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The depletion thickness in solutions of semi-
flexible polymers near colloidal surfaces:
analytical approximations

C. M. Martens, a S. H. M. van Leuken, a J. Opdam, a M. Vis *ab and
R. Tuinier *ab

We derive a simple, yet accurate approximate mean-field expression for the depletion thickness dsf of a

solution of dilute semi-flexible polymers next to a hard surface. In the case of a hard wall this equation

has the simple form dsf = d0[1 � tanh(psf/d0)], where psf accounts for the degree of flexibility and d0 is

the depletion thickness in the case of fully flexible polymers. For fixed polymer coil size, increasing the

chain stiffness leads to a decrease in the depletion thickness. The approach is also extended to include

higher polymer concentrations in the semidilute regime. The analytical expressions are in quantitative

agreement with numerical self-consistent field computations. A remarkable finding is that there is a

maximum in the depletion thickness as a function of the chain stiffness in the semidilute concentration

regime. This also means that depletion attractions between colloidal particles reach a maximum for a

certain chain stiffness, which may have important implications for the phase stability of colloid–polymer

mixtures. The derived equations could be useful for the description of interactions in- and phase stability

of mixtures of colloids and semi-flexible polymers.

1 Introduction

Non-adsorbing polymers induce a net attraction between col-
loidal particles, often termed the depletion interaction. Upon
exceeding a particular polymer concentration, the depletion
interaction can lead to phase separation of colloid–polymer
mixtures into polymer- and colloid-rich phases.1,2 This phase
separation is often unwanted in colloid–polymer mixtures,
such as paints and food emulsions,3 but can be used benefi-
cially in for example the shape and size selection of synthetic
colloids4 and the fractionation of proteins.5,6

The depletion interaction originates from the fact that
polymers have less configurational entropy close to a surface,7

leading to so-called depletion zones,8 which are regions near
surfaces that are depleted of polymer. When two depletion zones
of adjacent surfaces overlap, an unbalanced osmotic force
between the colloidal particles pushes them together,7–9 indicat-
ing the non-adsorbing polymers induce an effective attraction
between the colloidal particles, even though all interactions in the
system are purely repulsive.

To quantify the depletion interaction and the resulting phase
behavior, the depletion thickness is an important parameter. It
quantifies the negative adsorption near a surface and is defined as
d = �G/jb, where G is the adsorbed amount and jb is the bulk
polymer concentration. The depletion thickness depends on the
polymer segment density profile near the colloidal particles. These
polymer segment density profiles may be calculated for instance
using computer simulations,10,11 numerical computations12–14 or
analytical approximations.15–17 Eisenriegler15 showed that for ideal
polymers the depletion thickness is close to the polymer radius of
gyration Rg: d0 ¼ 2Rg=

ffiffiffi
p
p

. In contrast, de Gennes17 showed that in
the semidilute polymer concentration regime, the depletion thick-
ness is only a function of the bulk polymer concentration and the
solvent–monomer interactions. Fleer et al.18 connected these limits
and derived an expression that provides a smooth cross-over
between the dilute and semidilute concentration regimes.

The results mentioned hold for flexible polymers only, in
which the monomer size l is equal to the Kuhn length b. In
practice, though, most polymers exhibit some form of intrinsic
chain stiffness, which increases the effective Kuhn length of the
polymer segments and in turn enlarges the radius of gyration of
the polymer.19,20 Additionally, because of the intrinsic stiffness,
semi-flexible polymers have less configurational entropy com-
pared to fully flexible polymers.21 This may suggest that due to
the entropic nature of depletion, chain stiffness possibly affects
the polymer segment density profiles and the resulting thickness
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of the depletion layer. This hypothesis was previously confirmed
by Yamazaki et al.22 in an experimental system comprising fumed
silica particles and either flexible or semi-flexible polymers. They
found that the phase stability strongly depends on the chain
flexibility. A notable effect was that a higher polymer concen-
tration is required to induce phase separation in the case of
polymers with a larger chain stiffness, i.e., stiffer chains with a
comparable radius of gyration are less effective depletants. They
argued that this flexibility dependence is attributed to the entropy
difference between a flexible and semi-flexible polymer, causing a
decrease in the strength of the depletion interaction. Numerous
other studies confirmed the chain stiffness dependence of the
depletant efficiency.23–28

This raises the question: what is the effect of chain stiffness
on the depletion thickness of polymer solutions? Ausserré
et al.29 used geometrical arguments to derive that the depletion
thickness of a solution of semi-flexible polymers dsf has the
following form: dsf = d0 � b, where b is the effective (Kuhn)
segment length. The depletion thickness of a solution of semi-
flexible polymers is thus smaller than a solution of flexible
polymers by an amount of the order of the Kuhn length b. Later
work by Lue,30 who derived a Padé approximation between the
excluded volume of a flexible polymer and a stiff needle around
a sphere, showed that the excluded volume between a polymer
and a sphere is smaller for stiffer polymers if the radius of
gyration is kept constant.

