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Discrete modeling of ionic space charge zones in
solids†

Chuanlian Xiao, Chia-Chin Chen ‡ and Joachim Maier *

The discrete model of space charge zones in solids reveals and remedies a variety of problems with the

classic continuous Gouy–Chapman solution that occur for pronounced space charge potentials. Besides

inherent problems of internal consistency, it is essentially the extremely steep profile close to the inter-

face which makes this continuum approach questionable. Not only is quasi-1D discrete modeling a

sensible approach for large space charge effects, it can also favorably be combined with the continuum

description. A particularly useful application is the explicit implementation of crystallographic details and

non-idealities close to the interface. This enables us to consider elastic, structural or saturation effects

as well as permittivity variations in a simple but realistic way. We address details of the charge carrier

profiles, but also overall properties such as space charge capacitance and space charge resistance. In

the latter case the difference in the total charge (at identical concentration) is of importance, in the first

case it is the inherent difference in the centroid of charge (at identical total charge) that is remarkable.

The model is equally applicable for ionic charge carriers and small polarons.

Introduction

Space charge situations are ubiquitous. Whenever interfaces in
charge-carrier containing systems are involved, electroneutral-
ity is broken and individual charge carrier redistribution, be it
electronic or be it ionic, occurs (at the cost of and balanced by a
back-driving electric field).

This does not only hold for rather classic systems in the field
of semiconductors1 or liquid state electrochemistry.2 It has also
been shown to be of great relevance for solid state ionics in the
context of solid electrolytes (interfaces with electrodes;3 grain
boundaries,4 composite electrolytes5) or of mixed conductors,
used for storage,6 sensing,7 catalysis8 and many other pur-
poses. In the case of storage electrodes, one deals with grain
boundaries, contacts to electrolyte or the respective passivation
layers and contacts with current collectors.9 Space charge
effects can not only explain various interfacial phenomena,
they can also be used to generate beneficial effects. Such effects
can refer to resistive, but also storage anomalies.5,9

Of great help in this context is the generalized thermody-
namic contact picture (Fig. 1) which takes account of both ionic
and electronic redistribution and their coupling via the
chemical potential of components (mirrored by, e.g., oxygen

partial pressure over oxides;10 Li-activity in battery electrodes,11

etc.).
In the case of full equilibrium, the combination of Poisson’s

equation and Boltzmann-distribution leads – in the continuum
picture – to Gouy–Chapman (GC) profiles12 (while depletion of
mobile majority carriers in doped systems leads to Mott–
Schottky profiles13). In particular, in the first case the profiles
can be very steep if the interfacial effects are pronounced. Very
often the majority of the charge decays within a distance that is
on the order of the interatomic spacing reflecting the over-
stretching of the continuum approach. That there is no simple
match between reality and continuum model is shown by the
fact that in the latter the total charge stored in the space charge
layer (Q) is proportional to the square root of the concentration
of the outmost position (x = 0 in Fig. 1a) rather than to the
concentration in the outmost layer (x0 = 0 in Fig. 1b). Discre-
pancies are obvious not only for space charge conduction14 but
also for space charge storage.12 Fig. 2 gives a striking example
in the case of interfacial storage, where the power law between
the amount of stored charge and the activity of the component
fails qualitatively in the continuum picture in contrast to
discrete modeling.12

It is also well-known from liquid electrochemistry that the
calculated space charge capacitance differs greatly from the
measured one and needs to be corrected by a rigid capacitance
contribution that more or less is based on the finite atomic
spacing of charge and counter charge (Fig. 1a) (see e.g. ref. 2).

In solid state ionics essentially two chief scenarios have been
treated: (i) ion redistribution at constant composition as
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occurring in heterogeneous electrolytes such as LiI:Al2O3

composites15 or CaF2–BaF2 heterolayers,16 and (ii) the occur-
rence of ionic space charges compensated by electronic ones in
the case of job-sharing storage relying on compositional
variations.12 The most general case considers redistribution
of ions and electrons in both phases in contact. Selected
literature examples are LiF/TiO2,3 SrTiO3-grain boundaries,10

TiO2-dislocations,17 RbAg4I5/C.18

Here the dissociative storage of metal components such as
Li, Na or Ag at the contact of an ion conductor with a metallic
electron conductor is chosen as a master example (similar to
the classically discussed electrolyte/electrode interfaces), and
the space charge profiles are modeled by discrete quasi 1D
simulations. This battery-related example has the advantage
that it also includes the chemical potential of the respective
component as parameter. Equivalently one can consider oxygen
ion depletion or accumulation at a perovskite interface as a
function of position with the oxygen partial pressure as para-
meter. As far as the modeling technique is concerned we follow
the important work of Armstrong and Horrocks.19 We think

that 1D simulation (discretization perpendicular to the inter-
face) captures the major points while discretization in two or
three dimensions would only reveal additional insight into
other questions such as crystallographic matching or image
force effects, that are, though important, beyond the interest of
the present paper. As in the continuum Poisson–Boltzmann
equation we use a coarse-grained electric potential in order to
be independent on quantum-mechanical details.20

We also intend to show that substantial progress in the field
of space charge theory is expected to come from such discre-
tization, rather than from introducing corrections into the
overstrained Gouy–Chapman function.21–28 While the differ-
ence between continuum and discrete approach is small for
small space charge potentials (small means small with respect
to RT/F), the full value is revealed at high electric potential
drops between the two origins in Fig. 1a as typically occurring
in supercapacitors (cf. also Fig. 2).

