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Simulation of Auger decay dynamics in the hard
X-ray regime: HCl as a showcase†

G. Goldsztejn,*a R. Guillemin,bc T. Marchenko,bc O. Travnikova, bc D. Céolin,c

L. Journel, bc M. Simon, bc M. N. Piancastelli *bd and R. Püttner *e

Auger decay after photoexcitation or photoemission of an electron from a deep inner shell in the hard

X-ray regime can be rather complex, implying a multitude of phenomena such as multiple-step

cascades, post-collision interaction (PCI), and electronic state-lifetime interference. Furthermore, in a

molecule nuclear motion can also be triggered. Here we discuss a comprehensive theoretical method

which allows us to analyze in great detail Auger spectra measured around an inner-shell ionization

threshold. HCl photoexcited or photoionized around the deep Cl 1s threshold is chosen as a showcase.

Our method allows calculating Auger cross sections considering the nature of the ground, intermediate

and final states (bound or dissociative), and the evolution of the relaxation process, including both

electron and nuclear dynamics. In particular, we show that we can understand and reproduce a so-

called experimental 2D-map, consisting of a series of resonant Auger spectra measured at different

photon energies, therefore obtaining a detailed picture of all above-mentioned dynamical phenomena

at once.

1 Introduction

The investigation of photoexcitation and photoionization pro-
cesses involving deep inner shells implies a high level of
complexity, due to the multiplicity of dynamical phenomena
which can play a role (see e.g.1 for a recent review). Absorption
of an X-ray photon by an isolated atomic or molecular system
can induce an electronic transition from a deep shell, either to
an empty orbital or into the ionization continuum. The core-
excited or core-ionized state thus created with a deep electron
vacancy is highly unstable and relaxes on a very short time
scale, of the order of one femtosecond (10�15 s) or even less.
The relaxation processes can proceed through multiple path-
ways, including branchings between radiative and nonradiative
decay. The nonradiative path, i.e. the Auger decay, can be rather

complex, implying e.g. resonant double Auger.2 Multiple-step
cascades can occur, in which subsequent Auger events take
place until a final state with shallow electron vacancies is
reached and further electron emission is not possible (see
e.g.3–5 and references therein). Shake-up and shake-off transi-
tions involving one or more electrons (see6 and references
therein) are also possible. Post-collision interaction (PCI) phe-
nomena arise near an ionization threshold when a slow photo-
electron is overtaken by a fast Auger electron, and both
experience a sudden change in the Coulomb field of the ion
left behind. As a consequence, the photoelectron slows down
and the Auger electron accelerates, which implies energy shifts
and shape distortion of the related spectral lines.7,8 Further-
more, due to the short lifetime of states with a deep core hole,
electronic state-lifetime interference can also play a role:9,10 in
the hard X-ray regime, where the lifetime broadenings of inter-
mediate states are large, these states can overlap. Therefore,
different excited states can be coherently populated and will
decay, through spectator or shake processes, into one or more
final states, causing shifts in peak positions and influencing the
cross sections. Another effect to yet consider in molecular cases
is that, if the intermediate state reached after photoexcitation is
dissociative, nuclear motion can be triggered in a time scale of
few femtoseconds or even subfemtoseconds.3,4,11 The high
complexity of such decay patterns makes the interpretation of
Auger decay spectra rather challenging.

The overall decay dynamics is governed by the interplay of
the potential curves of the ground, intermediate and final state,

a Institut des Sciences Moléculaires d’Orsay (ISMO), CNRS, Univ. Paris-Sud,
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which can be either bound or dissociative; the cross section of a
specific final state is sensitive to the possibility of shake-up,
shake-down and shake-off processes; the dispersion behavior of
the Auger final states as a function of the impinging photons
can be influenced by the possibility that part of the absorbed
energy is dissipated by the nuclear motion rather than the
kinetic energy of the outgoing Auger electrons.

Here we discuss a comprehensive theoretical method which
allows us to analyze in great detail Auger spectra measured
around an inner-shell threshold. The obtained experimental
data for the investigated showcase HCl, which is the simplest
molecule with a deep core hole reachable in the hard X-ray
regime, are in the form of 2D-maps, meaning that we measure
Auger spectra by changing the photon energy in small steps.
This procedure allows not only a first general overview of the
dynamics, but also to gather information on final states which
are not well separated in kinetic energy. The experimental data
we analyze have been recorded on the GALAXIES beamline at
the synchrotron SOLEIL near Paris, France. Thanks to the state-
of-the-art performances of such facility, an extremely good
signal-to-noise over a large domain of photon energy and
kinetic energy allows to perform a detailed analysis even for
weak signals12,13

Our method allows calculating Auger cross sections taking
into account the nature of the ground, intermediate and final
states (bound or dissociative), and the evolution of the relaxa-
tion process, including both electron and nuclear dynamics. In
particular, electronic state-lifetime interference phenomena
and signatures of nuclear dynamics taking place even in a very
short timescale are investigated.

We consider our methodology as a step forward in the
direction of achieving a deep insight of a full 2D-map by careful
fitting procedures and advanced theoretical modeling.

2 Summary of theoretical aspects

In this section, we present the equations that are necessary to
simulate the 2D-maps of the resonant and normal Auger
spectra, and their physical meaning. For a complete derivation
of the formulas, please see ESI.†

2.1 From the double differential cross section to resonant and
normal Auger

Here we describe the expected lineshapes for resonant and
normal Auger spectra. Schematic pictures of these two pro-
cesses are shown in Fig. 1, which also shows relevant states and
energies. Here we distinguish between two cases, namely a final
state with an infinite lifetime and a final state with a finite
lifetime.

Let us start with the situation of an infinite experimental
resolution and a stable final state, i.e., with infinite lifetime. In
this case, the double differential cross section is described in its
general form by:11

sðo;o0Þ /
X
f

Ffj j2�d o� o0 � ofoð Þ (1)

with

Ff ¼
X
c

hCf jQjCcihCcjDjCoi
o� oco þ iGc

; (2)

where o is the energy of the incoming photon, o0 the energy of
the outgoing photon or electron(s), oco the energy difference
between the ground state |oi and the core-excited state |ci, ofo

the energy difference between the ground state |oi and the core-
excited state |fi, D the dipole operator for the excitation, Q the
decay operator (Coulomb operator for Auger decay or dipole
operator for RIXS) and Gc the half width at half maximum
(HWHM) of the core-hole lifetime broadening.

Eqn (1) can be used to describe both to the resonant and
normal Auger processes. In the resonant Auger process in the
first step an electron is excited from a core hole to an unoccu-
pied orbital nc below the ionization threshold. This neutral
excited state can be considered as consisting of a cation A+ with
an electron in the orbital nc bound to it. Note that n is a counter
index and c describes the symmetry of the orbital; in case of an
atom these quantities are equal to the principal and angular
momentum quantum numbers, respectively. In the next step
the cation A+ undergoes an Auger decay and forms a dication
A2+ while the excited electron remains in a bound orbital. This
process can be described as g.s. - A+nc - A2+nce0c0 with g.s.
being the ground state and e0c0 being the Auger electron. In
contrast to this, in the normal Auger process, the core electron
is promoted in the first step into the continuum ec. Subse-
quently, the cation decays to a dication and emits an Auger
electron. Here the process can be described as g.s. - A+ec -

A2+ece0c0.
In the following we shall first focus on the resonant Auger

process with only one intermediate state |ci. In this case, in
eqn (2) the sum over c drops and we obtain the partial

