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Advances in modelling X-ray absorption
spectroscopy data using reverse Monte Carlo

Andrea Di Cicco †*a and Fabio Iesari †b

Modern extended X-ray absorption fine structure (EXAFS) analysis is based on multiple-scattering

calculations. Those calculations are carried out for fixed atomic configurations and proper account of

the thermal and static disorder, corresponding to well-defined pair and higher-order distribution

functions, can be obtained using different methods. The application of the Reverse Monte Carlo (RMC)

method is able to provide tridimensional models of the atomic structure compatible with a given set of

experimental data, producing useful and consistent structural models. This method has been proposed

and applied also to EXAFS data by several authors in the last 25 years and has been fully implemented in

the framework of the RMC-GnXAS method for EXAFS data-analysis. Here we present the extension and

application of this method to multiple-edge studies of molecules, crystalline solids and liquids, including

the long-range constraints provided by other techniques (e.g. diffraction). The potential and possible

weaknesses of the RMC method are discussed, as well as the importance of accounting for the effect of

noise levels in XAFS data. Results of RMC refinements are reported for several exemplary cases including

Br2 and GeI4 molecular gases, crystalline Ge and AgBr, amorphous Ge and liquid AgBr. Those

applications show the general interest for this method, and the importance of combining multiple set of

data for improving the accuracy of the structural refinement both at short and long range.

1 Introduction

Modern XAS (X-ray Absorption Spectroscopy) analysis is based
on the comparison of experimental data with accurate multiple-
scattering calculations.1,2 Those calculations are carried out for
fixed atomic configurations and proper account of the thermal
and static disorder is usually performed using model distribu-
tion functions composed of several distinct peaks (‘‘peak-
fitting’’ approach).1–3 The standard XAS structural refinement
is then based in refining the short-range distribution functions
as a sum of individual peaks associated with well-defined
bonding distances corresponding to first and further neighbors
for the pair (g2) and higher-order (gn, n 4 2) distribution
functions,3 an approach easily justified for molecules and
ordered condensed matter. Depending on the particular shape
of the peak functions (Gaussian for example) selected structural
parameters can be optimized for a given set of experimental
data, e.g. average distance R, variance sR

2 (mean-square relative
displacement), coordination number N, using different refine-
ment techniques. This ‘‘peak-fitting’’ approach has proven to

be very powerful reducing the structural problem to the deriva-
tion of a limited number of unknowns. However, the problem
of defining suitable model functions still holds also in simple
crystalline cases. Gaussian shapes correspond to harmonic
vibrations in solids, but visible deviations have been observed
and studied even at moderate temperatures, resulting in asym-
metric peaks of the radial distribution. Cumulant expansion
models were introduced in early times (see ref. 4–6) to account
for moderate disorder. The use of analytical non-Gaussian
functions modelling the g(r) peaks was developed (see ref. 7
and 8 and refs. therein) and proved to be successful for
moderate and large deviations from a Gaussian shape.

Among different XAS data-analysis methods, the GnXAS
ab initio suite of programs has been designed to produce
accurate simulations of the g(n) MS XAS n-body signals asso-
ciated with the n-body distribution functions gn describing the
local structure around selected photoabsorbing atoms.2,3 The
accuracy of the data-analysis was widely tested on several
crystalline and molecular cases, and the above-mentioned
‘‘peak-fitting’’ scheme has been used also in highly disordered
substances, such as amorphous or liquid matter.9 In these
systems, short-range peaks of the n-body distribution functions
are usually merged into a long-range tail and a meaningful XAS
data-analysis can be only carried out using suitable physical
constraints.10,11 The application of this methodology has been
shown to be successful in describing the short-range pair
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distribution function of ‘‘simple’’ elemental melts, ionic binary
liquids and aqueous solutions (see ref. 10, 12–16 and the review
paper17).

The ‘‘peak-fitting’’ approach have obvious advantages being
particularly simple for routine applications in XAS data-
analysis, providing also directly robust estimates for important
average structural parameters. However, a consistent descrip-
tion of the local structure in terms of the gn distribution
functions in both ordered and disordered systems rather
requires the development of realistic tridimensional models
of the atomic structure.

We have recently developed a strategy to incorporate the
accurate simulations provided by the GnXAS suite of programs
within a Reverse Monte Carlo (RMC) scheme18,19 for XAS
structural refinement. Applications of the RMC method for
XAS data-analysis were originally suggested by Gurman and
McGreevy19, and also applied by other researchers mainly to
disordered substances.20,21 More recently, a modified RMC
approach using simulated annealing and wavelet transforms
analysis was proposed for crystalline systems.22

Our advanced suite of programs, called RMC-GnXAS,23–25

was originally designed to apply the RMC algorithm for calcu-
lating the XAS signal starting from ensembles of either mole-
cular replicas or box with cyclic boundary conditions. In the
latter case, the RMC refinement is applied both to XAS experi-
mental data and the g(r) curve obtained by diffraction techni-
ques, so that XAS data probe the local structure around
photoabsorbing centers, while diffraction data provide the
necessary medium and long-range constraints. Several initial
applications regarded liquid systems under high temperature
and/or high pressure conditions.23,24,26–28 In this manuscript,
we present the extension and application of the RMC-GnXAS
approach to multiple-edge studies of exemplary molecules,
crystalline solids and disordered systems (glasses and liquids),
including also relativistic effects29 in the multiple-scattering
calculations. The potential and the possible weaknesses of the
RMC method are discussed, including a specific example of the
effect of the experimental noise levels on the derived distribu-
tion functions.

2 Background

In its original presentation, Reverse Monte Carlo is an
‘‘inverse’’ modelling technique introduced by McGreevy and
Pustzai18 as an application of the Metropolis Monte Carlo
(MMC) algorithm. This application was conceived to produce
a series of three-dimensional structural models compatible
with X-ray and neutron scattering experimental data, but can
be easily applied to other experimental data. The basic idea of
an iterative technique reconstructing a model structure dates
back to early attempts (see for example30) but it became feasible
and popular only with the increasing availability of large
computing resources.