Because of the extreme worth of the continuum approach in
view of its simplicity, the approach is also considered useful for
developing corrections (based on the discretization) that help

Fig. 1 Sketch of (a), (c) and (e) continuous model and (b), (d) and (f) discrete model. (a)–(d) Contact between a highly delocalized electron conductor and
an ionic conductor; (e) and (f) contact between a localized electron conductor and an ionic conductor. Note the different coordinates x and x0 denoting
the zero-points in the continuous and in the discrete model, respectively. b is the distance between the two adjacent discretely charged layers, its
minimum value is a/2 in the case of delocalized electron conductor and (a + A)/2 in the case of localized electron conductor where a, A refer to the
atomic size in the ionic conductor and localized electron conductor, respectively.
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Gouy–Chapman considerations to be still applicable, as well as
to develop criteria that decide on when they fail.

The structure of the paper is as follows: first, the numerical
procedure is set out. Second, effects on capacitance and resis-
tance are described whereby special emphasis is laid on the
small-signal evaluation. Though this is not the most typical
case where the continuum approach fails, it is extremely help-
ful for the illustration as the analysis is straightforward. Third,
it is shown how by using realistic input data, e.g. from DFT,
corrections to the idealized assumptions (constant structure,
constant dielectric constant, no site saturation) can be imple-
mented and even advantageously combined with the conti-
nuum description for the flatter part of the profiles.

To avoid misunderstandings we stress again that it is
neither the objective of the paper to go beyond the usual
assumptions underlying the Poisson–Boltzmann equation
(except discretization), nor do we intend to analyze experi-
mental results. This may be subject of future work.

Procedure

Here we accept the Poisson–Boltzmann equation as relevant
continuum description and do not analyze its intrinsic weak-
nesses. Short-comings such as finite-size effects are discussed
in the literature.29–31 A fundamental weakness is based on
identifying the potential of mean force (which includes inter-
action of the ion under concern with the matrix) as appearing
in the Boltzmann distribution, with the mean potential (where
such effects are ignored) as appearing in Poisson’s equation;
this problem has also been brought in connection with the
violation of the superposition principle in the Poisson–Boltz-
mann equation (see supplementary for more details as well as
ref. 1, 9 and 10 in ESI†).

The electric potential f in a medium is, according to
Poisson’s equation, referred to the effective charge density r
as well as the corresponding dielectric constant e

r2f ¼ �r
e
¼ �F

e

X
m

zmcm (1)

where e = ere0, the notations zm and cm stand for the charge
number and the concentration (number of moles per volume)
of species m, F being the Faraday constant.

If the charge carrier concentration is described by a Boltz-
mann distribution (the local concentration proportional to the
bulk concentration cmN and the exponential of the electric
potential difference with respect to the bulk value fN) and by
identifying this potential with the one in Poisson’s equation
(cf. ESI†) we obtain the well-known Poisson–Boltzmann equation

r2f ¼ �F
e

X
m

zmcm1e
�Fzmðf�f1Þ

RT (2)

For a monovalent ion conductor with two types of dilute charge
carriers (+ and �) for semi-infinite boundary conditions (a case on
which we will concentrate in the following), the integral of eqn (2)
reduces to

rf xð Þ ¼ F

e

ð1
x

ðcþðxÞ � c�ðxÞÞdx

¼ Fc1
e

ð1
x

e
�F f xð Þ�f1ð Þ

RT � e
F f xð Þ�f1ð Þ

RT

� �
dx

(3)

where c+ and c� refer to the local concentrations of the dilute charge
carriers. Owing to electroneutrality in bulk, cN � c+N = c�N.

In discretized form eqn (3) reads

fj ¼ fj�1 �
RT Dx0ð Þ2

Fl2
X1
k¼j

sinh
Fðfk � f1Þ

RT

� �
(4)

where l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eRT
2F2c1

r
is the Debye length.

Fig. 3 shows two key features of the discrete model:19 first, as
charge carriers are strictly located on lattice planes, rf (slope
in Fig. 3a, i.e. electric field) only changes its value on each plane
and remains invariant in between the planes. (See Poisson’s
equation, r2f p r. If r = 0, rf is constant.) Such a feature is
different from the continuous model in which rf varies
continuously because r is thought to be nonzero within the
whole space charge region. Second, as suggested in eqn (4), the
slope between plane j and j � 1 is proportional to the stored
charge summing up from plane j to the bulk, and hence
increases when the interface is approached (Fig. 3a). Fig. 3b
shows the situation in terms of charge: While in the discrete
case one can assign a charge to a specific layer (Fig. 3b), in the
continuous approach one has to be aware of smearing the

charge density out by �a
2

around the position in which the

atoms sit which are vertically separated by a. This is the reason
why we have to distinguish between x and x0 as defined in
Fig. 1. The rationale as to why the continuous profile best starts

at x0 ¼ �a
2

(and hence x� x0 ¼ a

2
) is given below.