Fig. 1 Schematics of a resonant Auger (a) and a normal Auger (b) process.
|oi, |ci, and |fi indicate the ground state, the core-hole state, and the final
state, respectively. oco (ofo) describes the energy difference between the
core-hole state (final state) and ground state. o represents the photon
energy and o0 the energy of the outgoing electrons. Note that for the
resonant Auger process o0 is equal to the kinetic energy of the Auger
electron, oA, while in case of a normal Auger process o0 is shared between
the photoelectron and the Auger electron, i.e. o0 = oP + oA, with oP being
the kinetic energy of the photoelectron. For both processes the position
of the ionization potential IP is also indicated.
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differential cross section:

s o;o0ð Þ / Gc

p
QresDresj j2

o� ocoð Þ2þG2
c

� d o� o0 � ofoð Þ; (3)

where the d function represents the energy conservation and
defines the kinetic energy o0 of the resonant Auger electron as a
function of the incoming photon, see panel (a) of Fig. 1. The
matrix element Dres = hCc|D|Coi describes the resonant excita-
tion and the matrix element Qres = hCf|Q|Cci the Auger decay.
By neglecting experimental broadenings, i.e. photon bandwidth
and analyser resolution, the spectrum consists of a d-like peak
at the energy o0 = o � ofo. Fig. 2 displays in a comprehensive
way the observable lineshapes for resonant and normal Auger
spectra, both for final states with finite and infinite lifetime.
The above-mentioned d-peak corresponds to the black vertical
lines in panel (a) of Fig. 2. Due to the finite lifetime Gc the
process can resonate over a larger energy range. The intensity of
the d-like peak varies with o and the variation is described with
a Lorentzian function, see Fig. 1(a) and as red curve in Fig. 2(a),
which is derived from ((o � oco)2 + Gc

2)�1 in eqn (3). In
summary, |Ff|

2 gives the probability of the process as a function

of the photon energy o and the d-function defines the energy o0

of the outgoing Auger electron as a function of the incoming
photon.

In the next step we consider the normal Auger process
subsequent to a photoionization process. Note, that in the
following discussion post-collision interaction (PCI) is
neglected, although it is taken fully into account in our simula-
tions, see below. In Fig. 1(b) it can be seen that the photon
energy o is not in the Lorentzian distribution of the core-hole
state |ci, i.e. the process is non-resonant. Instead, the process
leads to two outgoing electrons, namely the photoelectron with
a kinetic energy oP and the Auger electron with a kinetic energy
oA. Note that oP and oA are the actual energies of the emitted
electrons, but not the peak maxima in the photoelectron and
the Auger spectrum. This leads to the relation o0 = oP + oA,
which can only be verified in high-resolution photoelectron-
Auger electron coincidence spectra, see e.g.14 As shown in detail
in the ESI† we obtain

sðo;oAÞ /
Gc

p
jQnorDnorj2

ðoA � ocfÞ2 þ G2
c

(4)

with ocf = oco � ofo. Obviously, s(o, oA) is described by a
Lorentzian function around the energy difference ofc between
the core-hole and the final state, see Fig. 2(c). Contrary to the
resonant Auger decay, here the Lorentzian function describes
the spectral lineshape and not the intensity variation as a
function of the photon energy. In contrast to eqn (3), eqn (4)
does not depend on the photon energy o, i.e. normal Auger
spectra are independent from the photon energy while reso-
nant Auger spectra change with the photon energy.

Up to now, we have assumed that the Auger final state has
an infinite lifetime. This is a reasonable approximation for the
Auger final states subsequent to the decay of shallow core-hole
states, since in this case the final states undergo fluorescence
decay which leads to much longer lifetimes. Contrary to this,
the final states populated after the decay of deeper core levels
(e.g. Ar 1s�1 - 2p�2) possess non-negligible lifetime broad-
enings which have to be taken into account. As a result, the
accessible energy levels show a Lorentzian-like distribution
with a width Gf around the energy of the final state; here Gf

is the lifetime broadening of the final state (HWHM). Once
again, we have to treat resonant and normal Auger separately.

For the resonant Auger case we obtain

sðo;o0Þ / Gc

p
jQresDresj2

ðo� ocoÞ2 þ G2
c

� Gf

p ofo � o� o0ð Þ2þG2
f

� �: (5)

Obviously, the obtained result is a product of the intensity
factor already present in eqn (3) and a Lorentzian function with
a width Gf. From this follows that the kinetic energy of the
Auger electron, o0, can be described by a Lorentzian function
with a maximum at ofo � o, i.e. the maximum depends on the
photon energy, and a width of Gf, see black curve in Fig. 2(b).
The first part on the right-hand side of the equation describes
the red Lorentzian lineshape in Fig. 2(b) which indicates the
intensity of the black Lorentzian curves.

Fig. 2 Schematic line profiles for Auger transitions. (a) Resonant Auger
spectra without lifetime broadening of the final state. The spectral features
are d-functions indicated in black. The red Lorentzian curves with a width
of 2Gc indicate the intensity of the d-functions as a function of the
detuning o � oco = o’ � ocf. (b) Resonant Auger spectra with lifetime
broadening of the final states. The black Lorentzian curves with a broad-
ening of 2Gf represent the spectral features. For the red curve, see (a).
(c) Normal Auger spectra without lifetime broadening of the final state as a
function of the detuning o � oco = oA � ocf. The black Lorentzian curves
with a broadening of 2Gc represent the spectral features. (d) Normal Auger
spectra with lifetime broadening of the final state. The black Lorentzian
curves with a broadening of 2Gt = 2(Gc + Gf) represent the spectral
features.
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In the next step we shall consider the normal Auger decay.
Here we obtain

sðo;oAÞ /
GtjQnorDnorj2

p ðoA � ocf Þ2 þ G2
t

� �: (6)

As displayed in Fig. 2(d), the result of the convolution is also
a Lorentzian function, however, with a larger width Gt = Gf + Gc,
i.e. the sum of the lifetime broadening of the core-hole and the
final state.

2.2 The molecular case

In this part, we discuss eqn (1) for the case of molecules with
electronic and nuclear degrees of freedom, with the focus of the
discussion on the nuclear degree of freedom. In the Born–
Oppenheimer’s approximation, we can factorize the electronic
and nuclear degrees of freedom such that Ci from the eqn (1)
can be rewritten as |Cii = |Fii |wii. |Fii represents the electronic
wavefunction as defined previously and |wii is the nuclear
wavefunction. Note that in the following we use only one
vibrational wavefunction, which is equivalent to one vibrational
mode and, therefore, to a diatomic molecule. However, the
formulas given below can be extended to more than one
vibrational mode and polyatomic molecules. In this approxi-
mation, eqn (1) can be rewritten as

sðo;o0Þ /
X
f

X
c

hFf jQjFcihwf jwcihFcjDjFoihwcjwoi
o� oco þ iGc

�����
�����
2

� D o� o0 � ofo;Gfð Þ

(7)

In this context D(o � o0 � ofo, Gf) describes the spectral
lineshapes and has to be derived in line with the arguments
above according to the situation, i.e. resonant or normal Auger
as well as the lifetime of the final states.