In standard RMC methods31 we assume that the experi-
mental data under consideration contain only statistical noise

following a normal distribution, so that the difference between
experimental (AE) and calculated (AC) structure factors for the
‘real’ model of a given system will be a Gaussian random
variable ei = AE(qi) � AC(qi), where i runs over the experimental
data points. The original method was developed for diffraction
data, but what follows can be applied to any experimental
technique for which the calculated signal AC depends upon
the atomic coordinates. The total probability distribution is the
product of the individual Gaussian distributions for each
point i. Modelling the structure of the system requires the
construction of a statistical ensemble of atoms whose calcu-
lated signal AC satisfies the total probability distribution. A
simple calculation31 shows that that this is obtained properly

defining the variable w2 ¼
PNexp

i¼1
½AE

i � AC
i �2=si2; where si is the

standard deviation of each data point i and Nexp is the total
number of data points. In this way, the total probability
function is found to be proportional to exp(�w2/2) and it can
be immediately seen that w2/2 plays the same role of U/kBT in
the classic Metropolis Monte Carlo procedure which generates
atomic configurations following the Boltzmann distributions of
energies for a given energy potential U and temperature T.

It is important here to stress the role played by the experi-
mental noise (standard deviations si) that must be used to drive
the RMC refinement following the correct probability distribu-
tion. On the other hand, interatomic potentials are not used for
standard RMC and very few assumptions on the structure are
required. Of course, the temperature of the measurements T is
not explicitly introduced in the refinement process (it acts
obviously on the experimental data, collected at a given tem-
perature). In principle only number density and chemical
composition are needed for RMC modelling, although physical
constraints are usually introduced, as discussed in more detail
in the original papers (see ref. 32 for a review) and in the
following sections.

Having defined the correct random variable, the RMC
refinement proceeds similarly to a standard Metropolis Monte
Carlo procedure for which there is a common theoretical
background. An initial configuration, generated with or without
periodic boundary conditions (see next sections) is used to
calculate the signal AC to be compared with the experimental

data AE. The variable w0
2 ¼

PNexp

i¼1
½AE

i � AC
i �2=si2 is calculated for

the initial structure. Then one atom is moved at random and

again the variable wn
2 ¼

PNexp

i¼1
½AE

i � AC
i �2=si2 is calculated. The

atom move is accepted if wn
2 r w0

2. If wn
2 4 w0

2 the move is

accepted with probability e�(w
n

2�w
0

2)/2 (rejected otherwise). The
atom moves are repeated until w2 will oscillate around an
equilibrium value, typically the number of points when w2 really
represents a statistical w2-like random variable.

The resulting equilibrium atomic configurations are those
consistent with the experimental data under consideration,
within the experimental uncertainty. Independent configura-
tions generated during the RMC procedure can be collected and
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used for producing average quantities related to the structure
evaluating the fluctuations of a given model. Of course, the
model structure can not be considered unique and we can only
say that it is compatible with the set of experimental data under
consideration. One of the main strengths of RMC is that it can
be applied formally to data of a variety of experimental techni-
ques, providing different and more stringent constraints for
determining the structure of molecular, ordered and disor-
dered condensed systems. Finally, the outcome is a set of
three-dimensional structural models for the investigated sys-
tem on which a full statistical analysis can performed to derive
the pair distribution functions, the distribution of bond angles
and to identify specific local atomic arrangements.

3 Methodology

In our current implementation of the RMC method it is
possible to refine not only the XAFS signals, but also partial
or total pair distribution functions, which can be obtained by
X-ray/neutron diffraction experiments or computer simula-
tions. This feature is used to provide a suitable constraint for
the long-range order of the system, since XAFS is mainly
sensitive to the local structure around the photo-absorber sites.
Here we briefly review the workflow of the RMC-GnXAS pro-
gram (for more information see ref. 24 and 33).

For creating the initial configuration two different strategies24

are used. The first standard choice consists in creating a box of well-
defined density with periodic boundary conditions, used for bulk
systems like solids and liquids. In this case, one can start from a
crystal unit cell, defining also the atomic density (which is usually
fixed), repeated in space to create a super-cell with a large number of
independent atomic sites. The second strategy consists in creating
many replicas of a given ensemble of atoms, without introducing
periodic boundary conditions. This second option is very useful to
describe isolated molecules or small nano-particles. Structural
quantities and signals are averaged over the different replicas in
order to reproduce the thermal disorder.

After constructing the initial configuration, the starting
XAFS signals and radial distribution functions are calculated.
The initial residual is therefore estimated, according to:

x2 ¼
XNe

n¼1

XNi

i¼1

½wEn ðkiÞ � wCn ðkiÞ�2
sn;i2

þ
X

a;b

XNj

j¼1

½gEabðrjÞ � gCabðrjÞ�2

sab;j2
(1)

where the suffix E indicates the independent signals to be
refined and C the ones calculated from RMC coordinates. Ne

is the number of n XAFS signals (here indicated as wn(ki) terms,
not to be confused with the w2 function of the preceding
section), Ni(n) is the number of points for XAFS, a,b indicates
element present in system and Nj (a,b) is the number of points
for each partial distribution function gab(r). Alternatively, it is
also possible to use the total radial distribution function for
RMC refinement. For molecules or clusters (method of replicas)
the density of the system is not defined, so we use the number

distribution function (in place of the g(r)’s), giving directly the
coordination number by radial integration. The noise functions
(s2) are evaluated and inserted in the quantity x2 of eqn (1),
providing the correct estimate for the statistical w2-like random
variable for RMC refinement as described in the preceding
Section. The evaluation of the noise function for radial dis-
tributions is usually carried out accounting for pair statistics in
the model. Typical fluctuations are inversely proportional to the
number of pair distances, so increasing at short distances for
constant radial mesh (see ref. 33 and 34).