Fig. 2 Comparison of continuous and discrete model for dissociative
storage of the component M (e.g. Li, Na) (for conditions discussed in
ref. 12). While the continuous model predicts for large storage a power law
between M-activity (reflected e.g. by the cell voltage) and stored amount
with the exponent 4, the discrete model predicts the correct value of 2
corresponding to the fact that for large storage essentially the first layer is
responsible.
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Results
Idealized model

Fig. 1b, d and f sketches the discrete charge distribution of a
contact between an electron conductor and a solid ion con-
ductor. It considers two extreme situations. In the highly
delocalized electron conductor we assume that the electronic
counter charge concentrates on the very surface of the electron
conductor (Fig. 1a–d); in the second case we consider (Fig. 1e
and f) the contact of a localized electron conductor and an ion
conductor where both types of charges are strictly localized. In
both cases, the charges are separated forming an electric
double layer. If b is the distance between the two adjacent
discretely charged layers, its minimum value is a=2 in the first
and (a + A)/2 in the second case where A is the atomic size in
the localized electron conductor. Thus, it is pertinent to
distinguish between the extreme cases of a highly delocalized
electron conductor and an electron conductor where the
electrons are localized at the polyvalent cations. For the sake
of simplicity the fact is ignored that according to the jellium
model the electron density on a metal can be smeared out
around the very surface with an extent of a fraction of the
Fermi-wavelength (typ. by B2 Å).32 In the following the dis-
crete charge distribution is calculated, compared with solu-
tions from the Poisson–Boltzmann equation providing the
same total charge and calculated conductance and capaci-
tance differences. Let us consider the highly delocalized
electron conductor case as the electronic part of our master
example. In order not to complicate the description we con-
sider layers that contain an equal amount of singly-charged
cations and anions with the charge carriers being cation and
anion vacancies. When disorder is referred to Frenkel disorder
instead of Schottky disorder, then charges have to be inserted
in between the lattice planes. Though the emphasis is on the
double layer capacitance, we start with a few remarks on
conductance and resistance.

In a measurement parallel to the interface it is the
conductance Y8 (conductance per area) that is of significance.
Let us assume a negative excess charge on the metal side. Then

singly-charged anion vacancies as the positive charged defects are
enriched and the negative carriers, singly-charged cation vacancies,
are depleted. Measuring the excess conductance parallel to the
interface, we are essentially interested in a situation where the
excess conductance stems from the first. If the effects are large, then
Y8 is approximately determined by the total excess charge and there
is then no difference between the continuous and the discrete
description provided the continuous profile is adequately chosen.
As shown below a continuous profile that starts exactly at the first
layer (i.e. x = x0 = 0) delivers a lower total charge. In a measurement
perpendicular to the interface, the most interesting case is a
situation, where the depleted carrier possesses the highest mobility,
such that it determines the normalized resistance Z> (1/Y>). Owing
to the fact that

cþ
c1
¼ c1

c�
¼ e�c (5)

and hence Yk /
Ð
cþdx /

Ð 1
c�

dx / Z?; we end up with the same

conclusion for Z> (resistance times area). In eqn (5) we have

abbreviated
Ff
RT

by c to simplify notation. Once x� x0 ¼ a

2
, differ-

ences between conductances (resistances) for the two models occur
only if the respective counter carrier is of significance (i.e. rather
small |c|). We will come back to this later.

There are however pronounced differences for the capaci-
tance. The reason is that the centroid of the diffuse charge
which determines the space charge capacitance, differs, in
particular if the screening length is large. Let us first recapitu-
late the important point33 that

e
CSC
¼ L (6)

CSC is the space charge capacitance (per area) and L the
centroid, which is calculated in the discrete model as

L x0ð Þ ¼

P
i

x
0
iqiP

i

qi
(7)

Fig. 3 Sketch of (a) potential profile, (b) charge distribution in discrete model (contact between a highly delocalized electron conductor and an ionic
conductor). The negative counter charge concentrates on the very surface of the highly delocalized electron conductor.
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and in the continuous model as

L xð Þ ¼
Ð
xr xð ÞdxÐ
r xð Þdx (8)

Eqn (6) follows directly from Poisson’s equation.33 Obviously L
shifts by D, if x or x0i is shifted by D. In eqn (7) qi denotes the
area-specific charge at the i-th plane (positioned at x0i), while Q
will be used for the integrated charge per area. In eqn (8) r is
the continuous charge density and x the position coordinate in
the continuous model which is – owing to the atomic size –

shifted with respect to x0 by �a
2
; i.e. x0 þ a

2
¼ x.