Let us now focus on the overlap integrals and rewrite eqn (7)
with Del = hFc|D|Foi and Qel = hFf|Q|Fci as

sðo;o0Þ /
X
f

jQelj2jDelj2
X
c

hwf jwcihwcjwoi
o� oco þ iGc

�����
�����
2

� D o� o0 � ofo;Gfð Þ

(8)

Before we continue with the discussion we want to point out
that the absolute value of the sum over c can be written as

X
c

hwf jwcihwcjwoi
o� oco þ iGc

�����
�����
2

¼
X
c

jhwf jwcij2jhwcjwoij2

ðo� ocoÞ2 þ G2
c

þ
X
cac0

hwf jwcihwcjwoihwojwc0 ihwc0 jwfi
o� oco þ iGcð Þ o� oc0o þ iG0c

� �
(9)

The first terms on the right side of the equation are the so-
called direct terms, which are sufficient when the excitation
and the decay process are considered independent. In the case
where excitation and decay are considered as one process, the
second terms, the so-called lifetime interference terms, have to
be taken into account. Here, we specify the direct terms and

lifetime interference terms for the nuclear part of the wavefunc-
tions, however, such specification is also possible for the
electronic part of the wavefunctions. The most general case
with vibrational and electronic lifetime interference contribu-
tions is discussed in ref. 15.

To apply eqn (8) for the vibrational states of electronic
transitions, the nuclear wavefunctions wi have to be described
according to the case in which they describe bound or dis-
sociative molecular states. In principle, the transitions
described by the matrix elements hwf|wci and hwc|woi can have
different characters depending on the bond character of the
potential energy curves.

In the following, we first discuss the vibrational progres-
sions of transitions between two states, where we have to
distinguish between bound–bound transitions, bound–disso-
ciative transitions and dissociative–dissociative transitions.
After this, we discuss the entire excitation and decay process,
which includes three different states. Since we only consider
processes which involve the ground state, we here have to
distinguish four cases, namely bound–bound–bound transi-
tions, bound–bound–dissociative transitions, bound–dissocia-
tive–bound transitions and bound–dissociative–dissociative
transitions.

2.3 Transitions between two states

2.3.1 Bound–bound transitions. We will start the
discussion with transitions between two bound states |bi and
|b0i. Such transitions can occur between the ground and the
core-hole state as well as between the core-hole and the final
state, i.e. the vibrational overlap matrix elements hwb|wb0i can
represent the matrix elements hwf|wci and hwc|woi. For bound
states the potential energy curves can be described with Morse
potentials described with three parameters: equilibrium
distance R0, vibrational energy h�o, and anharmonicity xh�o.
The simple case of a harmonic oscillator is obtained with xh�o =
0. In case of Morse potentials the vibrational overlap matrix
elements hwb|wb0i can be obtained by following the methods of
Ory, Gittleman, and Maddox16 as well as Halmann and
Laulich.17 Details of a corresponding fit approach are
discussed in ref. 18.

2.3.2 Bound–dissociative transitions. In the following
discussion on transitions between a bound state |bi and a
dissociative state |di we have to calculate the Franck–Condon
factor hwd|wb0i where |wdi is the continuum wavefunction for
the energy Ed and |wb0i the wavefunction of the vibrational
ground state of the state |bi. Bound–dissociative transitions
can occur between the ground and the core-hole state as well as
between the core-hole and the final state, so that the matrix
elements hwd|wb0i can represent the matrix elements hwf|wci and
hwc|woi. The potential energy curves and the nuclear wavefunc-
tions are presented in Fig. 3.

For the calculation we assume that the slope of the disso-
ciative potential energy curve is constant. Moreover, we assume
that the bound state is the initial state and that only the
vibrational ground state of the bound state is populated. By
applying a harmonic oscillator potential for the bound state,
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the vibrational wavefunction is given by

wb0ðxÞ ¼
1

pa20

� �1=4

exp �1
2

x

a0

� �2
" #

(10)

with a0 ¼
�h

mo0

� �1=2

. Here, m is the reduced mass, o0 the

vibrational frequency, and a0 the average deviation of x = R �
R0 with R0 being the equilibrium distance.

As stated above, we approximate the dissociative potential
energy curve with a linear function, i.e. V(x) = �Fdx with Fd

being the slope of the dissociative state; The potential and the
corresponding solution for one energy are displayed in the
upper part of Fig. 3. The corresponding Schrödinger equation
to be solved is given by:

d2wd
dx2
þ m

�h2
E þ Fdxð Þwd ¼ 0; (11)

with m being the reduced mass of the molecule. Moreover, E is
the total energy of the nuclear motion and is given relative to
Ud(R0) as defined in the Fig. 3. The eigenfunctions of this
Schrödinger equation are given by19

wd;EðxÞ ¼
1

aF1=2
d

Ai
xþ a

a

h i
: (12)

with a ¼ E

Fd
, a ¼ �ð2mFdÞ1=3

�h2=3

� ��1
and Ai(x) being the Airy

function, which is discussed in more detail in the ESI.† For
xþ a

a
o 0 the Airy function decreases quickly and for

xþ a

a
4 0

it oscillates strongly. Based on this, the Franck–Condon factors

can be approximated to

hwdjwb0i ffi
2ma3ffiffiffi
p
p

a0

� �1=2

� exp �1
2

DEd

gd

� �2
" #

(13)

with DEd = E � Fda and gd = Fda0.11

Obviously, the dependence of the Franck–Condon factors
with the energy E can be described with a Gaussian distribution
which is due to the Gaussian nuclear wavefunction in the
electronic ground state. Because of this, the behavior of the
Franck–Condon factors can be obtained by approximating
the Airy functions by d functions, which peak at the classical
turning point. Note that in this way the energy shift Fda can not
be reproduced. One should also mention that the approxi-
mation of the Airy function by a d function is not obvious since
the width of the first oscillation of the Airy function is compar-
able to the width of the nuclear ground state, see Fig. 3.
However, it has been shown that the Franck–Condon factors
of the exact solution and the approximation deviate only very
slightly, see Herzberg.20 The approximation of the Airy func-
tions with d functions allows also a derivation of the Franck–
Condon factors for higher vibrational states in the bound
potential, see e.g. ref. 21.

2.3.3 Dissociative–dissociative-transitions. In the follow-
ing, we consider transitions between two dissociative states
|di and |di0. Such transitions can occur in the present study
only between the core-excited and the final states. In the
calculation of the vibrational matrix elements hwd|wd

0i, the
nuclear wavefunctions can be described with Airy functions,
which allows to use22

1

jabj

ð1
�1

Ai
xþ a

a

h i
Ai

xþ b

b


 �
dx

¼
dðb� aÞ if a ¼ b

1

jb3 � a3j1=3Ai
b� a

ðb3 � a3Þ1=3


 �
if b4 a

8<
: :

(14)

Note that a = b if the slopes of the two potential energy
curves involved are equal. This is generally assumed to be valid
for Resonant Inelastic X-ray Scattering (RIXS) spectra. In this
case, a nuclear wavefunction in the electronic final state is
populated via one nuclear wavefunction in the initial state. As a
result of a excitation and decay process, the intermediate
nuclear state is always exactly known so that no vibrational
lifetime interference occurs.

2.4 The entire excitation and decay process

2.4.1 The bound–bound–bound case. In the case of
bound–bound–bound transitions, one can start with eqn (8)
by taking into account that the vibrational levels are all dis-
crete. In this case, the vibrational matrix elements hwf|wci and
hwc|woi can be calculated by the approach given in Section 2.3.1.
Details on the simulation of bound–bound–bound transitions
can be found in ref. 15 and 23.