The study presented here is motivated by the following
observations: both the theoretical treatment of Ausserré
et al.29 and Lue30 are derived for dilute polymer solutions only,
while the concentration effects in the semidilute regime play an
important role in the depletion thickness.18 Additionally, as
shown in Appendix A, even though these theoretical
approaches are qualitatively insightful, they are quantitatively
inconsistent with numerical self-consistent field (SCF) compu-
tations. Furthermore, although the density profiles and deple-
tion thickness for semi-flexible polymers can be computed
using numerical self-consistent field theory,13,31,32 analytical
expressions are useful to estimate other physical properties such
as the surface tension17,33 and phase behavior of colloid–polymer
mixtures.2,8 Additionally, it may for instance, yield analytical
expressions of the depletion attraction between both flat walls and
spheres,8 and the friction coefficient of colloidal particles diffus-
ing through a semi-flexible polymer solution.34,35

Hence in this paper, we aim at finding generalized analytical
expressions that enable the quantification of the effect of chain
stiffness on the depletion thickness of polymer solutions
in both dilute and semidilute concentrations near a flat wall
and a spherical colloidal surface. The central concept of the
derivation is based on the mapping of known continuum
expressions on a lattice theory for semi-flexible polymers. The
analytical results obtained are compared to numerical SCF
computations, which are performed using the Scheutjens–Fleer
formalism.12,13 All results shown are for a y-solvent, but they
can be generalized to a good solvent using straightforward
extensions18,36 as demonstrated in Appendix C. Furthermore,
all length-scales are given in units of the the bond length l.

The outline of this manuscript is as follows. In Section 2, we
explain the lattice-based self-consistent field theory for semi-
flexible chains, which is used as a starting point for our
derivation but is also used to compare our results. We intro-
duce the propagators for a lattice chain with variable stiffness,
which are later used to derive boundary conditions for the
analytical approximation. In Section 3 analytical expressions
are derived using the lattice model equations and a continuum
theory for the polymer segment density profiles. In Section 4,
the results of our approximate theory are compared with
numerical self-consistent field computations and discussed.
Finally, the main conclusions are summarized in Section 5.

2 Theoretical background
2.1 Self-consistent field theory

The theoretical treatment presented here was first described by
Leermakers and colleagues31 and later expanded upon by Wij-
mans et al.32 It must be noted that it is a mean-field theory,
which implies that the polymer chains in the bulk behave as
ideal Gaussian chains. For a y-solvent this is correct, however,
for good-solvent conditions fluctuations are not accurately
accounted for. The scaling exponents obtained from SF-SCF
thus differ from refined field-theoretical methods such as
renormalization group theory.18,37

We focus on a mixture composed of semi-flexible homo-
polymers and solvent molecules near a hard wall. Concen-
tration gradients are accounted for in a single direction only.
The lattice consists of M layers of thickness equal to the
monomer length l. Let z denote the layers as z = 1, 2, 3,. . ., M.
The solvent molecules have the same size l and volume l3 as the
monomers. A surface is placed in the boundary layer next to the
first layer at z = 0. Let l0 be the fraction of nearest neighbor
contacts in the same layer and l1 be the fraction of nearest
neighbor contacts in the next or previous layer, so l0 + 2l1 = 1.
The polymer statistics as shown here are for a flat geometry, but
extensions towards spherical geometry are straightforward.13

2.1.1 Potential field. A lattice polymer chain is composed
of N segments, each with ranking number s = 1, 2, 3,. . ., N. The
statistical weighting factor of segment s in layer z is simply the
Boltzmann weight due to the potential experienced by the
segment in that layer:

G(z) = e�uz, (1)

where uz is the potential in layer z in units of kBT. For a polymer
in a monomeric solvent this potential follows from Flory–
Huggins theory as:1,12,13

uz ¼ �wsd1;z � 2wðhjzi � jbÞ � ln
1� jz

1� jb

� �
; (2)

where ws is the adsorption energy, supplemented with a Kro-
necker delta to ensure that only in the first layer the adsorption
energy is applied, w is the Flory–Huggins interaction parameter
between the solvent and segment, and jb is the volume fraction
of polymer segments in the bulk solution. We follow the
convention of Fleer et al.38 and define the adsorption energy
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to be positive for repulsion and negative for attraction. The
quantity hjzi is defined as the contact fraction:1,12 hjzi = l1jz�1

+ l0jz + l1jz+1. The potential uz has a direct effect on the
statistics of the polymer chain, which will be treated in the next
section.

2.1.2 Polymer statistics. Consider segment s to be posi-
tioned on a cubic lattice and connected to segment s � 1. Let j =
�1, 0, 1 identify the direction on the lattice: j = �1 for a
direction on the lattice from z to z � 1, j = 0 for the four
directions within the same layer z and j = 1 for the direction
from z to z + 1. Three coupled step-weighting probabilities, Pf,
Pb and Pp, corresponding to a forward, backwards and
perpendicular step, are defined for each direction. These
weighting probabilities are coupled as Pb + 4Pp + Pf = 1. For
lattice polymer chains with finite stiffness the backfolding
weighting probability Pb is zero.32 Thus, all conformations of
the polymer chain where backfolding occurs are excluded.
Wijmans et al.32 derived that for a cubic lattice, the Kuhn
length b of a polymer composed of segments with length l is
related to Pf through:

lK �
b

l
¼ 1þ Pf

1� Pf
; (3)

where lK is the (normalized) Kuhn length of the polymer.
Eqn (3) has the limiting values of lK - N for Pf = 1 and lK =
1 for Pf = 0, hence, finite semi-flexibility can be mimicked for 0
o Pf o 1.

To include the directionality into a recurrence relation, the
statistical weights G(z,s,j|1) and G(z,s,j|N) are introduced. In
G(z,s,j|1) the variable j is the direction from segment s to s + 1,
thus G(z,s,j|1) is the probability to find segment s in layer z that
will make a step in the direction j. In contrast, in G(z,s,j|N), j is
the direction from segment s + 1 to segment s. Consequently,
G(z,s,j|N) is the probability to find segment s in layer z coming
from the direction j. On a cubic lattice, the end-segment
probability is the average over all six directions j:13

Gðz; sj1Þ ¼ 1

6

X
j

Gðz; s; jj1Þ; (4a)

Gðz; sjNÞ ¼ 1

6

X
j

Gðz; s; jjNÞ: (4b)

The propagator for a segment s that will make a step in the
direction of j is given by a second-order Markov approxi-
mation:32,39

Gðz; s;�1j1Þ ¼ GðzÞ½PbGðz� 1; s� 1; 1j1Þ

þ 4PpGðz; s� 1; 0j1Þ

þ PfGðzþ 1; s� 1;�1j1Þ�;

(5a)

Gðz; s; 0j1Þ ¼ GðzÞ½PpGðz� 1; s� 1; 1j1Þ

þ ðPf þ Pb þ 2PpÞGðz; s� 1; 0j1Þ

þ PpGðzþ 1; s� 1;�1j1Þ�;

(5b)

Gðz; s; 1j1Þ ¼ GðzÞ½PfGðz� 1; s� 1; 1j1Þ

þ 4PpGðz; s� 1; 0j1Þ

þ PbGðzþ 1; s� 1;�1j1Þ�;

(5c)

with starting condition G(z,1,j|1) = G(z). If one starts from
the other side of the chain, it is important to realise that
now j is defined as the direction from s + 1 to s. This creates
an asymmetry in the propagators because in G(z,s,j|1)
the directionality is between segment s � 1, s and s + 1
( j is the direction from s to s + 1) and G(z,s,j|N) the direction-
ality is between segment s, s + 1 and s + 2 ( j is from s + 1 to s).
Starting with G(z,1,j|N) = G(z), the propagator for G(z,s,j|N)
becomes:32,39

Gðz; s;�1jNÞ ¼ GðzÞ½PbGðzþ 1; sþ 1; 1jNÞ

þ 4PpGðzþ 1; sþ 1; 0jNÞ

þ PfGðzþ 1; sþ 1;�1jNÞ�;