Having defined the terms in eqn (1) the typical RMC iterative
algorithm then starts. One by one, each atom in the configu-
ration is moved randomly with a possible maximum displace-
ment and the new position is retained or discarded accordingly
to the Metropolis sampling. Additional constraints can be also
introduced: if the distance between two atoms become smaller
than a pre-defined minimum distance the move is rejected
(hard-sphere model), and for molecular cases a maximum
distance can also be imposed to avoid that the molecule breaks
apart. After all atoms have been moved (this is what we
consider a RMC move), the maximum distance displacement
is increased or decreased depending on the acceptance rate for
the moves (decreased if less than 50% of moves were accepted)
and the process is then repeated. After some number of RMC
moves, the residual reaches a minimum value around which it
will oscillate, indicating that convergence to an equilibrium
structure is reached. A series of equilibrium configurations is
then saved for structural analysis.

The indipendent signals wE
n(ki) and gE

ab(rj) contribute in the
same form to the two terms defining the residual function in
eqn (1). The first term is related to the XAFS signals while the
second can include X-ray or neutron diffraction data using
suitable radial distribution retrieval schemes applied to the
experimental structure factors. The pair distributions related to
the second term can be also obtained directly by MD or MC
computer simulations. For both terms the floating variables
used in RMC refinements are the atomic coordinates.

As also described in previous publications,24,33,34 the prac-
tical implementation of the RMC-GnXAS refinement is carried
out using directly the raw XAFS signals wE

n(ki) obtained by a
preliminary data-analysis performed using the fitheo program
(GnXAS suite) using a suitable structural model. The extraction
of the wE

n(ki) signals is done by a suitable modeling of the
background and normalization functions, as usual within the
GnXAS fitting procedures3 and is considered to be accurate for
the successive refinement purposes. Moreover, the pre-analysis
provides also estimates for the values of relevant XAFS non-
structural parameters (amplitude reduction factor S0

2, differ-
ence between energy scales of simulated and experimental data
E0, experimental energy resolution). Those parameters are
presently kept fixed in the RMC-GnXAS refinement, limiting
the floating variables to the atomic coordinates which also
define automatically the pair and higher-order distributions.
An extension of the present scheme incorporating XAFS
non-structural parameters (and background modeling) is con-
ceptually possible and technically feasible but the present
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option is to treat the XAFS signals similarly to ND or XRD data,
for which only the final result of the extraction of the structure
factor (and g(r)) are usually reported and employed in RMC. In
the present RMC-GnXAS applications to condensed systems we
have also opted to keep constant the density and cell para-
meters, so that only the atomic fractional coordinates are used
as floating variables.

The typical size of the ensemble of atoms and the accuracy
of the structural parameters that can be obtained are important
features of the simulation process. Details on configuration
sizes and on the typical uncertainty on average structural
quantities in simple monoatomic systems have been given in
ref. 24. Typical configuration sizes are generally in the 103–104

range for the number of atoms, whereas larger ensembles are
not found to improve the quality of the refinement on simple
test cases. The uncertainty on selected structural parameters
(for example, a given bond distance) can be evaluated looking at the
fluctuations observed during the RMC procedure.24 It must be
stressed again that the three dimensional structure produced by
RMC is simply a model consistent with the available data and
constraints, and is not unique. Other methods producing structural
models equally consistent with the available data and constraints
are equally acceptable. Of course, increasing the number of experi-
mental data and constraints is likely to reduce the number of
acceptable structural models. Therefore, the inclusion of multiple-
edge XAFS data and pair distribution constraints obtained by
diffraction, for example, is likely to produce more stable structural
models for the given substance under consideration.

Another interesting question is how much the energy exten-
sion and the noise of the experimental XAFS data are affecting
the RMC structural refinement and the average structural
quantities of interest. The answer is basically related to the
definition of the w2-like random variable for RMC refinement
(see eqn (1)) which contains both noise functions and wave-
vector extensions of the experimental data. Clearly, higher
levels of noise will correspond to easier adjustments of the
w2-like function that in the limit of infinite noise is of course
insensitive to the particular model structure. Therefore, larger
fluctuations for the atomic configurations of the models will be
expected for higher noise levels. An example of the effect of an
increasing noise in XAFS data of molecular Br2 is given in the next
sections. The question about the energy extension is more subtle.
Eqn (1) contains a simple summation over the energy points
indicating a more stringent constraint for the structural model
increasing the number of points (energy limit for regularly spaced
signals). However, there is a natural decay in the amplitude and a
typical frequency of the oscillating XAFS signals so that the effect of
the choice of a given energy (or wave vector k) extension in XAFS
may be system-dependent and need more detailed studies.35

4 Examples of molecular systems
4.1 Gas-phase bromine

Gaseous bromine, Br2, is a simple diatomic molecule: being the
simplest system we can study, it is often used as benchmark

case for various tests. The Br K-edge XAFS signal is completely
determined by the distribution of the molecular bond dis-
tances, consisting in an approximately Gaussian peak centered
at r = 2.289 Å and standard deviation s2 = 0.0019 Å2 (see ref. 24
and references therein). For the RMC refinements we used 2500
replicas for reproducing the k-weighted XAFS signal, which was
extracted from the experimental data by a conventional XAFS
peak-fitting procedure using GnXAS. In this way we also
obtained the values of the non-structural parameters, which
are not refined during the RMC process: the energy difference
between experimental and theoretical scale, E0 � Ee = 2.0 eV,
and the reduction factor S0

2 = 1.00. Lower and upper limit to
the Br–Br distance were imposed at 2.0 and 2.55 Å respectively.
After few moves, the RMC simulation already converged and
after reaching equilibrium we accumulated 1000 moves to
calculate average quantities. The RMC calculated signal and
the corresponding number distribution n(r) are shown in Fig. 1.
The average distance and Debye–Waller like factor calculated
from RMC coordinates are, respectively, R = 2.2889(2) Å and
sR

2 = 2.03(5) � 10�3 Å2, in agreement with previous results. The
deviations are calculated as maximum and minimum values
between different RMC equilibrium configurations, therefore
these values represent the oscillations of the average quantities
during the RMC process. Of course, they account only for
statistical fluctuations and do not consider possible non-
statistical (systematic) errors possibly present in both experi-
ments and MS calculations.