2.4.2 The bound–dissociative–dissociative case. In the
following, we discuss the transition from a bound ground
state to a dissociative core-hole state and from there to a

Fig. 3 Potential energy curves in black and wavefunctions in red for a
bound–dissociative transition. The lower potential energy curve and
wavefunction represent the ground state of HCl in the harmonic approxi-
mation. The hypothetical upper linear potential curve has at equilibrium
distance R0 of the ground state an energy of Ud(R0) D 5.7 eV and a slope of
�15 eV Å�1. The upper wavefunction (Airy function) is calculated for HCl
based on the hypothetical potential energy curve. For more details, see
text.
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dissociative final state. Here, we have to distinguish between
two cases, namely that the slopes of the two dissociative
potential curves can be identical or different. The first case is
realized in RIXS experiments. In this case, vibrational lifetime
interference can be strictly ruled out because of the first line in
eqn (14). Since this case is not important for the present study,
it is only discussed in the ESI.† The second case with different
slopes is realized in the present case of the resonant Auger
decay and is discussed in the following. Here, due to the second
line in eqn (14) vibrational lifetime interference cannot
generally be ruled out.

To specify the partial cross section for the given case of
resonant Auger decay one has to start with eqn (8) and can use
eqn (13) to replace hwo|wci. As discussed above, it was shown
that for a bound–dissociative transition the Airy function can
be replaced by a d function localized at the classical turning
point. We now assume for the calculation of the overlap
integral hwc|wfi that this also works well for a dissociative–
dissociative transition with different slopes for the potential
energy curves, i.e.,

jwci ¼ d R� R0 �
DEc

Fc

� �� �
and

jwfi ¼ d R� R0 �
DEf

Ff

� �� �
;

(15)

with Ff and DEf being the same quantities for the final state as
Fd and DEd, which are defined below eqn (13). By considering
also the finite lifetime of the final state we obtain as cross
section

sðo;o0Þ /
ð
dDEf

exp � DEf

gf

� �2
" #

o� ocoðR0Þ �
Fc

Ff
DEf

� �2

þG2
c

� Gf

p o� o0 � ofoðR0Þ � DEfð Þ2þG2
f

� �:
(16)

Here oco(R0) and ofo(R0) represent the energy differences
between the states at the equilibrium distance R0. The integra-
tion over the different final states is represented by the integra-
tion

Ð
dDEf . Note that eqn (16) was already given in,5 however

with Fc = Ff.
2.4.3 The bound–dissociative–bound case. In the following

we discuss the exotic case of a bound ground state, a bound
final state and a dissociative intermediate state. This case is
only realized in the shake-up process during the Auger decay.
To describe this process we start again with eqn (8) and assume
a finite lifetime of the final state. Moreover, we approximate the

core-hole state with jwci ¼ d R� R0 �
DEc

Fc

� �� �
. In this way,

we obtain:

sðo;o0Þ /
X
f

ð
dDEc

ð
dD ~Ec

wf R0 �
DEc

Fc

� �
wo R0 �

DEc

Fc

� �
o� ocoðR0Þ � DEc þ iGc½ �

�
wf R0 �

D ~Ec

Fc

� �
wo R0 �

D ~Ec

Fc

� �
o� ocoðR0Þ � D ~Ec � iGc

� 
 � Gf

p o� o0 � ofoð Þ2þG2
f

:

(17)

Here w0(R) and wf(R) are the vibrational wavefunctions of the

bound initial and final state. The integrals
Ð
dDEc and

Ð
dD ~Ec

replace the sums over c and c0 in eqn (9) due the continuum of
levels for the nuclear motion and ensure that all possible
intermediate core-excited states are taken into account.

2.4.4 The bound–bound–dissociative case. The last and
also exotic case we want to discuss is the bound–bound–
dissociative case. By already assuming a finite lifetime for the
final state and the arguments given above we obtain

sðo;o0Þ /
ð
dDEf

X
c

hwf jwcihwcjwoi
o� oco þ iGc

�����
�����
2

� Gf

pðo� o0 � ofoÞ2 þ G2
f

:

(18)

Detailed information for calculating the overlap matrix
elements hwc|woi and hwf|0ci can be found in Sections 2.3.1
and Section 2.3.2, respectively, as well as in the ESI.†

3 The influence of the experimental
resolution

In Fig. 4, 2D-maps of resonant and normal KLL Auger spectra of
HCl close to the Cl 1s ionization threshold are displayed. On
the left side, the simulations and, on the right side, the
experimental results are shown. On the x-axis, the photon
energy o and, on the y-axis, the kinetic energy of the emitted
electron o0 are displayed. In addition, the intensities of the
emitted electrons are displayed by the color code. The ioniza-
tion threshold can be found at D 2830 eV, i.e. below this
photon energy resonant Auger spectra and above this value
normal Auger spectra as well as electron recapture processes
can be observed. An integration along the kinetic-energy axis
leads to a partial-electron-yield spectrum, which compares to
an absorption spectrum in this energy region. The corres-
ponding spectra are shown above each map. A direct compar-
ison of the experimental and the theoretical absorption
spectrum is presented in the ESI.† The absorption spectra allow
identifying the intermediate core-hole states. The final states of
the displayed transitions can be identified by comparing with
Fig. 6 to 10 below.

In the maps, the normal Auger transition Cl 1s�1 -

2p�2(1D) is represented by the almost horizontal line at 2373
eV kinetic energy. The resonant Auger transitions below thresh-
old mostly show inclined lines, which represent resonant Auger
transitions to stable or metastable final states. The strong
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horizontal line around a photon energy of 2824 eV and a kinetic
energy of 2383 eV is due to the Cl 1s�16s - 2p�2(1D)6s. Here,
both states are strongly dissociative and the horizontal orienta-
tion of the spectral feature is a signature of ultrafast nuclear
dynamics.24

The spectral features can be described by the formulas given
above, which, however, do not take into account the experi-
mental resolution consisting of the photon bandwidth and the
detector resolution. To obtain simulated maps that can be
compared with the experimentally observed 2D-maps, the
theoretical maps have to be convoluted with the photon band-
width along the photon energy axis and with the detector
resolution along the electron kinetic energy.

In the following, we discuss how these convolutions along
different directions contribute to the spectra, which are present
or can be derived from the 2D-map. As already stated above, an
integration along the kinetic-energy axis is comparable to the
photoabsorption spectrum. In this case, and because the
photon bandwidth and instrumental resolution can be defined
by normalized Gaussian functions, the detector resolution
cancels out so that only the convolution with the photon
bandwidth contribute to the absorption spectrum.
Normal Auger spectra far above threshold lead to horizontal
lines, i.e. do not depend on the photon energy. Because
of this only the detector resolution has to be taken into
account.

As discussed by Guillemin et al.8 the situation becomes
more complicated close to the ionization threshold. In this
region, the energy position and the lineshape are influenced by
PCI and depend, as a result, on the photon energy. This can be
seen by the almost horizontal line visible above threshold at a
kinetic energy of D 2373 eV, which is slightly bent towards
higher kinetic energies while approaching the threshold. As a
consequence of this photon-energy dependent peak position
due to PCI, the Auger spectra become – at least in principle –
also dependent on the photon bandwidth. Therefore, in a
rigorous treatment, the simulated Auger lines have to be
convoluted as discussed above. For normal Auger spectra close
to threshold a simplified way is described by Guillemin et al.8

In this case, the PCI lineshape can be convoluted with the
detector resolution and a modified photon bandwidth g0 =

|m| � g with m ¼ dDEPCI

dEex
. Here DEPCI is the PCI-shift and Eex

the kinetic energy of the photoelectron. Note that m is usually
small and the resulting resolution can be neglected.