Fig. S1 (ESI†) illustrates this for a few simple situations.
Owing to basic electrostatics, the total interfacial capaci-

tance of the semi-infinite configuration shown in Fig. 3b is
given by

1

C
¼ d fS � f1ð Þ

dQ
¼ d fS � f0ð Þ

dQ
þ
X1
i¼0

d fi � fiþ1
� �

dQ

¼ d fS � f0ð Þ
dQ

þ
X1
i¼0

d fi � fiþ1
� �
dQiþ1

dQiþ1
dQ

(9)

where

Qiþ1 ¼ Q�
Xi
k¼0

qk ¼
X1
k¼iþ1

qk

The evaluation for our assumption leads to

1

C
¼ a

e
b

a
þ 1� dQ0

dQ

� �
þ 1� dQ0

dQ
� dQ1

dQ

� �
þ � � �

� �
(10)

The first term allows for an interfacial spacing of b a a.
Identifying the last term with eqn (6), the result can be then

represented by the well-known relation

e
C
¼ e

CH
þ e
CSC

(11)

with CH ¼
e
b

as Helmholtz capacitance.

Now we wish to compare the discrete with the continuous
model. It is very illustrative to first use the well-known expo-
nential limit of the Poisson–Boltzmann equation that follows
for |c| { 1. We do so for the following reasons:

(i) The exponential solution is simple to test.
(ii) It is free from consistency problems as it corresponds to

a linear relation between c and r (cf. ESI†) which fulfills the
superposition principle of electrostatics.

(iii) Even for large effects, one can handle the first layers
discretely such that the remaining part is, to a good approxi-
mation, exponential.

Let us set out a few points of this Debye–Hückel
approximation:

For small |c| it holds that

cþ
c1
¼ e�c � 1� c (12)

due to the constancy of the electrochemical potential ~m+ (equi-
librium) and of the standard potential m0

+ (structure uniformity).

Coupling with Poisson’s equation demands

r2c ¼ 1

l2
c (13)

with l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RTe
2F2c1

r
giving rise to the indicated solution

c ¼ c0e
�xl.

All the individual concentrations and concentration changes
(the same holds for the charge density) are linear in c and vary
exponentially with position:

c�
c1
¼ ec � 1þ c � 1

1� c
(14)

c� � c1
c1

¼ c ¼ �cþ � c1
c1

(15)

c� � c1
c�0 � c1

¼ c
c0

¼ � cþ � c1
cþ0 � c1

(16)

q

aF
¼ cþ � c� ¼ �2c1c (17)

For the discrete model, the following is valid:
As the charges at x0 = 0, a, 2a,. . . can be given as qi ¼ q0e

�ial ;

the total charge follows as geometrical series which due to

e�
a
l o 1 converges, hence

Q ¼
X1
i¼0

qi ¼ q0
X1
i¼0

e�
ia
l ¼ q0

1

1� e�
a
l

’ q0
1

1� 1� a

l

� � ’ q0l
a

1þ a

2l

� � (18)

The solution for the total charge obviously is larger by
q0

2
. (The

only profile that hits the discrete points and yields the same

total charge is a sectionally linear profile.) The shift by
a

2l
when

compared to 1 disappears in a rougher approximation leading
to the same result as the continuous solution.

As we want to compare the continuous and the discrete
distribution for the same Q we have two obvious possibilities.

We could introduce a different l ! l 1þ a

2l

� �� �
or we could

use a different q0.
The first option is inadequate as the screening length l is

defined by bulk parameters

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eRT
2F2c1

r� �
. The second way leads

to a very insightful possibility. We adopt the above continuous
profile with q0 at x0 = 0 but prolong the profile towards the

interface up to x0 ¼ �a
2

(i.e. x = 0). As can be straightforwardly

seen, this adds an additional contribution to the total charge
which is given by

DQ ¼ q0

a

ð0
�a
2

e�
x0
l dx0 ¼ q0l

a
e
a
2l � 1

� �
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which indeed simplifies for a { 2l to
q0

2
; the missing

contribution.
Obviously starting at x0 ¼ �a

2
(defining x = 0) yields a profile that

hits all discrete values properly and yields a corrected total charge. If
l- a or a large space charge potential is established, q (x = 0) is still
larger than q (x0 = 0). As we systematically smear out the discrete
charge, the continuous profile q(x) adopts the discrete values qi in

the interval x0 � a

2
if the potential does not become too high.

Now let us calculate the centroids for the low field approxi-
mation. In the continuous model we straightforwardly obtain
Lc ¼ l; while this value is obtained for the discrete model only
approximately. Here we made use of the fact that not only the

geometrical series
P1
i¼0

qi converges (as e�
a
l o 1) (eqn (18)) but

also the geometrical series
P1
i¼0

iqi:

X1
i¼0

iqi ¼
q0e
�
a

l

1� e
�
a

l

 !2
(19)

Hence, with x
0
i � ia,

Ld

a
¼ 1

a

P
i

x
0
iqiP

i

qi
¼ e�

a
l

1� e�
a
l
¼ 1

e
a
l � 1

(20)

is obtained, which can be approximated by Ld ¼ l 1� a

2l

� �
�

Lð1Þd ; and even further to Lð0Þd � l.
Lð0Þd is identical to Lc; but for the precise centroid it holds that

Ld � L 1ð Þ
d � l� a

2
. The numerical check corroborates this devia-

tion, and Lð1Þd is indeed a much better approximation to Ld .