The obtained results on the average structure of molecular
bromine are in nice agreement with previous determinations.
However, we can use this simple case to investigate how the
noise on the experimental data affects the results of the RMC
refinement. Noise enters into the RMC procedure not only in
the fluctuations of the data under consideration, but also in the
definition of the residual (s2 in eqn (1)). A higher value of the
noise produces lower values of the residual w2-like function (x2),
which implies a higher probability of accepting moves increas-
ing the residual function and therefore a more disordered

Fig. 1 RMC refinement of gaseous Br2. On the left: experimental Br K-
edge XAFS signal (Exp., blue dots), calculated signal from RMC coordinates
(green line), and their difference (Res., red line). On the right: number
distribution function n(r) obtained from averaging over 1000 configura-
tions, error bars indicates the standard deviations of the average.
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structure. In other words, as mentioned above, the role of the
noise is equivalent to the temperature factor kBT in Metropolis
Monte Carlo (MMC) method.32

In this test, we have gradually increased the noise present in
the original data. For the k-weighted XAFS signal under
consideration, noise has been estimated to be of the order of
s2 C 10�6. We have then added artificially increasing levels of
random noise (from �2 to �50 the original one) and run
specific RMC refinements for each of them. The RMC proce-
dures were applied in two different ways: the first case (a) is one
where the noise si

2 is correctly estimated and inserted in
eqn (1); the second case (b) in which we used the original
values for the noise si

2 (C10�6) independently of the actual
level of noise included in the XAFS data.

Fig. 2 shows the XAFS data incorporating different levels of
noise, and the results of the analysis in the two different
scenarios (a) and (b). When the level of noise is still close to
the original one, the results are similar and close to the original
data, but as the noise increases two different behaviors occur.
For case (a), the quality of the fit decreases strongly when the
noise reaches higher values (410�5). The bond distance dis-
tribution appears to be broadened, similarly, as stated before,
to having defined an increased formal ‘‘temperature’’. The peak
position still remains at the correct value indeed. This is to be
expected if we think at the extreme case where the noise is
much greater than the signal: there should be nothing to fit and

the distribution is flat, being unsensitive to the XAFS data. For
case (b) instead, the use of an artificially lower noise, as
compared to that applied to the XAFS data, produces a better
refinement of the noisy XAFS data, being more stringent the
condition related to eqn (1). The pair distribution in this case
seems more stable but becomes progressively skewed as com-
pared to the original curve for high levels of noise. What
happens in this case is that the configuration freezes around
a minimum from which it hardly moves. We have also tried a
third approach, where the noise was slowly reduced to the value
of 10�6 during the RMC refinement (similar to a sort of
annealing process), but the final results were basically identical
to case (b). All the calculations started from the same starting
configuration, and we additionally tested that the final results
do not change if a different initial configuration were used.

It is difficult to clearly state which is the more advisable
procedure for reliable RMC refinements accounting for the noise,
since each method has its drawbacks. Using a correctly estimated
noise, as defined in the mathematical background of RMC exposed
in Sec. 2, we found results in agreement with the general rule of
RMC of finding the most disordered structure that reproduces the
data, but in the case of highly noisy data an artificially lower noise
may be a more clever strategy to obtain more realistic distributions.
Although in this case, deviations from the correct structure could
occur. A manuscript with a more in-depth investigation and discus-
sion about this topic is in preparation by the authors.35

Fig. 2 RMC refinement of Br2 data adding increasing levels of noise. On the left, the synthetic data and the RMC simulations are shown, where the labels
indicate the multiplier respect to the original noise in the data (s2 B 10�6). Two different approaches have been used: for case (a), the noise used in the
RMC procedure reflected the correct estimation of the noise in the data, while for case (b) the original value of noise (s2 B 10�6) was used. The number
distribution functions n(r) obtained for the different data and the two approaches are shown on the right. For case (a), the distribution remains centered
around the same value, becoming very broad as the noise increases. For case (b), instead, there is no visible broadening effect, but the peak becomes
slightly distorted and skewed.
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4.2 Gas-phase GeI4

As an example of multi-atomic molecule we consider gaseous
GeI4, a five atom molecule with tetrahedral (Td) symmetry. This
case was also examined in a previous article.36 Here, we have
here repeated the calculations with a larger number of atoms,
using a total of 4000 replicas (20 000 atoms). The gas-phase
molecule XAS spectra was measured at about T C 553 K at the I
K-edge. A standard peak-fitting procedure was carried out on
the data in order to extract the XAFS structural signal and
obtain the non-structural parameters, the energy shift E0 �
Ee = 5.8 eV and S0

2 = 1.00. The data consisted in a total of NXAS =
743 points.

RMC refinements were carried using the extracted XAFS
signal (collected at a temperature T = 553 K) together with
number distributions obtained by electron diffraction data,37

available at T = 350 K (Dr = 0.01 Å spacing, N = 285 points).
Additional constraints on closest and maximum distances were
used to avoid intra-molecular separations: for Ge–I atoms, 2.15
and 3.00 Å, for I–I atoms, 3.20 and 4.85 Å, respectively. After an
initial run to reach convergence (achieved after 50 moves), the
RMC refinement was kept running for 1000 steps saving the
coordinates every 10 steps, for a total of 100 equilibrium
configurations from which we calculated the average quantities
shown in Fig. 3.

The refinement of the EXAFS signal is excellent as indicated
by the almost flat residual in Fig. 3. The main contribution to
the XAFS signal comes from the two-body g2 I–Ge contribution,
although I–I contributions are also important to reproduce
oscillations in the lower k region of the spectra as shown in

Fig. 3. The three-body term I–Ge–I is almost negligible. The
number density distribution obtained from RMC agrees well
with the previous one determined by ED, although the peaks
are broader, due to the higher temperature of the XAFS experi-
ment. Average cumulants for the distributions of the two peaks
have been calculated from atomic coordinates. For the Ge–I
peak, the average distance is R1 = 2.507(1) Å and the standard
deviation s1

2 = 5.13(4) � 10�3 Å2; while for the I–I peak, R2 =
4.084(1) Å and s2

2 = 35.0(4) � 10�3 Å2. The bond-angle dis-
tribution centered on the Ge atoms (bottom right of Fig. 3)
shows a well-defined peak centered around 109.31, close to the
ideal tetrahedral angle, with a standard deviation of about 9.51.

