-allowed b̃l,m (l,m) condition at 2no (l,m) condition at (2n + 1)o

Enantiosensitive and dichroic (Even l) and (even m o 0) (Odd l) and (odd m o 0)
Enantiosensitive non-dichroic (Odd l) and (even m o 0) (Even l) and (odd m o 0)
Dichroic non-enantiosensitive (Odd l) and (even m 4 0) (Even l) and (odd m 4 0)

Table 3 Dichroism and enantiosensitivity of symmetry-allowed b̃l,m coefficients describing the photoelectron angular distribution (1) resulting from
interaction of an isotropic molecular sample and the field (2) for l up to 4. N = No and Y = Yes

Symmetry-allowed b̃0,0 b̃1,0 b̃2,�2 b̃2,0 b̃2,2 b̃3,�2 b̃3,0 b̃3,2 b̃4,�4 b̃4,�2 b̃4,0 b̃4,2 b̃4,4

Enantiosensitive N N Y N N Y N N Y Y N N N
Dichroic N Y Y N N N Y Y Y Y N N N

Fig. 3 (a) Simplest scheme to generate a non-zero b̃1,0 (dichroic non-
enantiosensitive) and b̃2,�2 (dichroic and enantiosensitive) using the field
(2). (b) Simplest scheme to generate a non-zero b̃3,�2 (enantiosensitive
non-dichroic) using the field (2). |0i and | ji are bound states and |k

-i is a
continuum state.

¶ Symmetries not immediately apparent from the geometric symmetries of the
system.37
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may forbid it. For example, although the geometry of a mono-
chromatic elliptical field allows for a non-zero b̃3,�2, the
presence of the triple product in eqn (8) means that opposite
photon orderings contribute to b̃3,�2 with opposite signs (see
Appendix E). Such photon orderings are degenerate in the
monochromatic case and thus the two contributions cancel
each other out (see Appendix F). However, it must be kept in
mind that the hidden symmetry preventing a non-zero b̃3,�2 for
elliptical fields is specific to the 2-photon process we investi-
gated here, so it may be broken in higher order processes or in
the strong field regime. That is, photoionization induced by
elliptically polarized strong fields may indeed yield a non-zero
enantiosensitive and non-dichroic b̃3,�2 coefficient. This would
be analogous to how b̃2,�2 is symmetry-forbidden in the ellip-
tical one-photon case23 but it is symmetry allowed in the
elliptical strong-field case.38

5 Conclusions

We discussed how tensorial observables offer new opportu-
nities for constructing chiral setups able to distinguish between
opposite enantiomers in isotropic samples without relying on
the chirality of light. As a concrete example we considered the
interaction of an o–2o cross polarized field with isotropic
samples and we found selection rules for l and m that specify
if a multipole coefficient b̃l,m is symmetry allowed, if it is
dichroic (sensitive to changes of p in the o–2o relative phase),
and if it is enantiosensitive. These b̃l,m coefficients are relevant
in the description of photoelectron angular distributions and in
the description of induced multipoles of bound charge distri-
butions (discussed in ref. 27). We found that the enantiosensi-
tivity and the dichroism of a b̃l,m coefficient are in general
independent of each other. That is, in addition to the usual
types of b̃l,m coefficients in isotropic samples, namely: (i) non-
dichroic and non-enantiosensitive, (ii) dichroic and enantio-
sensitive, and (iii) dichroic and non-enantiosensitive, we found
the more exotic possibility of (iv) enantiosensitive and non-
dichroic b̃l,m coefficients.

We derived analytic expressions for the lowest rank b̃l,m

coefficients in photoelectron angular distributions corres-
ponding to types (ii)–(iv) for the case of one- vs. two-photon
absorption and for the case of o + 2o absorption. Unlike type
(ii) coefficients, type (iv) coefficients allow enantiomeric dis-
crimination in the absence of stabilization of the o–2o relative
phase and remain to be numerically calculated and experimen-
tally observed. Such verification is within reach with current
theoretical39 and experimental40,41 capabilities which provide
access to the full photoelectron momentum distribution. Ima-
ging of the type (iv) coefficient b̃3,�2 discussed here with a
velocity map imaging detector as e.g. in ref. 26 is complicated
by two facts: (a) the lack of cylindrical symmetry prevents Abel
inversion and (b) projection of the Ỹ3,�2 contribution to the
momentum distribution on the xy (or yz) plane cancels
exactly (see Fig. 1c). However, re-orientation of the detector so
as to project the momentum distribution on e.g. the x = z plane,

as shown in Fig. 4, should facilitate imaging the non-zero
b̃3,�2 coefficient. Experimentally, one can keep the detector
fixed and instead rotate the polarizations of the fields. That
is, measurement of the b̃3,�2 coefficient only requires rotating o
and 2o by 451 around their propagation axis in ref. 24 and 26.