Using eqn (11) with
1

CSC
¼ Ld

e
; one obtains the rather

precise result

1

C
¼ b

e
þ
l� a

2
e

(21)

This result is also numerically checked and investigated for

various
b

a
values in the ESI† (Table S1(a) and (b)). Moreover, the

numerical calculations show that the deviation by
a

2
is percep-

tible even though the validity of the exponential solution
demands l to exceed a.

The above conclusion that an adequate continuous picture
for which the total charge coincides with the discrete one,

implies an origin shift by �a
2
; delivers a straightforward inter-

pretation (see also ESI†). A shift between Ld and Lc by
a

2
means

that on an absolute scale the two centroids take identical
positions (Fig. S2, ESI†). Unsurprisingly for very small l, this
cannot be the case and in fact the centroid correction tends towards

zero rather than
a

2
. Lc is then small and even more so Ld as well as

the difference between both. As the exponential solution is then no
longer applicable, we have to inspect the full GC solution.

Indeed, as Fig. 4 shows, one then also recognizes the transition

from
a

2
to 0. Since this correction becomes small, when on the other

hand the centroid is close to the boundary, and since the correction
becomes less important if l increases, taking b + l as effective
difference in the double layer capacitance is a good approximation,
yet eqn (21) is perceptibly more precise.

Fig. S3 (ESI†) investigates capacitance differences between
continuous model and fully discrete model under constant
surface potential and constant bulk concentration situation,
respectively. For small storage, both models show similar
results, while obvious discrepancies appear for large storage.
The extracted Helmholtz corrections are also shown there.

Now let us come back to the problem of parallel conduc-
tance Y8 and perpendicular resistance Z>. As already men-
tioned, discretization – if we refer to the same Q – does not give
rise to improvements in this special context if only one carrier
(the accumulated one for the parallel and the depleted one for
the perpendicular experiments) is decisive (as shown in
Fig. S4(a), ESI†). In these cases it is the overall charge that is
the determinant. Yet the situation is different if the counter
carrier is of influence as it is realized for small c (Fig. S4(b),
ESI†). Table S2 (ESI†) gives some examples with various f0.

Such investigations are particularly interesting when we
consider non-idealities such as variations of the local (free)
energy to form a carrier near the interface, more precisely
deviations of m0 from the bulk value.

Realistic model
Variations of l0

Let us now inspect the effect of m0-variations on the potential
and concentration profiles. Even in the case of an ideally abrupt

Fig. 4 Normalized Helmholtz correction (discrepancy between discrete
result and Gouy–Chapman result) as a function of l when the full
Poisson–Boltzmann (a = b is assumed) is inspected. For large l, the
correction with respect to the full geometrical correction is due to the
a/2-shift of the centroids. This figure shows the transition of Helmholtz
correction from a/2 to a with decreasing l.
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junction, it is clear that the first layer
x0

a
¼ 0

� �
perceives a

different environment than the other layers
x0

a
4 0

� �
. Consider

the extreme case that we may ignore interactions between the
atoms in the first layer and the electron conductor. Then the
bonding situation resembles that of a surface ion while for the

layers
x0

a
¼ 1; 2; . . . approximately a bulk environment applies.

In such a model m0 is reduced to bm0 at
x0

a
¼ 0; whereby a typical

value of b maybe
2

3
. Then, even if we stick to the Poisson–

Boltzmann picture our analysis becomes slightly more difficult.

Now the GC-solution applies only from
x0

a
¼ 1 to N which

we formally write as c
x0

a
� 1

� �
¼ cGC c1;

x0

a

� �
. In particular,

this provides us with the integrated charge Q1 from
x0

a
¼ 1 to

x0

a
¼ 1: Q1 = fGC (c1).

For the position x0 between�b and 0 and x0 between 0 and a,
we have to apply Gauss’ law and the constancy of the electro-
chemical potential separately, which together with charge con-
servation supplies us with enough equations to solve the
problem.

In detail for b = a:

(i)
c0 � cs

a

RT

F
¼ Q

e

(ii)
c0 � cs

a
� c1 � c0

a

� �
RT

F
¼ q0

e

(iii) q0 ¼ c1aFe
�Dm

0

RT e�c0 � ec0
� �

(iv) Q1 = fGC(c1)
(v) Q = Q1 + q0

From these 5 equations the 5 unknowns cs, c0, c1, Q1, q0 can be
calculated if we take Q as independent variable.

Here only eqn (iii) deserves a closer inspection. It follows
from the constancy of ~m+ and ~m�, whereby now m0 at x0 = 0
differs from m0 (x0 4 0) by Dm0. This leads to

c�
x0

a
¼ 0

� �
c1

¼ e�
Dm0

RT e�c0 (22)

and hence q0 = Fa(c+ � c�) follows as eqn (iii). It is useful to

inspect the low potential case (c { 1) where from
x0

a
¼ 1 on an

exponential solution is valid. The solutions for the potentials
then follow as

c
x0

a
4 1

� �
¼ c1e

�x�al (23a)

c
x0

a
¼ 1

� �
¼ Q �2c1Fe�

Dm0

RT � 2c1lRTFa�1

RT þ 2ac1lF2e�1

� ��1

	 RT

F

RT

F
þ 2ac1lF

e

� ��1
(23b)

c
x0

a
¼ 0

� �
¼ Q �2c1Fe�

Dm0

RT � 2c1lRTFa�1

RT þ 2ac1lF2e�1

� ��1
(23c)