Although not visible in the present case, the emission of a
photoelectron causes a diagonal line with a slope of m = 1 in a
2D-map. Because of this, a photoelectron line has to be con-
voluted with both the photon bandwidth and the detector
resolution. Finally, we discuss the lines caused by resonant
Auger transitions to different final states, which also show a
dispersion with photon energy. This dispersion is linear with a

Fig. 4 The simulated (left) and the experimental (right) 2D-map. Above each map, the corresponding partial-electron-yield spectra are given, which also
allows to identify the core-hole states. Both, the theoretical and experimental partial-electron yield spectra were obtained by projecting the 2D-maps on
the photon-energy axis. For the identification of the final states of the different spectral contributions, see Fig. 6 to 10 below.
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slope of m = 1, i.e., results in diagonal lines, with the exception
of dissociative final states in the vicinity of the resonance
position. Although in this case, the slope is identical to that
for a photoemission process, the resonant Auger lines have to
be treated differently because of two reasons. First, the core-
hole lifetime does not contribute to the lineshape, see above,
and second, the cross section varies strongly with the photon
energy, see Fig. 2. Therefore, the lineshape in a resonant Auger
spectrum can be obtained by multiplying the Lorentzian curve
in Fig. 2 with the Gaussian distribution for the photon band-
width; note that this can lead in the case of broad photon
bandwidths to asymmetric lineshapes.25,26 Finally, the result
has to be convoluted with the detector resolution.

4 Results and discussion
4.1 Computation of the potential energy curves

The potential energy curves shown in Fig. 5 were computed
using the MOLPRO package27 at the CASSCF level. We chose
the Gaussian basis set aug-cc-pCVTZ,28,29 in order to take into
account core–core and core–valence correlation effects, and
included scalar relativistic corrections using the Douglas–Kroll
Hamiltonian,30–32 i.e. spin–orbit interaction is neglected.

In the present study, the 15 lowest singly excited Cl 1s�1

states were calculated and only those states which were
observed experimentally in ref. 10 are represented in Fig. 5.
In this figure, three distinct regions corresponding to the
different types of electronic states populated in the entire
excitation and resonant Auger process are visible: the ground
state at low energies, the K�1V region around 2824 eV, which
corresponds to the core-excited states, and the L�2V region
around 450 eV, which corresponds to the Auger final states. In
addition, the potential curve of the ionized K�1 state is repre-
sented by the black line and the Franck–Condon (FC) region is
indicated by a red-shaded area.

The lowest potential energy curves in each of the regions
K�1V and L�2V are highly dissociative and correspond to the

states K�16s and L�26s, respectively. These states have
attracted substantial interest in the literature3,4,10,24 since they
lead to ultrafast nuclear motion and even show indication of
ultrafast dissociation.

Also of interest is the bond character of the L�2Ryd states
where Ryd indicates a Rydberg orbital. In first approximation
the bond character of these states can be estimated on the
exotic Z + 2 molecule HK2+, which suggests a dissociative
character. Nevertheless, some of these final states are meta-
stable with a shallow potential well like L�24ss or L�23ds and
other (L�24ps,p and L�24ps,p) are dissociative. A similar
behavior was found for the O K�2Ryd states in CO,33 which
can be compared with the molecule CNe2+. From these results
we conclude that double-core-hole Rydberg excitations tend to
be close to the borderline between metastable and dissociative
so that each state has to be individually considered.

To obtain simple analytical expressions, which allow analy-
tical treatments of the vibrational part of the transitions, the
potential energy curves were fitted using the model potential
functions as described in Gortel et al.34 All potential energy
curves with a minimum in the Franck–Condon region were
fitted to a Morse potential. Note that in particular the L�2V
states show at large distances strong deviations from the Morse
potential. Because of this, the fits of the potential were only
performed close to the Franck–Condon region, which is rele-
vant for the transitions.

The dissociative states were fitted by the exponential
decay form

V(R) = Ve(V0/V)(R�R0) + VN (19)

where R0 is the equilibrium distance of the ground state, V0 =
�F the slope of the dissociative potential at R0, VN the
asymptotic value, i.e., the binding energy of the free ion, and
V the difference of the potential energy curve at R0 and RN, i.e.
V = V(R0) � VN.

4.2 Parameters used in the simulations

The energy positions of the various excited states relative to the
ground state and the Auger energies for the transitions to the
studied final states are summarized in Table 1. As mentioned in
ref. 10, we observe resonant Auger transitions to two groups of
final states, namely the 2p�2(1D)V and 2p�2(1S)V. The notation
corresponds to the spectroscopic term for the equivalent
atomic notation with two holes in the 2p shell and one electron
in a high-energy molecular orbital, which is denoted by V and is
unoccupied in the ground state. The transitions to the
2p�2(3P)V final states states are too weak to be observed.

To compare the obtained simulations better with the experi-
mental data of ref. 10, we convoluted our results with two
normalized Gaussian functions with a full width at half max-
imum (FWHM) of 0.22 eV and 0.30 eV, in order to simulate the
detector resolution and photon bandwidth, respectively. The
lifetime broadenings (FWHM) were chosen as 2Gc = 0.65 eV for
the 1s�1V excited states35 and 2Gf = 0.24 eV for the 2p�2V final
states.3

Fig. 5 Calculated potential energy curves for the ground state, the inter-
mediate Cl K�1V core-hole states and Cl L2,3

�2(1D)V double core-hole final
states. The potential energy curve of the K�1 ionic state is represented in
black. The Franck–Condon region is indicated by the shaded vertical
region.
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Finally, for our simulations, we applied for the Auger
transitions to the 2p�2(1D)V and the 2p�2(1S)V states the same
parameters, with two exceptions. First, we used different kinetic
energies for the Auger electrons as stated in Table 1. And
second, we applied a 2p�2(1S)V to 2p�2(1D)V intensity ratio of
0.1; this ratio has been observed for the diagram lines in argon6

and it is expected to vary only slightly with the atomic number Z
so that the value for argon can be used as good approximation
for Cl.

4.3 Details of the simulations of the bound–bound–bound,
the bound–bound–dissociative and bound–dissociative–bound
transitions

In the simulations, some of the excitation and decay processes
were treated as bound–bound–bound transitions, see Section
2.4.1. The parameters R0, h�o, and xh�o for the ground state of
the molecule can be obtained from literature. The parameters
for the core-hole state and the final state can either be derived
from a fit of the photoelectron and the Auger spectrum,
respectively, or from a fit of the calculated potential energy
curves to the Morse formula, see Section 4.1. The final states
are not really stable but metastable since for large distances the
Coulomb repulsion becomes important. However, if the inner
well of such a potential is deep enough, a Morse potential is a
good approximation, see e.g. ref. 38 and 39.

In the following we shall discuss the calculations for HCl in
more detail. Here, we are interested in the Cl 1s�1 photoabsorp-
tion process and the subsequent resonant Auger decay to the
2p�2nl final states. As discussed above, for this we have to
calculate in principle the overlap matrix elements hwf|wci and
hwc|woi. As can be seen from Fig. 5, the Cl 1s�1Ryd states and the
Cl 1s�1 ionic state are stable according to our calculations. This
is not surprising since their potential energy curves are

expected to be very similar to the HCl 2p-hole states. This is
due to the fact that potential energy curves are determined by
the valence electrons, not by the core holes. The 2p�1 states are
known to be bound also from experiment, see e.g. for photo-
absorption ref. 40 and for photoemission ref. 41. The spectra in
the latter two references show practically only transitions to the
vibrational ground state of the core-hole state, while transitions
to higher vibrational substates are almost absent. From this
follows that matrix element | h0c|0oi |2 D 1 while the matrix
elements | hnc|0oi |2 D 0 for n 4 0. Because of this, only the
vibrational ground states in the core-hole states are taken in
our simulations into account. This also leads to the fact that
vibrational lifetime interference can be neglected.