Overall the results agree nicely with previously published
data,36 confirming our previous finding that increasing the
number of atoms does not improve the RMC refinement after
reaching sufficient accuracy.24

5 Examples of crystalline systems
5.1 Germanium

Germanium is an important semiconductor material with a
wide range of applications. Its crystal configuration at ambient
condition is the diamond structure, where atoms form covalent
bonds with their 4 nearest neighbors in a typical tetrahedral
configuration corresponding to a bond-angle of about 109.471.
Ge also possesses a rich phase diagram upon increasing
pressure, where the tetrahedral structure is broken in favor of
more dense and metallic phases and meta-stable phases upon
decompression.38

The c-Ge K-edge XAFS spectrum collected at room tempera-
ture (experimental details can be found in ref. 7) is mainly
composed by the two-body MS terms related to the first three
coordination shells (first three peaks of the radial distribution),
while three-body oscillations can be considered negligible.
RMC simulations can be used in this case to obtain informa-
tion about the bond-angle distribution also including contribu-
tions from long-distance shells using suitable additional
constraints, since the amplitude of the XAFS signals decreases
as 1/r2 and is also strongly damped by thermal disorder.

A starting configuration of 1728 atoms was created by
combining 6 � 6 � 6 unit cells of diamond Ge with a lattice
parameter value of 5.658 Å, in agreement with literature data at
room temperature (see ref. 7 and refs. therein). From the pre-
analysis we also obtained the non-structural parameters
S0

2 = 0.8595 and E0 � Ee = �0.5 eV. The extracted XAFS signal
consisted in a total of 600 points and the estimated noise for
the k2-weighted data estimated to be of the order s2 C 10�4.

Before running the RMC simulation of XAFS data, an initial
refinement was run using a model pair distribution function.
Position and area of the peaks were a consequence of distances
and coordination numbers related to the diamond crystal
structure with the given lattice parameter. The widths of the
peaks are due to the correlated vibrations of the atoms (Debye–
Waller-like factors sR

2) for which we can find several different
approximations for increasing shell distances. In our case, we

Fig. 3 RMC refinement of gas-phase GeI4 XAFS data (T = 553 K). On the
left: experimental I K-edge XAFS signal (Expt, blue dots), and calculated
signals from RMC coordinates showing the contributions of different
atomic configurations (green lines I–I, I–Ge, and I–Ge–I, see text). The
almost flat residual is shown as a red line. Top right: number distribution
function n(r) obtained from averaging 100 RMC configurations, compared
with ED data (ref. 37). The broadening of the peaks is assigned to the
different temperature between the two experiments. Bottom right: bond-
angle distribution from the central Ge atom. The main peak centered
around 1091 indicates a tetrahedral configuration.
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used values obtained by DFT39 for the first three shells,
sR

2 = 3.98, 11.91, 15.03 � 10�3 Å2 respectively. The Debye–
Waller-like of farther shells were fixed to 18 � 10�3 Å2,
corresponding to the limiting case of uncorrelated vibrations.
The RMC refinement using the resulting g(r) (Dr = 0.025 Å,
N = 240 points) was carried out for 500 RMC moves, and the
final configuration was used as the starting configuration for
the subsequent full RMC analysis. The noise function for g(r)
data was chosen to account for pair statistics (see Section 3).
The XAFS signals of crystalline Ge were calculated up to a cut-
off distance of 7.8 Å with a Gaussian smoothing of 0.3 Å. A
closest distance constraint was also imposed, so that atoms
could not become closer than 2 Å.

The results of the full RMC simulation are shown in Fig. 4.
We can see that the XAFS signal is well reproduced, with some
small high-frequency oscillations in the residual and a feature
in the lower k-range, around 5 Å�1, that could be associated
with an additional multiple-electron excitation in the
background.

The pair distribution function obtained by RMC agrees
closely to the model distribution previously mentioned, show-
ing that the latter one was a good approximation to the thermal
disorder present in crystalline Ge at room temperature. The
first nearest-neighbor distribution was found to show an
average distance R = 2.4502(4) Å and standard deviation
s2 = 3.26(2) � 10�3 Å, in agreement with previous findings.7

The bond-angle distribution of the first nearest-neighbors is
also shown in Fig. 4, where we observe a clear peak centered
around 109.41 (tetrahedral angle), with a standard deviation
s = 4.1.

In Fig. 5 we show the results of a RMC refinement using only
the XAFS experimental data. In this case, we have used only the
first sum in eqn (1). As expected, the residual in this case
slightly improves, although some minor disagreements still
remain. Looking at the pair distribution function obtained,
we see the appearance of small bumps around 2.9, 3.5 and 5.4 Å
which are not compatible with the diamond structure, which is
found to be very disordered at large distances. On the other
hand, the first peak is almost identical, because of the high
sensitivity of XAFS at short distances. This finding confirms
that for crystalline materials, whose average structure is known,
the inclusion of a model distribution (obtained by experiments
or simulations) can avoid the appearance of unphysical
features related to the intrinsic sensitivity of XAFS to the local
structure within a few Å around photoabsorbing sites.

5.2 Silver bromide

An interesting example of the application of RMC to a multia-
tomic condensed system is Silver Bromide (AgBr). Very good
multiple-edge XAFS data have been collected at the ESRF
(BM29) and analyzed several years ago8 using the peak-fitting
technique and showing that useful structural information can
be obtained both for crystalline and liquid phases. In particular,

Fig. 4 Results of the RMC refinement of room temperature crystalline Ge.
Upper panel: experimental K-edge XAFS signal (Expt, blue points) com-
pared with the result of the RMC simulation after convergence (RMC,
green line). The difference spectrum is also shown (Res., red line). Bottom
panels: on the left, the pair distribution function g(r) resulting from RMC
refinement (RMC) is compared with the model used also as a constraint.
On the right, the bond-angle distribution of the nearest-neighbors is
shown, which shows a clear peak centered around 1091.