Finally, it is also possible to obtain the type (iv) coefficient
b̃3,�2 using monochromatic light with elliptical polarization.
However, a ‘‘hidden’’ symmetry associated to the degeneracy in
photon orderings in the monochromatic case prevents this
coefficient in the case of a two-photon process. The possibility
of this hidden symmetry to be violated for higher-order or
strong-field processes, or in a more refined description of
photoionization remains to be investigated.

Conflicts of interest

There are no conflicts to declare.

Appendix

A Selection rules for an alternative
orientation of the field

In Section 4 we chose the orientation of the field so as to
simplify as much as possible the selection rules for the b̃l,m

coefficients. Here, for the sake of comparison, we consider the
alternative orientation8 used in ref. 24–26, namely

-

E(t) = Eo cos(ot)ŷ + E2o cos(2ot + f)x̂. (9)

Fig. 4 Proposed velocity map imaging setup to measure the coefficient
b̃3,�2: o (red wave) and 2o (violet wave) are polarized along x and z,
respectively. The detector projects the distribution on the x = z plane. Only
the contribution of b̃3,�2 to the photoelectron angular distribution is
shown. In red/blue regions there is an excess/deficit of photoelectrons.

8 Another sensible choice, which slightly reduces the number of non-zero b̃l,m

coefficients, is to take the o field along the z axis in order to obtain b̃2N,m = 0 for m

a 0 in the signal corresponding to N-photon absorption of the o field.
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Tables 4–6 show the analogues of Tables 1–3 for the orienta-
tion in eqn (9). In this case, we see that e.g. b̃1,1, b̃2,�1, and b̃3,�2

are dichroic non-enantiosensitive, enantiosensitive and
dichroic, and enantiosensitive non-dichroic, respectively. These
are just the correspondingly rotated versions of the coefficients
in Section 4. Note that b̃2,�1 p Im{b2,1} is indeed the coefficient
discussed in ref. 25.

B Derivation of b̃1,0 in eqn (3)

The process depicted in Fig. 3a yields a b̃1,0 coefficient given
by23

~b1;0 ¼
ð
dOM

k

ð
dr ~Y0

1 ðk̂LÞWMð~kM; rÞ

¼
ffiffiffiffiffiffi
3

4p

r
A 1ð Þ�A 2ð Þ

ð
dOM

k

ð
dr k̂L � ẑL
� �

� ~dL
~kM ;0
� ~EL

2o

� ��
~dL
~kM ;j
� ~EL

o

� �
~dL
j;0 � ~EL

o

� �
þ c:c:;

(10)

where c.c. denotes the complex conjugate, L and M indicate
vectors and functions in the laboratory (L) and molecular (M)

frames,
-

k is the photoelectron momentum, k̂ �
-

k/k, r � abg is
the molecular orientation specified by the Euler angles abg,Ð
dr �

Ð 2p
0 da

Ð p
0db
Ð 2p
0 dg sinb=8p2 is the normalized integral over

all molecular orientations,
Ð
dOM

k is the integral over all photo-

electron directions k̂M, WMð~kM; rÞ � ja~kM rð Þj2 is the photoelec-
tron angular distribution in the molecular frame for a parti-

cular orientation r. a~kM rð Þ ¼ A 1ð Þð~dL
~kM;0
� ~EL

2oÞ þ A 2ð Þð~dL
~kM ;j
� ~EL

oÞ

ð~dL
j;0 � ~EL

oÞ is the probability amplitude of the state |
-

kMi, A(1) and

A(2) are complex-valued constants depending on detunings and

pulse envelopes,
-

di,j � hi|
-

d| ji is the dipole transition matrix

element between states |ii and | ji, |
-

ki is the scattering state
describing an outgoing plane wave with photoelectron momen-

tum
-

k, and
-

Eo = Eox̂ and
-

E2o = E2oe�ifẑ are the Fourier
amplitudes of the field (2) at frequencies o and 2o, respec-

tively. The vectors k̂L and
-

dL
i, j, depend on the molecular orienta-

tion r according to -
vL = S(r)-vM, where S(r) is the rotation matrix

taking vectors from the molecular frame to the laboratory
frame. Note that only the interference between the two path-
ways in Fig. 3 contributes to b̃1,0 (see Section 4).