To calculate the Franck–Condon factors | hwf|0ci |2 for the
resonant Auger transitions, the potential energy curves of the Cl
1s�1 core-hole and the Cl 2p�2 final states were fitted to a Morse
potential. Since the Cl 1s�1Ryd states are all stable, the fit is
performed over the entire region of internuclear distances.
Contrary to this, the 2p�2Ryd are only metastable. Because of
this we use for the fit only the region of 1 to 2 Å for the
internuclear distances in order to approximate the states with a
Morse potential.

In case of large changes in the internuclear distances and/or
very shallow wells for the Morse potentials, transitions to the
continuum wavefunctions for the nuclear motion are possible,
i.e. in these cases both bound–bound and bound–dissociative
transitions, occur. Since for Auger final states the dissociation
energy of Morse potentials is normally larger than the potential
energy barrier of the potential energy curve, see ref. 38 and 39
we utilized the above-described approach only for these transi-
tions, for which we obtained that at least 70% of the transitions
end in a bound vibrational state. All other transitions are
described as with bound–dissociative transitions.

In the next step, we shall discuss the bound–bound–disso-
ciative transitions. These transitions are relevant for some
of the Cl 1s�1Ryd - 2p�2Ryd transitions. Due to the fact that
| h 0c|0oi |2 D 1, we can simplify eqn (18) with eqn (10) to

sðo;o0Þ /
ð
dDEf

exp � DEf

gf

� �2
" #

ðo� ocoÞ2 þ G2
c

� Gf

p o� o0 � ofo � DEfð Þ2þG2
f

:

(20)

Now let us turn to the bound–dissociative–bound transi-
tions, which are realized for the Cl 1s�16s - 2p�24ss and Cl
1s�16s - 2p�23ds shake-up transitions. For these transitions,
eqn (17) has to be applied. Here the vibrational wavefunction
for the electronic ground state wo(R) can be described in good
approximation with that of the harmonic oscillator.

4.4 Results of the simulations and comparison with
experiment

In the following, we describe the results on each final state.
Actually, we performed two types of simulations, namely first

Table 1 Summarized values of the energies of the various intermediate
1s�1V states relative to the ground state as well as the kinetic energies for
the Auger electrons of spectator decays to the the 2p�2V final states, i.e.
for example 1s�16s - 2p�2(1D)6s. The excitation and Auger energies are
extraced from the experimental data shown in Fig. 4. The position of the IP
was estimated based on the term values of the resonances in the Cl 2p�1

spectrum of HCl36,37

Excited electronic state Energy (eV)

1s�16s 2823.90
1s�14ss 2827.05
1s�14ps,p 2827.75
1s�15ps,p 2828.90
1s�1 IP = 2830.10

Final electronic state Kinetic energy for spectator decays (eV)

2p�2(1D)6s 2382.9
2p�2(1D)4ss 2379.5
2p�2(1D)4ps,p 2377.3
2p�2(1D)5ps,p 2374.5
2p�2(1D) 2372.3
2p�2(1S)6s 2374.2
2p�2(1S)4ss 2370.3
2p�2(1S)4ps,p 2368.1
2p�2(1S)5ps,p 2365.3
2p�2(1S) 2363.3
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the simulations of the entire map, see Fig. 4, and with this the
contributions of each individual final state to the map, see
below. Second, we simulated final-state cross sections, which
give the probability for a population of a given final state of the
type 2p�2V as a function of the photon energy. Experimental
final-state cross sections can be obtained by plotting the
intensities along the diagonal lines in the measured 2D-map
as a function of the photon energy. Note that throughout this
work we give only relative cross sections, but not absolute
values. Nevertheless, for reasons of simplicity we use the term
cross section. Details on the analysis and simulation of final-
state cross sections including electronic state lifetime interfer-
ence are presented in ref. 9, 10. The present experimental data
are identical to those presented by Goldsztejn et al.,10 however,
two of the final-state cross sections, namely those for the
2p�25ps,p and the 2p�23ds are presented for the first time.
The data are recorded using a detection direction parallel to the
polarisation direction of the synchrotron radiation, but not at
magic angle. This leads to an angular dependence of the
individual resonance intensities, i.e., we expect intensity ratios
which are slightly different from those expected at magic angle.
This is, however, a minor point in the present work since we do
not compare our fitted intensities with calculated ones. Note,
that a comparison of exerimental and theoretical results can be
performed directly if the angular distribution of the Auger
electron is taken into account. Nevertheless, we prefer to use
in the present publication for the experimental results the term
pseudo-cross section rather than partial cross section. Then, we
first present the results for the dissociative final states and after
this for the bound final states.

4.4.1 Dissociative final states. For resonant Auger decay
after Cl 1s excitations, we simulated the cross sections for the
population of three dissociative final states, namely 2p�26s,
4ps,p and 5ps,p. The first two cross sections are the two most
intense features in the 2D-map. The third one to the final state
2p�25ps,p is also clearly visible in the 2D-map. However, the
spectral features are close to those of other final electronic
states, which made it difficult to extract the experimental
peudo-cross section accurately from the map. Nevertheless,
the experimental and the simulated cross sections are in fair
agreement.

Final state 2p�26s. The left side of Fig. 6 displays the
experimental (black data points) and simulated (red line) cross
sections of the final electronic state 2p�26s. The dashed black
lines below the cross sections represent the direct terms of the
dominant 1s�16s - 2p�26s spectator Auger decay as well as
shake transitions from the 1s�14ss intermediate state. Note
that in the simulated cross sections shown in Fig. 6 to 10,
electronic lifetime interference contributions are included, see
ref. 10; however, these contributions are only shown in Fig. 7 as
individual lines in order to keep the number of dashed lines in
the other Figures small.

To simulate the cross section of the 2p�26s final state, we
considered the relaxation to this state from the 1s�16s inter-
mediate state, which corresponds to the spectator decay, shake-

downs from the orbitals 4ss, 4ps,p and 5ps,p as well as a
recapture after 1s ionization. Following ref. 42, one can define

the modulus squared of the overlap integral hFf jei ’

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� exp � G

E
3=2
exc

b

 !vuut as a probability of recapture, where b is

a slowly varying function of energy and Eexc is the excess energy.
The result of our simulation is shown on the left side in

Fig. 6 as a red solid line, together with black dots corres-
ponding to the experimental data points. The dashed lines
below the graph indicate the individual contributions from the
different 1s�1V excited states.

Both the 1s�16s intermediate and the 2p�26s final state are
dissociative so that we simulated this transition with eqn (16).
As clearly visible in Fig. 6, this transition is highly dominant in

Fig. 6 Cross section of the 2p�26s (left) as a function of the photon
energy, the black dots are the experimental points and the solid line is the
result of our simulation. The dashed lines in the lower part of the figure
display the contributions of the individual intermediate states. The simu-
lated contributions of this final state to the 2D-map are displayed on the
right-hand side of the figure.

Fig. 7 Cross section of the 2p�24ps,p (left) as a function of the photon
energy, the black dots are the experimental points and the solid line is the
result of our simulation. The dashed lines in the lower part of the figure
display the contributions of the individual intermediate states. The solid
blue, green and black lines represent the electronic lifetime-interference
contributions, for details see text. The simulated contributions of this final
state to the 2D-map are displayed on the right-hand side of the figure.
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this final-state cross section. Its broad Gaussian-like shape
originates from the highly dissociative character of the
potential curve of the excited state 1s�16s with a slope of Fc =
�9.27 eV Å�1 at the ground state equilibrium distance R0 =
1.27 Å; this slope agrees reasonably well with the value of
�10.2 eV Å�1 given by Travnikova et al.3 The only other visible
contribution is a shake-down from the 4ss orbital. The 1s�14ss
excited state is bound and we therefore used for the simulation
eqn (20), which describes bound–bound–dissociative
transition.