Fig. 5 Results of the RMC refinement of room temperature crystalline Ge
using only XAFS data. Upper panel: experimental K-edge XAFS signal (Expt,
blue points) compared with the result of the RMC simulation afterconver-
gence (RMC, green line). The difference spectrum is also shown (Res., red
line). Bottom panel: the pair distribution function g(r) resulting from RMC
refinement (RMC) is compared with the model shown in the previous
figure.
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clear evidence for an asymmetric distribution of the first-neighbor
distances was found in crystalline AgBr, and for an increasing
skewness with temperature. Moreover, the structure of liquid AgBr
was studied by using proper constraints for the medium and long-
range correlations as described in ref. 8, 10, 14 and 17.

As mentioned above, RMC XAFS data-analysis offers the
possibility of overcoming the peak-fitting technique producing
realistic models for the tridimensional structure, without the
limitation of a given functional form for the radial and higher-
order distribution functions. This may be interesting for the
AgBr case for which we can put to a test particular features like
the strong asymmetry of the first-neighbour distribution in
crystalline AgBr and the shape of the radial distributions in
liquid AgBr as shown in the next sections.

The starting model for the RMC XAFS data-analysis of solid
AgBr has been a box containing 125 cubic unit cells (5 � 5 � 5)
for a total of 1000 atoms. The atomic positions have been
initially adjusted to model a realistic radial distribution func-
tion by RMC, using the known density of solid AgBr at 303 K
(lattice parameter a = 5.7745 Å corresponding to B 0.04155
atoms Å�3) and suitable estimates for the variances sn

2 of the
peaks (n = 1, 2, 3,. . .) of the radial distribution function g(r)
corresponding to specific coordination shells (Ag–Ag, Ag–Br,
Br–Br) in crystalline AgBr (see right-hand panels of Fig. 6 and 7
as an example). For this investigation, evaluation of the var-
iances (mean-square relative displacements) associated with Ag–Ag,

Ag–Br, and Br–Br distances (shells) was carried out using a simple
model for atomic vibrations. The known difference in Debye–Waller
factors related to Ag and Br positions40 and a simplified Keating
dispersion model,41,42 within the Debye approximation43,44 (Debye
temperature yD B 140 K), was used to model the increase of the
variances with distance, taking into account the results of previous
XAFS investigations8 indicating precise values for the first-neighbor
distribution (R = 2.893 Å, s1

2 = 0.0285 Å2, skewness b1 = 0.67).
Subsequently, we have performed RMC refinements includ-

ing directly the XAFS data collected at both Br and Ag K-edges
of crystal AgBr at 303 K. The XAFS structural signals w(k) were
extracted for both edges using the GnXAS suite of programs and
used subsequently with a k2 weight (k2w(k), 422 and 424 data
points for Br and Ag K-edge respectively). In this work we have
kept fixed the background and normalization functions as well
as the values of all the relevant non-structural parameters (Edge
energy, S0

2, experimental resolution) as described in a previous
work.8 More details about the XAFS data-analysis of AgBr using
GnXAS can be found elsewhere.8

Here we show the main results obtained by RMC XAFS
refinements either using a long-distance radial distribution
constraint provided by realistic g(r) models (Fig. 6) or without
those constraints (Fig. 7).

The RMC refinements were carried out using rather stan-
dard prescriptions regarding other constraints such as the
density (kept fixed to the initial value) and closest approach

Fig. 6 Results of the RMC-GnXAS refinement of the double-edge XAFS spectra of solid AgBr at 303 K using models for the radial distributions as a long-
range constraint. Left figures: Br and Ag K-edge experimental data (Expt) are compared with the RMC simulation in the upper and bottom panels
respectively. The difference of experimental and calculated XAFS are reported as dotted curves (Res). Right-hand panels: from top to bottom the
averaged RMC total and partials (gAgAg, gAgBr, gBrBr) pair distributions are reported (RMC aver.). The estimated standard deviation (st. dev.) and the
observed fluctuations of the partial radial distributions (fluct.) are also reported. The partial distributions are in good agreement with the crystalline model
(cryst. mod., see text) used as a long-range constraint.
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distance limits. Choice of the closest approach distances is
usually not obvious and in this case they were inferred by the
starting radial distribution model (2.35 Å for AgBr and 3.4 Å for
BrBr and AgAg distances). Shorter distances were not allowed in
the final model. An important factor in those multiple data-set
RMC refinements is the noise function to be used, that should
reproduce the actual uncertainty of the data in order to mimic
the w2 statistical function. The noise functions adopted for
XAFS data correspond to the statistical fluctuations of the data
and were estimated by a specific program (noise).33,34 When
using the radial distributions as a further long-distance con-
straint, the noise function was calibrated to account for pair
statistics, so that the typical fluctuations are inversely proportional
to the number of pair distances found in a given radial bin. For a
constant radial mesh (in this case points were equally spaced
Dr = 0.01 Å), fluctuations are obviously higher at short distances
and the noise function is inversely proportional to r2.33,34 The global
cut-off distance was set to 9.8 Å while XAFS simulations were carried
out using a smoothing half-Gaussian window centered at Rwin =
8.7 Å with standard deviation DR = 0.3 Å (this is important to avoid
truncation and side effects at long distances). We verified that other
choices of these parameters in reasonable ranges (Rwin B 5–9 Å and
DR B 0.3–0.5 Å) do not affect final results.

We have allowed a total of 104 RMC moves for each atom,
corresponding to a total of 107 refinement attempts, verifying

convergence to a given minimum.24 As the expected residual
value corresponds to the number of data points, this turns out
to be different when including the radial distributions (gBrBr,
gAgBr, gAgAg each one 780 points). In the present RMC proce-
dure, the expected residual value was 3186 when including the
medium/long-range constraint associated with the three partial
radial distributions and 846 when considering only the XAFS
signals.

In Fig. 6 we report the results of the RMC refinement
considering both the XAFS signals and the radial distribution
constraints. The agreement among RMC simulations and
experimental XAFS data is pretty good as shown in the left
panels of Fig. 6 although the residual curves indicate that there
is still some unexplained signal especially for the Br K-edge.
The resulting partial and total distribution functions, averaged
over the last 2000 RMC moves and shown in the right-hand
panel of Fig. 6, indicate only small intrinsic fluctuations and
minor differences as compared to the g(r) models. Due to the
different vibrational amplitudes at Ag and Br sites,40 the peaks
of the partial gAgAg distribution are broader than those of the
gBrBr one. The crystalline structure is obviously retained.