Fig. 5 The profiles of (a) electric potential and (b) charge carrier concentration shown as a function of number of lattice plane. The blue data shows the
model with m0-variation in the first layer adjacent to an electron conductor by Dm0 (= �0.1 eV) with respect to the bulk (all the other layers). From second
layer on the bulk value is applied. The blue curve shows the continuous model from second layer on. The red data shows the discrete model without m0-
variation. Blue and red dashed lines in (b) indicate the positions of centroid for both cases (with or without m0-variation). Black dash-dotted line refers to
the position of first layer. cs, c0 and c1 in (a) refer to the normalized electric potential on the surface of electron conductor, in the first and second layer of
ionic conductor, respectively. Simulation parameters: lattice spacing Dx0 = 0.1 nm; dielectric constant er = 10; fs� fN =�1 mV; cN = 1	 10�5 mol cm�3;
T = 298 K. Same total charge is applied for both models.

PCCP Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

6 
A

pr
il 

20
22

. D
ow

nl
oa

de
d 

on
 1

/1
7/

20
26

 5
:4

9:
12

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d1cp05293d


11952 |  Phys. Chem. Chem. Phys., 2022, 24, 11945–11957 This journal is © the Owner Societies 2022

If we nullify Dm0, we obtain

c1

c0

� RT

F

1

RT

F
þ a

l
RT

F

� 1� a

l
� e�

a
l (24)

as it should be.
While the consideration of the conductance is essentially unaf-

fected (given total charge), the profiles for concentrations and
electric potentials are now more realistic close to the interface.
Fig. 5 compares the profiles for electric potential and the charge
carrier concentration if in the first layer m0 differs from m0 in the

bulk by Dm0, but the same overall excess charge is assumed. If Dm0 is
such that now the occupation of the first layer is favored (disfa-
vored), the higher (lower) occupancy is naturally at the cost of lower
(higher) c-values in the layers beneath (constant total charge
assumed). (Table 1 displays the correspongding set of equations.)
Such results might help to get a better understanding of the
concentration profiles at heterojunctions involving solid electrolytes.

Fig. 6 shows results for fully ionized oxygen vacancies in
MgO using the formation values calculated in ref. 35 for a free
surface assuming that there is an abrupt m0-change from the
first layer in the subsurface to the subsequent layers which all
are characterized by the m0-value of the bulk. The m0 value for
the first layer calculated for a free surface for our contact with
an inert delocalized electron conductor is quite an approxi-
mation, but is justified here for the sake of demonstration.

At realistic junctions not only m0 at the first adjacent layer
differs from the bulk value, but the distortion can reach deeper.
Such analysis is very well suited to realistically describe inter-
faces and provides a more appropriate correction than the
consideration of interaction effect or elastic effects within the
continuous framework. Fig. S4 (ESI†) shows the examples that
m0 at the first two layers differs from the bulk value.

As an example of practical worth we take defect formation
values for SrTiO3 derived from DFT modelling34 and apply our
approach to it. These examples are selected because they
belong to the very rare cases where formation energies have
been calculated for various lattice planes. Unfortunately the
DFT results were obtained for neutral vacancies. We assume,
and this is supported by the calculations for MgO35 that not the
absolute values but the m0-differences with respect to the bulk
may, though probable somewhat larger, be not far from the
values for the neutral defects. We further simplify our example

Table 1 Set of equations for solving the space charge problem if m0 varies

(1)
c0 � cs

a

RT

F
¼ Q

e

(2)
c0 � cs

a
� c1 � c0

a

� �
RT

F
¼ q0

e

(3) c1 � c0

a
� c2 � c1

a

� �
RT

F
¼ q1

e

. . . . . .

(p + 1)
cp�1 � cp�2

a
�
cp � cp�1

a

� �
RT

F
¼ qp�1

e

(p + 2) q0 ¼ c1aFe
�
Dm0

1
RT ðe�c0 � ec0 Þ

. . . . . .

(2p + 1) qp�1 ¼ c1aFe
�
Dm0p
RT ðe�cp�1 � ecp�1 Þ

(2p + 2) Qp = fGC(cp)

(2p + 3) Q = Qp + q0 + q1 + . . . + qp�1

Fig. 6 The profiles of (a) electric potential and (b) charge carrier concentration for fully ionized oxygen vacancies in MgO. The blue data shows the
model with m0-variation in the first layer adjacent to the surface by Dm0 (= �1 eV) with respect to the bulk according to ref. 35. From second layer on the
bulk value is applied. The blue curve shows the continuous model from second layer on. The red data shows the discrete model without m0-variation.
Blue and red dashed lines in (b) indicate the positions of centroid for both cases (with or without m0-variation). Black dash-dotted line refers to the
position of first layer. Simulation parameters: lattice spacing Dx0 = 0.42 nm; dielectric constant er = 10; f0 � fN = �1 mV; cN = 1 	 10�5 mol cm�3;
T = 298 K. Same total charge is applied for both models.
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(and this is also supported by calculations for MgO35) by using
the same m0-variations for the counter-carrier. Furthermore, as
in the previous example we use these values derived for free
surfaces for our contact with an inert delocalized electron
conductor. Irrespective of the current availability of appropriate
data, the example demonstrates that the consideration of
atomistic modeling of the near-surface situation and the appli-
cation of our composite approach is a simple powerful tool to
tackle structural or elastic perturbations close to the interface.