The slope of the potential energy curve of the intermediate
state 1s�16s at the equilibrium distance is relevant to fit the
final-state cross section, see above. However, to reproduce well
also the resonant Auger spectra, and with this the shape in the
2D-map, the slope of the 2p�26s final state has to be taken into
account, see eqn (16). However, for the best agreement between
experiment and theory we had to use a slope of the potential
energy curve of Ff = �11.77 eV Å�1. This slope has been
calculated for an internuclear distance of ER0 + 0.1 Å and
not for R0 as used in eqn (16). This difference in the inter-
nuclear distance is probably due to the propagation of the
wavepacket in the intermediate state prior to its projection on
the final-state nuclear wavefunctions.

We show the result of this simulation also on the right side
of Fig. 6, where one can observe two spectral contributions. One
shows a linear dispersion with the photon energy, which is due
to the kinetic energy conservation part of the Lorentzian func-
tion of the eqn (16) as discussed in detail above. The other
contribution displays in the resonance region a non-linear
dispersion, which corresponds to strongly dissociative inter-
mediate and final states. The exact shape of this non-linear
dispersion depends on the ratio of the two potential slopes, as
can be understood from the eqn (16). These two contributions
are also present in the experimental 2D-map, which is visible
on the right side of the Fig. 4.

Final states 2p�24ps,p. The left side of Fig. 7 displays the
experimental (black data points) and simulated (red line) cross
sections of the final electronic states 2p�24ps,p. The dashed
black lines below the cross sections represent the direct terms
of the dominant 1s�14ps,p- 2p�24ps,p spectator Auger decay
as well as shake transitions from other intermediate states. The
blue, green and black solid lines represent the electronic
lifetime-interference contributions. In detail, the blue line
represent the contributions caused by the interference between
the 1s�16s and the 1s�14ps intermediate states, the green line
between the 1s�14ps,p resonant and the 1s�1 continuum
intermediate states, as well as the black curve between the
1s�14ps,p and 1s�15ps,p intermediate states.

The intermediate 1s�14ps,p electronic state is bound, i.e.,
the entire excitation and decay process is of the type bound–
bound–dissociative and can be described with eqn (20). Since
this main decay channel implies a bound intermediate state, no
nuclear dynamics can be observed in the Auger spectra and
only linearly dispersive contribution are visible in the respective
2D-map, see right hand side of Fig. 7. The second clearly visible

contributions to the 2p�24ps,p cross section originates from a
transition from the 1s�16s intermediate state and includes a
shake-up process of the excited electron. The corresponding
process is of the type bound–dissociative–dissociative. Because
of this, nuclear dynamics can occur in the intermediate state.
This is reflected in the 2D-map of Fig. 7 in the energy range
around the 1s�16s resonance energy by a slope slightly differ-
ent from one.

The final-state cross section also shows a small contribution
from a shake-down process involving the 1s�15ps,p electronic
state. As can be seen by the black dashed lines and the black
solid line, the electronic lifetime-interference contribution
caused by the 1s�14ps,p and 1s�15ps,p intermediate state is
more intense than the contribution of the 1s�15ps,p direct
terms. These electronic lifetime-interference contributions are
responsible for the weakly pronounced minimum of the cross
section at a photon energy of D 2828.5 eV and can also be seen
in the experimental results with an increase of the intensity
with the last data point. Such effects cause by lifetime inter-
ference are typical for cases with one very intense and one very
weak direct term, compare, e.g., ref. 15, 23. This minimum is
even more clearly visible in the 2D-map where one observes an
intensity ‘‘hole’’ slightly below the photon energy of hn =
2829 eV. Finally, there are two more very weak contributions
of approximately the same peak intensity, namely a shake-up
after the passage through the 1s�14ss intermediate state and
from a recapture of the photoelectron emitted during 1s
ionization.

Final states 2p�25ps,p. The cross sections of the final states
2p�25ps,p are shown on the left-hand side of Fig. 8 and reveal
contributions from three different intermediate states. The
most intense one is due to a shake-up from the 1s�14ps,p
intermediate electronic state. This is due to the fact that the
increasing positive charge seen by the excited state orbital,
namely +1 in the core-hole state and +2 in the Auger final state,
leads to a shrinking of the orbitals and, therefore, to strong
shake-up transitions, see e.g. ref. 43. The second most intense

Fig. 8 Cross section of the 2p�25ps,p (left) as a function of the photon
energy, the black dots are the experimental points and the solid line is the
result of our simulation. The dashed lines in the lower part of the figure
display the contributions of the individual intermediate states. The simu-
lated contributions of this final state to the 2D-map are displayed on the
right-hand side of the figure.
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transition comes from a recapture of the photoelectron emitted
during the ionization process. This recapture depends on the
overlap of the continuum wavefunction of the photoelectron
and the excited final-state orbital (here 5ps,p). The third
contribution to this final-state cross sections is the spectator
decay corresponding to a 1s�15ps,p - 2p�25ps,p transition.
All of these transitions are bound–bound–dissociative.

4.4.2 Bound final states. In the present study, we simulated
the transitions to the two bound final states 2p�24ss and 2p�23ds.
The resulting spectral features are discussed in the following.

Final state 2p�24ss. On the left side of Fig. 9, we represented
in black the experimental data points and as red solid line the
simulated cross sections of the 2p�24ss final state, along with
the direct terms contributing to the cross section, which are
indicated by dashed black lines. In the final-state cross section,
three main contributions are visible, namely the spectator
decay of the 1s�14ss state, a shake-down process from the
1s�14ps state and a shake-up process after excitation to the
1s�16s excited state. In the first two cases, the excited states are
bound so that the entire process can be considered bound–
bound–bound as described in Section 2.4.1. The situation is
more complex for the case of the shake-up from the LUMO
orbital that involves a dissociative intermediate state.

As described in the Section 2.4.3, to calculate the overlap
matrix element for the nuclear wavefunctions of the dissocia-
tive intermediate and the bound final state, generalized
Laguerre polynomials have to be applied.44 Therefore, the cross
section has to be calculated in a time-consuming manner
numerically by applying a double integration over the vibra-
tional states populated. Because of this, we used a simplified
approach of eqn (17) by making two approximations. First, we
neglected vibrational lifetime interference by using only the
direct terms and second, we assumed a harmonic oscillator
potential for the final state and populated only the vibrational
ground state. Actually, the final state has several vibrational
levels and we shifted the energy position to the center of the
positions of the first five vibrational levels. In this way, we

obtained the simplified cross section

dsðo;o0Þ /
ð
DEc

dDEc

exp � 1

2a20

DEc

Fc

� �2

� 1

2a2f

DEc

Fc
þ e

� �2
" #2

ðo� oco � DEcÞ2 þ G2
c

� Gf

p o� o0 � ofoð Þ2þG2
f

(21)

where e is the difference between the equilibrium distances R0 and
Rf. This simplified equation works rather well. However, the simu-
lated cross section is narrower than the experimental one and does
not reproduce its asymmetrical shape, see final-state cross section
below hn = 2824 eV on the left hand side of Fig. 9. We assume that
these differences between experiment and theory are due to this
simplification, since a restriction to the lowest vibrational level of
the final state is expected to lead to a peak narrowing. The other
energy regions of the simulated final-state cross sections are in good
agreement with the experiment. In the 2D-map visible on the right
hand side of Fig. 9, we observe the expected linear dispersion with
the photon energy of the 2p�24ss final state. There is a very slight
discrepancy to this dispersion across the 1s�16s resonance, due to
the dissociative character of its potential energy curve. The most
intense contribution in the final-state cross sections originates from
the spectator decay, followed by the shake-down process from the
4ps,p orbital and the shake-up one from the 6s orbital, respectively.