The integral over orientations yields23,42

ð
dr k̂L � ẑL
� �

~dL
~kM ;0
� ~EL

2o

� ��
~dL
~kM ;j
� ~EL

o

� �
~dL
j;0 � ~EL

o

� �
¼ ~g 4ð Þ �M 4ð Þ~f 4ð Þ;

(11)

where
-
g (4) and

-

f (4) are vectors of molecular and setup rotational
invariants, respectively,

~g 4ð Þ ¼

k̂M � ~dM�
~kM ;0

� �
~dM
~kM ;j
� ~dM

j;0

� �
k̂M � ~dM

~kM ;j

� �
~dM�
~kM ;0
� ~dM

j;0

� �
k̂M � ~dM

j;0

� �
~dM�
~kM ;0
� ~dM

~kM ;j

� �

2
6664

3
7775; (12)

M 4ð Þ ¼ 1

30

4 �1 �1
�1 4 �1
�1 �1 4

2
4

3
5; (13)

~f 4ð Þ ¼

ẑL � ~EL�
2o

� �
~EL
o � ~EL

o

� �
ẑL � ~EL

o

� �
~EL�
2o � ~EL

o

� �
ẑL � ~EL

o

� �
~EL�
2o � ~EL

o

� �

2
6664

3
7775

¼
ẑL � ~EL�

2o

� �
~EL
o � ~EL

o

� �
0
0

2
64

3
75: (14)

Replacing eqn (11)–(14) in eqn (10) we obtain eqn (3), where
f1,0 is given by eqn (4) and g1,0 is given by

g1;0 �
1

30

ffiffiffiffiffiffi
3

4p

r ð
dOM

k 4 k̂M � ~dM�
~kM ;0

� �
~dM
~kM ;j
� ~dM

j;0

� �h

� k̂M � ~dM
~kM ;j

� �
~dM�
~kM ;0
� ~dM

j;0

� �
� k̂M � ~dM

j;0

� �
~dM�
~kM ;0
� ~dM

~kM ;j

� �i
:

(15)

We remark that eqn (3), (4) and (15) are not valid for arbitrary
polarizations of

-

Eo and
-

E2o. We have kept the vectorial form of
the rotational invariant in eqn (4) to emphasize the scalar vs.
pseudoscalar character (see discussion in Section 4.1). As can
be seen from eqn (14), to derive eqn (3), (4) and (15) we
explicitly used

-

EL
2o8ẑL and

-

EL
o8x̂L.

C Derivation of b̃2,�2 in eqn (5)

Similarly, for the b̃2,�2 coefficient we have23

~b2;�2 ¼
ð
dOM

k

ð
dr ~Y�22 ð~kLÞWMð~kM; rÞ

¼ 1

2

ffiffiffiffiffi
15

p

r
A 1ð Þ�A 2ð Þ

ð
dOM

k

ð
dr k̂L � x̂L
� �

k̂L � ŷL
� �

� ~dL
~kM ;0
� ~EL

2o

� ��
~dL
~kM ;j
� ~EL

o

� �
~dL
j;0 � ~EL

o

� �
þ c:c:

(16)

The integral over orientations can be performed analogously to
what we did for b̃1,0.42 Making explicit use of

-

EL
2o8ẑL and

-

EL
o8x̂L

Table 4 Same as Table 1 for the orientation (9)

b̃l,m (l,m) condition

Non-zero 2no (Even l � m and m Z 0) or
(odd l � m and m o 0)

Non-zero (2n + 1)o (Odd l � m and m Z 0) or
(even l � m and m o 0)

Enantiosensitive Odd l � m

Dichroic
[(Odd l) and (m Z 0)] or
[(even l) and m o 0]
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yields eqn (5), with f2,�2 given by eqn (6) and g2,�2 given by

g2;�2 �
1

4
ffiffiffiffiffiffiffiffi
15p
p

ð
dOM

k k̂M � ~dM�
~kM ;0
� ~dM

~kM ;j

� �h i
k̂M � ~dM

j;0

� �n

þ k̂M � ~dM�
~kM ;0
� ~dM

j;0

� �h i
k̂M � ~dM

~kM ;j

� �o
:

(17)