Fig. 7a shows the calculated c-profile if such values are incorpo-
rated in the analysis. Here we use a Gouy–Chapman model in which
the much less mobile counter carrier is enriched.

For many contacts it is more realistic to assume a Mott–
Schottky model. This is even simpler to manage. As in the

Mott–Schottky model the counter carrier (e.g. an acceptor
impurity) is considered to be completely immobile we do not
need assumptions with respect to its energetics.

Fig. 7b shows the situation for an accumulation of V��O. As
the formation energy is lower close to the interface, the
distribution shifts – for given Q – towards the interface, and
so does the centroid and consequently the inverse space charge
capacitance.

Fig. 8 shows the examples of centroid and space charge
capacitance at various Dm0-values in the first layer adjacent to
an interface.

Even though it is not the scope of the paper to analyze
experimental results, it should be emphasized that for such a
purpose one needs to refer to exactly the same conditions in

Fig. 7 The profiles of (a) electric potential and (b) charge carrier concentration for oxygen vacancies in SrTiO3. The blue data shows the model with m0-
variation in the first two layers adjacent to the surface by Dm0

1 , Dm0
2 with respect to the bulk. From third layer on the bulk value is applied. The blue curve

shows the continuous model from third layer on. The red data shows the discrete model without m0-variation. Blue and red dashed lines in (b) indicate the
positions of centroid for both cases (with or without m0-variation). Black dash-dotted lines refer to the positions of first two layers. Simulation parameters:
lattice spacing Dm0 = 0.39 nm; dielectric constant er = 300; f0 � fN = �1 mV; cN = 1 	 10�5 mol cm�3. Oxygen vacancy formation energy: first layer
(5.9 eV); second layer (7 eV); bulk (7.5 eV), Dm0

1 = �1.6 eV; Dm0
2 = �0.5 eV (F0, neutral) ref. 34; T = 298 K. Same total charge is applied for both models.

Fig. 8 Centroid (a) and space charge capacitance (b) as a function of m0-variation in the first layer (Dm0). From second layer on the bulk value is applied.
Simulation parameters: lattice spacing Dx0 = 0.1 nm; dielectric constant er = 10; f0� fN = �1 mV; cN = 1 	 10�5 mol cm�3; T = 298 K. Same total charge
is applied.
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modeling and experiments owing to the great sensitivity on
space charge distributions.

For the sake of simplicity we have referred to vacancies as
carriers. If we extend the analysis to interstitials we have to
insert additional planes. This is particularly important for the
very first layer as here the distance of nearest approach shrinks
which is mirrored in the capacitance. Note that if a specific
orientation (interstitials and vacancies sit on the same lattice
plane) is considered, no additional planes are needed. An
additional layer between x0 = b and x0 = 0 (see Fig. 1) has to
be inserted, if internal ion adsorption is relevant. In such cases
the integrated charge in the half-space (x0 Z 0) is compensated
by the metal charge plus adsorption charge (ref. 2 and 12).

Fig. 9 gives a pertinent example.36 It refers to the Li2O–Ti
interface which takes up additional Li via job-sharing. Here Li+

occupies such an interface-near site while the electron is
redistributed mainly to the neighboring Ti-atoms. The extra
Li leads to an additional electronic charge transfer towards the
Ti adlayer (Fig. 9b). The transferred electronic charge is larger
than that without extra Li atom (Fig. 9a).

Saturation effects

Not only can m0-variations be implemented in a straight-
forward way, also entropic saturation effects can be included.
Here a Boltzmann distribution has to be replaced by a Fermi-

type of distribution, i.e.
c�

ctotal;� � c�
where ctotal,� is the concen-

tration of � lattice sites (we ignore such effects on the electron
conductor side). This correction is needed as the number of
available sites (lattice sites) are no longer constant but become
critical. The splitting into discretization close to the interface
and a continuous description further away is very useful, as
saturation effects should play a major role only close to the
interface. In order to concentrate on this effect we set Dm0 = 0

for
x0

a
4 0 and consider c{ 1. The exponential profile then can

be used for
x0

a
� 1. At x0 = 0 we have to replace

c�ð0Þ
c1

in eqn (22)

by
c�ð0Þ

ctotal;� � c�ð0Þ
ctotal;�
c1

with the results for local charge and

potential (see Table 2).
Now we include saturation in the first layer.
Fig. 10 investigates this case. Evidently the qualitative effect

is similar as if in the first layer Dm0 were positive. The lower
occupancy (at given total charge) leads then to a shift of L
towards bulk corresponding to a lower space charge capaci-
tance. Clearly the depression at the first layer to values lower
than in the second layer (where saturation is neglected, Fig. 10a
and b) would indicate the necessity to consider saturation also
in the other layers or to restrict to smaller effects (Fig. 10c
and d).