Final state 2p�23ds. The experimental and simulated cross
sections of the 2p�23ds final state are shown on the left-hand
side of Fig. 10 as black dots and red line, respectively. Inter-
estingly, this final state can only be accessed through shake
processes but not by a spectator decay via the 1s�13ds state
since such excitations are not present in the absorption spec-
trum; this excitation is expected to be located approximately
1.5 eV above the 1s�14ss state,45 but no features are visible in
this region of the spectrum. This observation may be explained
as follows: in the core-excited state the 3ds Rydberg orbital is

Fig. 9 Cross section of the 2p�24ss (left) as a function of the photon
energy, the black dots are the experimental points and the solid line is the
result of our simulation. The dashed lines in the lower part of the figure
display the contributions of the individual intermediate states. The simu-
lated contributions of this final state to the 2D-map are displayed on the
right-hand side of the figure.

Fig. 10 Cross section of the 2p�23ds (left) as a function of the photon
energy, the black dots are the experimental points and the solid line is the
result of our simulation. The dashed lines in the lower part of the figure
display the contributions of the individual intermediate states. The simu-
lated contributions of this final state to the 2D-map are displayed on the
right-hand side of the figure.
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still rather atomic-like so that the dipole selection rules for
atoms explain the absence of this excitation in the absorption
spectrum. In the final state, the 3ds orbital becomes smaller
due to the higher charge caused by the two core holes. In this
way, it obtains a stronger valence character and mixes with
other orbitals of the same symmetry. As a result, the monopole
selection rules for shake transitions can explain the population
of this final state.

The main contributions to this final state are indicated by
dashed vertical lines below the cross section, see Fig. 10. Two of
the contributions are caused by shake-up processes, namely from
the 1s�16s and 1s�14ss excited states, and two more by a shake-
down process from the 1s�15ps excited state and recapture from
the singly ionized state. Due to its weak intensity and its proximity to
other final states in the 2D-map, see Fig. 4, it was very challenging to
extract the experimental pseudo-cross section from the map. How-
ever, we believe that the overall agreement between the experi-
mental and the simulated cross section is fairly good. The largest
discrepancies occur at E 2828 eV, which is the region with the
strongest overlap with the more intense transitions to the final state
2p�25ps,p, see Fig. 4, so that the extraction of the 2p�23ds cross
section was very difficult and not highly accurate.

The two most intense contributions to this final state cross
section are due to the shake processes from the 1s�15ps,p and
1s�14ss intermediate states. Both these intermediate states are
bound and therefore the entire process is described as a bound–
bound–bound one. For the contributions via the 1s�16s intermedi-
ate state we applied again eqn (21) since the entire process
represents a bound–dissociative–bound case. Finally, although the
intensity of the direct term involving a recapture of an emitted
photoelectron onto the 3ds orbital is not strong, its interference
terms, in particular with the terms involving the 4ss and 5ps,p
orbitals, are very important to lower the intensity of the simulated
curve in the energy region between the 1s�14ss and the 1s�15ps,p.

4.4.3 Resonant and normal Auger spectra. As already men-
tioned, the strength of this 2-dimensional simulation allows
not only to have access to the cross sections of resonant and
normal Auger features, but to their spectra as well. In turn, it

will be essential to derive fine effects on the spectra and extract
the important parameters such as lifetime broadening and
slopes of potential curves, or to characterize the resolutions
for instance. In the present study these parameters were still
fixed values taken from our previous work.10 We show two
examples of these simulations in Fig. 11, namely on the left-
hand side the resonant Auger spectrum recorded at the reso-
nance energy of the 1s�16s transition and on the right-hand
side a normal Auger spectrum using a photon energy of three
eV higher than the ionization potential. In both spectra, the
black dots represent the experimental and the red solid lines
the simulated spectra; both spectra are normalized to 1.

5 Summary and conclusions

In previous studies, experimental 2D-map consisting of reso-
nant Auger spectra obtained at different photon energies were
mostly investigated by considering only partial aspects. In this
context, often the core hole to LUMO excitations are in the
focus of publications since they allow to investigate ultrafast
nuclear motion along dissociative potential energy curves. In
contrast to this, in the present work we analyzed the 2D-map as
a whole and paved the road towards a comprehensive under-
standing of such 2D-maps. For this purpose, we compiled the
present understanding of all theoretical aspects that are neces-
sary and simulate an experimental 2D-map consisting of Auger
spectra obtained at different photon energies.

We applied the presented theory to simulate the 2D-map of
HCl close to the Cl 1s�1 ionization threshold and found good
agreement with experimental data. Such an approach allows to
separate overlapping spectral contributions and gives, there-
fore, deeper understanding of the electronic and nuclear
dynamics reflected in the maps. In the present case we found
generally good agreement between simulations and experi-
ment. However, we also found disagreement in some minor
points, which indicates that the spectrum is not yet understood
in full detail. These differences are most probably due to
simplifications in the applied theoretical framework. As an
example, in the Auger case, i.e., in bound–dissociative–disso-
ciative processes with different slopes for the intermediate and
the final state, the contributions of vibrational lifetime inter-
ference was neglected. Since such contributions cannot strictly
be ruled out, it might be necessary to investigate possible
influences of vibrational lifetime interference in more detail.
However, the differences might also be due to effects, which are
not yet realized to be present or underestimated in such 2D-
maps. However, these topics are beyond the scope of the
present work.

The next natural step would be an implementation of the
theoretical framework in a 2D-fit approach. This would allow to
investigate regions with strongly overlapping contributions,
like in the present case close to threshold, or for other mole-
cules with more complex electronic structures. In near future,
we also expect 2D-maps with significantly higher experimental
resolution to provide more detailed information, since new

Fig. 11 Left: Resonant Auger spectrum recorded at the resonance energy
of the 1s�16s transition. The black dots represent the experimental data
and the red solid line the simulation. Right: Experimental normal Auger
spectrum measured at h�o = IP + 3 eV (black dots) along with the
corresponding simulated spectrum (red line). In both cases, the spectra
were normalized to one.
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high-resolution monochromators in the HAXPES regime are
now available, providing a photon energy resolutions of E/DE of
almost 50.000 at 7 keV.46 2D-Maps measured with such high
experimental resolution will reveal in particular in the resonant
Auger region much finer details and will provide a benchmark
for theoretical descriptions.

In summary, we believe that the present approach is an
important step towards a more effective data analysis of 2D-
maps of Auger spectra close to deep core holes, both for atoms
and molecules.
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R. Püttner, M. N. Piancastelli and M. Simon, Phys. Rev. Lett.,
2017, 118, 213001.

5 T. Marchenko, G. Goldsztejn, K. Jänkälä, O. Travnikova,
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I. Ismail, D. Céolin, M. N. Piancastelli, M. Simon and
T. Marchenko, Phys. Rev. A, 2017, 95, 012509.

10 G. Goldsztejn, T. Marchenko, D. Céolin, L. Journel,
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