We point out that when dealing with integrals over orienta-
tions involving five or more scalar products, the number of
rotational invariants that can be formed is such that they are no
longer linearly independent from each other.42 As a result it is
possible to write the result of the integral in several different
ways that, although perfectly equivalent, are not evidently
related to each other at first sight. For example, by changing

the order of the scalar products in such a way that ð~dL
~k;j
� ~EL

oÞ
exchanges its position with (k̂L�x̂L) in eqn (15) one obtains

~b2;�2 ¼ A 1ð Þ�A 2ð Þg
0
2;�2 f

0
2;�2 þ c:c:; (18)

where

g
0
2;�2 �

1

4
ffiffiffiffiffiffiffiffi
15p
p

ð
dOM

k 2 ~dM
~kM;j
� k̂M � ~dM�

~kM ;0

� �h i
k̂M � ~dM

j;0

� �n

� ~dM
~kM ;j
� k̂M � ~dM

j;0

� �h i
~dM�
~kM ;0
� k̂M

� �

þ ~dM
~kM ;j
� ~dM�

~kM ;0
� ~dM

j;0

� �h i
k̂M � k̂M
� �o

;

(19)

f
0
2;�2 � ~EL

o � ŷL � ~EL�
2o

� �h i
x̂L � ~EL

o

� �
; (20)

and again we assumed that
-

EL
2o8ẑL and

-

EL
o8x̂L. Writing the

explicit expressions
-

Eo = Eox̂ and ~E�2o ¼ E2oe
ifẑ one can show

that f
0
2;�2 ¼ f2;�2. And using standard vectorial algebra relations

one can show that g
0
2;�2 ¼ g2;2. The latter equality reflects the

fact that, for four arbitrary vectors -
a,

-

b, -
c,

-

d, the three different

rotational invariants r1 � [-a�(
-

b � -c)](
-

b�
-

d), r2 � [-a�(
-

b �
-

d)](-c�
-

b),

and r3 � [-a�(-c �
-

d)](
-

b�
-

b) can be written as a linear combination

of the two rotational invariants r1 and r4 � [
-

b�(-c �
-

d)](
-

b�-a). Care
must therefore be taken when looking for interpretations that
depend on the particular ordering of the vectors appearing in
the rotational invariants.

D Derivation of b̃3,�2 for x + 2x
[eqn (7)]

The process depicted in Fig. 3b yields a b̃3,�2 coefficient given
by23

~b3;�2 kð Þ ¼
ð
dOM

k

ð
dr ~Y�23 ðk̂LÞWMð~kM; rÞ

¼ A 2ð Þ�� ��21
2

ffiffiffiffiffiffiffiffi
105

p

r ð
dOM

k

ð
dr k̂L � x̂L
� �

k̂L � ŷL
� �

k̂L � ẑL
� �

� ~dL
~kM ;j
� ~EL

2o

��� ���2 ~dL
j;0 � ~EL

o

��� ���2:
(21)

The integral over orientations can be performed analogously to
what we did for b̃1,0.42 Making explicit use of

-

EL
2o8ẑL and

-

EL
o8x̂L

yields eqn (7), with f3,�2 given by eqn (8) and g3,�2 given by**

g3;�2 �
1

8
ffiffiffiffiffiffiffiffiffiffi
105p
p

ð
dOM

k k̂M � ~dM
j;0 � ~dM�

~kM ;j

� �h i

� ~dM
~kM ;j
� ~dM

j;0

� �
� 5 k̂M � ~dM

~kM ;j

� �
k̂M � ~dM

j;0

� �h i
þ c:c:;

(22)

E Derivation of b̃3,�2 for 2x + x:
symmetry in photon ordering

First we rewrite the integral over orientations in eqn (21) as

Io;2o x̂L; ŷL; ẑL
� �

¼ Eoj j2 E2oj j2
ð
dr k̂L � x̂L
� �

k̂L � ŷL
� �

k̂L � ẑL
� �

� ~dL
~kM ;j
� ẑL

� �
~dL
j;0 � x̂L

� ���� ���2:
(23)

Table 5 Same as Table 2 for the orientation of the field used in eqn (9)

b̃l,m (l,m) condition at 2no (l,m) condition at (2n + 1)o

Enantiosensitive and dichroic (Even l) and (odd m o 0) (Odd l) and (even m Z 0)
Enantiosensitive non-dichroic (Odd l) and (even m o 0) (Even l) and (odd m Z 0)
Dichroic non-enantiosensitive (Odd l) and (odd m Z 0) (Even l) and (even m o 0)

Table 6 Same as Table 3 for the orientation of the field used in eqn (9)

Symmetry-allowed b̃0,0 b̃1,1 b̃2,�1 b̃2,0 b̃2,2 b̃3,�2 b̃3,1 b̃3,3 b̃4,�3 b̃4,�1 b̃4,0 b̃4,2 b̃4,4