A limited charge per layer has also been considered in ref.
19. In addition, the charge on the metal side may be subjected
to restrictions of the density of states.

Fig. 9 A stoichiometric Li2O layer (a) and a Li2O layer that exhibits a Li-excess (b). The excess Li+ is accommodated close to the Ti-interface and the
excess electronic charges mostly the neighboring Ti-atoms. According to ref. 36.

Table 2 Set of equations for solving the space charge problem if satura-
tion occurs

(1) c0 � cs

a

RT

F
¼ Q

e

(2)
c0 � cs

a
� c1 � c0

a

� �
RT

F
¼ q0

e

(3)
c1 � c0

a
� c2 � c1

a

� �
RT

F
¼ q1

e

. . . . . .

(p + 1)
cp�1 � cp�2

a
�
cp � cp�1

a

� �
RT

F
¼ qp�1

e

(p + 2) q0 ¼ c1aF
e�

Dm0
1

RT e�c0

1þ c1
ctotal;�

e�
Dm0

1
RT e�c0

� e�
Dm0

1
RT ec0

1þ c1
ctotal;�

e�
Dm0

1
RT ec0

0
BBB@

1
CCCA

. . . . . .

(2p + 1) qp�1 ¼ c1aFe
�
Dm0p
RT ðe�cp�1 � ecp�1 Þ

(2p + 2) Qp = fGC (cp)

(2p + 3) Q = Qp + q0 + q1 + . . . + qp�1
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Permittivity variation

There are essentially three points leading to variation of the
dielectric constant at the interface region, which are not
independent: (1) at high fields (as they occur close to the
boundary) dipoles tend to be oriented, and a change of polar-
ization with applied field is small (field saturation). A quanti-
tative relation has been given by Booth37,38 (see also the
recommendable paper by Wang and Pilon39). (2) Polarization
is less pronounced due to special interfacial effects. (3) The
other side may not dielectrically contribute, which affects the
effective permittivity. In a Gouy–Chapman picture these effects
lead to a lower dielectric constant.40–42

Fig. 11 investigates the e-variation effects with Dm0 = 0 and
absence of site saturation. As an example er in the first layer is
taken to be 1 and from second layer on bulk-values (ebulk = 10)

are applied. In this case, the centroid shifts slightly towards the
interface direction and in our example the capacitance
decreases from 8.6 mF cm�2 to 3.1 mF cm�2 according to

1

C
¼ b

e1e0
þ a

e1e0
þ L� a

ebulke0
(25)

where e1 is referring to the dielectric constant in the first layer
adjacent to an interface.

For very small L, e-variation can have a considerable
influence on the capacitance, which leads to a reduction of
capacitance by one order of magnitude approximately in this
situation. On the other hand, e-variation in the first layer gives
rise to a negligible capacitance change in the case of very
large L.

Fig. 10 The profiles of (a) and (c) electric potential and (b) and (d) charge carrier concentration as a function of number of lattice plane. The blue data
shows the model with saturation effects in the first layer adjacent to the interface. The blue curve shows the continuous model from second layer on. The
red data shows the discrete model with absence of saturation effects. Blue and red dashed lines in (b) and (d) indicate the positions of centroid for both
cases (with or without saturation effects). Black dash-dotted line refers to the position of first layer.Simulation parameters: lattice spacing Dx0 = 0.1 nm;
dielectric constant er = 10; fs � fN = �1 mV; m0 is constant; T = 298 K. (a) and (b) cN/ctotal = 0.5 (unrealistic value). The charge concentration at first layer
is smaller than that at next layers. Then considering saturation effects on next layers is necessary. (c) and (d) cN/ctotal = 0.03. In this situation, the charge
concentration at first layer is suppressed, but still higher than that at second layer. The qualitative effect is similar as if in the first layer Dm0 were positive
(the centroid shifts towards bulk direction slightly).
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Conclusions

A variety of short-comings and unrealistic assumptions necessary for
the validity of the Gouy–Chapman solution for ionic space charges can
be overcome by 1D discrete modeling or a combination of 1D discrete
modeling and continuum approach. Examples treated refer to varia-
tions in the energy levels, dielectric constant and exhaustion effects.
Discretization also reveals details on the difference between space
charge capacitance and measured capacitance. It is not completely
removed by a Helmholtz correction, in more precise terms also an
inherent small shift of the centroid of charge has to be considered.

This approach is appropriate for handling realistic situations in
particular at high space charge fields even though it does not remedy
the inconsistency problem for the Poisson–Boltzmann equation as
we still identify the potential of mean force with the mean potential.

Of particular value is the proposed composite approach which
uses discretization close to the interface where the atomistic spacing
matters and a continuum approach farther away (where also non-
idealities are hardly significant). In the discretized zone knowledge
(from atomistic modelling or experiments) about non-idealities
(such as energetic variations owing to structural or elastic effects,
variations in the dielectric permittivity or saturation effects) can be
included in a straightforward way.
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