In Fig. 7 we show the results of the RMC refinement carried
out only considering the XAFS signals reported in the left
panels. There is a visible slight improvement in the agreement
obtained in this unconstrained refinement, but we observe

Fig. 7 Results of the RMC-GnXAS refinement of the double-edge XAFS spectra of solid AgBr at 303 K without using long-range constraints. Left figures:
Br and Ag K-edge experimental data (Expt) are compared with the RMC simulation in the upper and bottom panels respectively. The difference of
experimental and calculated XAFS are reported as dotted curves (Res). Right-hand panels: from top to bottom the averaged RMC total and partials
(gAgAg,gAgBr, gBrBr) pair distributions are reported (RMC aver.). The estimated standard deviation (st. dev.) and the observed fluctuations of the partial radial
distributions (fluct.) are also reported. Larger fluctuations and accumulation near cut-off limits are observed in this unconstrained case. The partial
distributions are also compared with the crystalline model (cryst. mod., see text) and in this case visible deviations are found especially for gAgBr, gBrBr

distributions.
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much larger fluctuations (as compared to Fig. 6) in the recon-
structed radial distributions reported in the right-hand panels
of Fig. 7. Moreover, the peaks of the gAgBr and gBrBrradial
distributions (averaged over the last 2000 RMC moves) are
largely broadened departing also for simple Gaussian profiles.
The resulting distributions are not compatible with previous
data indicating different vibrational amplitudes for Ag and Br40

ions although the first-neighbor AgBr peak (the only one
strongly constrained by XAFS) is in agreement with the con-
strained RMC refinement of Fig. 6 and with previous
investigations.8 These results reflect naturally the short-range
nature of XAFS data, for which accurate information can be
obtained only for short distances, and the fact that RMC
converge to the most disordered structure (higher Entropy)
compatible with the given set of data under consideration.

6 Disordered systems
6.1 Amorphous germanium

Another interesting application of RMC is the study of amor-
phous and glassy materials. As explained in the introduction,
this is particularly useful for the analysis of XAFS data, where
the standard peak-fitting procedure presents some limitations.
Germanium, which we have shown in the previous section in
the crystalline phase, has also a glassy phase at ambient
conditions, with a low-density to high-density transition upon
application of pressure.45 XAFS data of amorphous Ge (a-Ge)
were collected at room temperature.7

For the initial configuration, we used 6 � 6 � 6 unit cell of
diamond structure with a lattice parameter a = 5.737 Å, in order
to reproduce the experimental value of the density for a-Ge
(r = 0.04236 atoms Å�3). An initial refinement was carried out
using only a pair distribution function obtained from X-ray
diffraction data46 as a constraint for a total of 104 steps, to make
sure that the initial crystal structure became completely amor-
phous. The binning step for determining the g(r) is Dr = 0.025 Å,
resulting in N = 240 data points. The last configuration
obtained was used as starting position for the RMC refinement
including XAFS data.

RMC results for a-Ge are shown in Fig. 8. The RMC simula-
tion was extended to 1500 RMC moves and convergence was
achieved after about 50 moves. The experimental XAFS signal
consisted of NXAS = 658 points and was reproduced quite
accurately. The XAFS signal is described mainly by a single
well-defined oscillation, associated with first nearest-neighbors
at an average distance R = 2.470(1) Å and bond variance
s2 = 5.1(1) � 10�3 Å2, calculated directly from the RMC
coordinates of the atoms in the range 2.25–2.70 Å, and in close
agreement with previously published results.7 The shape of the
first g(r) peak is therefore mainly determined by refining the
XAFS data. This explains the differences observed in the first
peak with the model obtained from XRD, which is less sensitive
to short-range ordering. At higher distance instead, the pair
distribution function follows closely the XRD model, since
EXAFS contributions are strongly damped (see Fig. 8, RMC

XAS + XRD). In this way, we exploit the complementarity of the
two techniques, because the XRD data probe the intermediate
and long-range structure, while XAFS is more sensitive to the
short-range. In fact, without the additional constraint of the
pair distribution function, the resulting g(r) obtained by RMC
reported in Fig. 8 (RMC XAS, lower panel) shows a practically
featureless long-distance tail and is not reproducing at all the
existing XRD data. On the other hand, the XAFS data are nicely
reproduced with similar values for the first-neighbor distribu-
tion (R = 2.472(2) Å and width sR

2 = 5.4(4) � 10�3 Å2).

6.2 Molten silver bromide

As anticipated in the previous sections, we have performed a
RMC-GnXAS refinement of multiple-edge XAFS data of liquid
AgBr. Previously, the structure of liquid AgBr was investigated
by XAFS8 using proper constraints for the medium and long-
range correlations as described in ref. 10, 14 and 17. Specific
g(r) functions obtained by neutron diffraction47 or molecular-
dynamics simulations48 were used for reproducing the struc-
ture beyond the first-neighbor distribution. Low-noise XAFS
data of liquid AgBr at 725 K were collected at the ESRF (BM29)
and are here re-analyzed by RMC-GnXAS using basically the
same strategy illustrated above for solid AgBr.

The starting model for the RMC-GnXAS data-analysis of
liquid AgBr has been again a box containing 125 cubic unit
cells (5 � 5 � 5) for a total of 1000 atoms. The atomic positions

Fig. 8 Result of RMC refinement for amorphous Ge at room temperature.
Top panel: experimental K-edge XAFS signal (Expt, blue points) and
average signal obtained from RMC coordinates after convergence (RMC,
green line) using both XAS and XRD data. The difference spectrum is also
shown (Res., red line). Bottom panel: pair distribution function g(r)
obtained from RMC considering only XAFS data (RMC XAS, magenta
dashed-dotted line), or using both XAFS and XRD data (RMC XAS + XRD,
green solid line). The g(r) obtained by X-ray diffraction46 (XRD, dashed) is
also shown.
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have been initially adjusted using a specific RMC procedure
applied only to given radial distribution functions, in this case
taken from ref. 48 using the known atomic density for the
liquid phase at 725 K (r B 0.0354 atoms Å�3). This initial
procedure introduces the necessary spread in atomic positions
for a typically highly disordered phase facilitating the succes-
sive refinement using XAFS data. We have then performed RMC
refinements including directly the XAFS data of liquid AgBr
collected at both Br and Ag K-edges. The XAFS structural signals
w(k) were extracted for both edges using the GnXAS suite of
programs and used subsequently with a k1 weight (kw(k), 456
and 438 data points for Br and Ag K-edge respectively). Similarly
to the case of solid AgBr, we have used the same background
and normalization functions, as well as the values of all the
relevant non-structural parameters (Edge energy, S0