Enantiosensitive N N Y N N Y N N Y Y N N N
Dichroic N Y Y N N N Y Y Y Y N N N

** This is considerably simplified by ordering the scalar products in the orienta-
tion integral as ðk̂L � x̂LÞðk̂L � ẑLÞð~dL�

j;0 � ~EL�
o Þðk̂L � ŷLÞð~dL�

~kM ;j
� ~EL�

2oÞð~dL
~kM ;j
� ~EL

2oÞð~dL
j;0 �

~EL
oÞ and using Table III in ref. 42.
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For the opposite photon ordering we have

I2o;o x̂L; ŷL; ẑL
� �

¼ Eoj j2 E2oj j2
ð
dr k̂L � ẑL
� �

k̂L � ŷL
� �

k̂L � x̂L
� �

� ~dL
~kM ;j
� x̂L

� �
~dL
j;0 � ẑL

� ���� ���2

¼ Io;2o ẑL; ŷL; x̂L
� �

;

(24)

that is, reversing the photon ordering is equivalent to the
exchanging x̂L and ẑL in eqn (23). On the other hand, from
the triple product in eqn (8) it follows that

Io,2o(ẑL,ŷL,x̂L) = �Io,2o(x̂L,ŷL,ẑL) (25)

and thus

I2o,o(x̂L,ŷL,ẑL) = �Io,2o(x̂L,ŷL,ẑL). (26)

This means that the expression for b̃3,�2 in the photon ordering
2o + o is exactly the same as for the photon ordering o + 2o up to a
minus sign. However, since for a fixed molecular spectrum the
coupling coefficient A(2) strongly depends on detunings (and there-
fore photon ordering), if one of the photon orderings is resonant it
will dominate. Furthermore, in practice each photon ordering might
be resonant with different transitions, and one should therefore use
different transition dipole matrix elements for each ordering.

Since the derivation we just presented is actually indepen-
dent of the frequencies, we have that

Io1,o2
= �Io2,o1

, (27)

provided o1 and o2 have linear polarizations perpendicular
to each other. We can therefore conclude that b̃3,�2 - 0 as
o1 - o2. Note that this is analogous to the corresponding
result for the polarization in sum-frequency generation.43

F Vanishing of b̃3,�2 for elliptical light

Using relation (27) it is simple to establish why, although a mono-
chromatic elliptical field has a geometry that allows for a non-zero
b̃3,�2 in an o + 2o process, the ‘‘hidden’’ symmetry in eqn (27) forces
it to vanish. To see this, note that for an elliptical field we have

-

E(t) =
-

Eoe�iot + c.c., (28)

with
-

Eo = Eox̂ + iEyŷ and therefore [cf. eqn (21)]

WMð~kM;rÞ

¼ A 2ð Þ�� ��2 ~dL
~kM ;j
�~EL

o

��� ���2 ~dL
j;0�~EL

o

��� ���2

¼ A 2ð Þ�� ��2 ~dL
~kM ;j
�Exx̂

L
��� ���2 ~dL

j;0�Exx̂
L

��� ���2þ ~dL
~kM ;j
�Eyŷ

L
��� ���2 ~dL

j;0�Eyŷ
L

��� ���2
�

þ ~dL
~kM ;j
�Exx̂

L
��� ���2 ~dL

j;0�Eyŷ
L

��� ���2þ ~dL
~kM ;j
�Eyŷ

L
��� ���2 ~dL

j;0�Exx̂
L

��� ���2

þ i~dL�
~kM ;j
�i~dL

~kM;j

� �
� Exx̂

L�Eyŷ
L

� �
~dL
~kM;j
�Exx̂

L
��� ���2þ ~dL

j;0�Eyŷ
L

��� ���2
	 
�

;

(29)

that is, we can decompose the process into six pathways. The
first two of them involve either two x-polarized photons or two
y-polarized photons and the associated geometrical symmetry
prevents them from contributing to b̃3,�2. The next two terms
involve absorption of one x-polarized photon and one y-
polarized photon and their lower geometrical symmetry allows
for contributions to b̃3,�2. However, since these two terms
correspond to opposite photon orderings satisfying o1 - o2,
the photon-ordering symmetry in eqn (27) implies that their
contributions will cancel each other exactly. The remaining
terms describe PECD from the state | ji [cf. eqn (10) in ref. 13]
after excitation via either an x- or a y-polarized photon. These
terms make a null contribution to the integral over orientations
in b̃3,–2 because all possible setup rotational invariants that can be
formed either with the set {x̂L, ŷL, ẑL, (Exx̂L � ÊyŷL), Exx̂L, Exx̂L} or
with the set {x̂L, ŷL, ẑL, (Exx̂L � ÊyŷL), EyŷL, EyŷL} vanish.42
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