2, experi-
mental resolution), as reported in a previous work.8

The RMC-GnXAS refinements were carried out using typical
constraints such as the given atomic density and closest
approach distance limits. The closest approach distances were
chosen to be 2.05 Å for AgBr and 2.4 Å for BrBr and AgAg
distances, allowing rather short distances as expected in this
liquid ionic system. The noise functions adopted for XAFS data
were estimated to reproduce the statistical fluctuations of the
data as in previous cases. The noise function applied to the
model radial distribution functions was calibrated as usual to
account for pair statistics.33,34 In this specific application, we

have used a constant radial mesh (in this case points were
equally spaced Dr = 0.02 Å). The global cut-off distance was set
to 9.65 Å while XAFS simulations were carried out using a
smoothing half-Gaussian window centered at 8.5 Å with stan-
dard deviation 0.4 Å.

We have allowed a total of 104 RMC moves for each atom,
corresponding to a total of 107 refinement attempts, verifying
convergence to a given minimum.24 The expected residual
value correspond to the total number of data points (2040)
including the radial distributions (gBrBr,gAgBr,gAgAg total of 1146
points).

In Fig. 9 we report the results of the present RMC-GnXAS
refinement of liquid AgBr. The agreement between RMC simu-
lations and experimental XAFS data is rather spectacular as
shown in the left panels of Fig. 9 where the residual curves are
substantially dominated by statistical noise. The RMC residual
has been found to converge near to the expected value quite
rapidly, typically within 100 RMC moves (105 atom moves) over
the total of 10 000 of the entire run. The resulting partial and
total distribution functions, averaged over the last 2000 RMC
moves and shown in the right-hand panel of Fig. 9, indicate
small intrinsic fluctuations with the possible exception of the
short-range side of the gAgAg distribution.

The results obtained here nicely reproduce those obtained
for the shape of the short-range gAgBr peak using the
more standard peak-fitting technique reported in ref. 8. The

Fig. 9 Results of the RMC-GnXAS refinement of the double-edge XAFS spectra of liquid AgBr at 725 K using the partial pair distributions obtained by
previous MD simulations as long-range constraints. Left figures: Br and Ag K-edge experimental data (Expt) are compared with the RMC simulation in the
upper and bottom panels respectively. The excellent agreement between XAFS and RMC simulations can be appreciated by the differences (Res)
reported as dotted curves. Right-hand panels: from top to bottom the averaged RMC total and partials (gAgAg,gAgBr, gBrBr) pair distributions are reported
(RMC aver.). The estimated standard deviation (st. dev.) and the observed fluctuations of the partial radial distributions (fluct.) are also reported. The partial
distributions are in agreement with the MD simulations (model, see text) only for long-range correlations. Important deviations are visible for the short
and medium range distributions.
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first-neighbor Ag–Br distribution results to be narrower than
the current models for the liquid structure based on neutron
diffraction47 and molecular-dynamics calculations48,49 as also
previously noted. The shape of the first Ag–Br peak is deter-
mined very accurately as shown by the small fluctuations
reported in the right-hand panel of Fig. 9 and reflects the
exceptional short-range XAFS sensitivity. On the other hand,
larger fluctuations are observed for the gAgAg and gBrBr func-
tions, as a consequence of the decreased sensitivity at medium
and large distances.

Presence of Ag–Ag and Br–Br distances in the short-range
side below 4 Å confirms the occurrence of an almost structure-
less and broad distribution that can be typical of these ionic
liquids. The long range structure found in this RMC refinement
is compatible with the structural model used here48 while
larger deviations are observed at intermediate distances.

Generally speaking, the results obtained here confirm that
the current MD models (see for example ref. 48 and 49) for the
first-neighbor Ag-Br distribution are broader and clearly shifted
toward shorter distances, indicating the need of developing
more accurate models for the interaction potential, particularly
for the short-range repulsive part. The same holds for the
results of neutron diffraction experiments, also analyzed using
RMC, providing accurate information on medium-range order,
but less precise at short distances.8,14

7 Conclusions

In this work, we have presented a detailed account of the
application of the Reverse Monte Carlo refinement methods
for XAFS structural refinements in exemplary molecular and
condensed systems. The method used is an application of the
original RMC technique based rigorously on the Metropolis
Monte Carlo algorithm, using XAFS calculations performed by
the advanced RMC-GnXAS programs. This approach has been
used for multiple-edge studies of molecules, crystalline solids
as well as glasses and liquids, including the long-range con-
straints provided by other techniques (e.g. diffraction). The
RMC-GnXAS method has been developed to consider naturally
a combination of experimental XAFS data and model pair
distribution functions, including directly the noise of the
experimental data in the random variable to be minimized in
the Monte Carlo iterative process.

The detailed usage, potential and possible weaknesses of the
RMC method are discussed looking also at specific exemplary
applications like gaseous Br2 and GeI4, crystalline Ge and AgBr,
as well as amorphous Ge and liquid AgBr. A specific study on
the effect of noise levels in XAFS data on the derived distribu-
tion functions is presented for gaseous Br2, showing how the
accuracy of structural results depend on accounting data fluc-
tuations. The importance of the long-range constraints in RMC
refinement of XAFS data is also discussed in this work with
specific examples. The lack of these constraints results in
largely disordered structures for distances beyond the first

coordination shells, in agreement with the short-range nature
of the XAFS technique.

The method and applications reported in this work high-
light the general interest of the RMC technique applied to XAFS
data within the RMC-GnXAS scheme, and the importance of
combining multiple set of data for improving the accuracy of
the structural refinements both at short and long range.
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