(6a)

Gðz; s; 0jNÞ ¼ GðzÞ½PpGðz; sþ 1; 1jNÞ

þ ðPf þ Pb þ 2PpÞGðz; sþ 1; 0jNÞ

þ PpGðz; sþ 1;�1jNÞ�;

(6b)

Gðz; s; 1jNÞ ¼ GðzÞ½ðPfGðz� 1; sþ 1; 1jNÞ

þ 4PpGðz� 1; sþ 1; 0jNÞ

þ PbGðz� 1; sþ 1;�1jNÞ�:

(6c)

The volume fraction profiles of segment s and the polymers can
be found using the composition law:13,31,32

jðz; sÞ ¼ C
X
j

Gðz; s;�jj1ÞGðz; s; jjNÞ
GðzÞ ; (7)

where C is a normalization constant equal to jb/6N. Summing
over all segments s the local polymer segment volume fraction
is obtained at layer z. The self-consistency of the theory now
also becomes clear; the segment potentials depend on the
volume fractions, and the volume fractions also depend on
the segment potentials, thus creating a set of equations that
should be solved in a self-consistent way.

2.2 Self-consistent field computations

The equations presented in the previous section are solved
numerically using the sfbox software package. As initial condi-
tions, the polymer bulk volume fraction, i.e., the volume frac-
tion located somewhere in the bulk, outside of the lattice, is
chosen. Additionally, the monomer-solvent interaction para-
meter w, the adsorption energy ws, the number of monomers N,
and the forward probability Pf are set. In this paper, we only
considered a y-solvent, for which w = 0.5 and used a cubic lattice
for both a flat and spherical geometry, where l1 = 1/6. The free
energy of the system is then minimized using an iterative
scheme, yielding the partition function of the polymers and
subsequently giving the equilibrium volume fractions at each
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lattice layer z. The SF-SCF calculations slightly depend on the
lattice chosen40 and one may choose to use a different lattice
parameter. However, the equations presented must then be
adjusted, as the transition probabilities and the relation
between the Kuhn length and the forward probabilities are
dependent on the lattice parameter.

3 Analytical approximation for semi-
flexible polymers

In this section we derive analytical approximations for the
segment density profile and depletion thickness of a solution
of semi-flexible polymers near a non-adsorbing surface. This is
done by combining the lattice theory presented in the previous
section with a modified analytical expression for the segment
density profile of solutions of flexible polymers.

Fleer et al.18 showed that the normalized polymer segment
density r = j/jb of a dilute solution of depleted flexible
polymers can be described accurately by r(z) = tanh2(z/d0),
where d0 ¼ 2Rg=

ffiffiffi
p
p

is the depletion thickness and z is now a
continuous variable describing the distance from the surface
in units of the bond length l. Using the argument that more
stiff polymers have less configurational entropy to start
with,21,41 the relative entropy loss due to the non-adsorbing
surface is smaller for stiffer polymers. We thus expect that the
inhomogeneous part of the density profiles shifts closer to the
surface upon increasing the chain stiffness. To account for
this, we hypothesize that the segment density has the approx-
imate form: r(z) = tanh2[(z + p)/d0], such that the density
profile is effectively shifted towards the surface over a length
p (where p is units of the bond-length l). This is similar to
the form that was proposed by Ausserré et al.,29 where they
used p = lK. In the following section, we derive an analytical
expression for p by mapping the proposed continuum expres-
sion on the lattice theory through boundary conditions at the
surface.

3.1 Lattice boundary condition for semi-flexible chains

Consider a polymer segment in the layer next to the surface.
After letting the probabilities of terms which contain a direc-
tion from or towards the surface go to 0, and excluding all
terms in which a segment is contained within the wall (z = 0),
we obtain from eqn (4) and (5):

Gð1;Nj1Þ ¼ 1

6
½4ðPf þ 3PpÞGð1;N � 1; 0j1Þ

þ 4PpðGð2;N � 1;�1j1Þ�e�u0 :
(8)

As noted by Leermakers et al.31 and Fleer et al.,13 in SCF a
system of sufficiently long semi-flexible chains with N mono-
mers of size l can be approximated by a system of re-scaled
flexible chains with NK monomers of size b. This approxi-
mation implies that the statistical weights in eqn (8) can be
approximated by the statistical weights of a re-scaled flexible
chain, where the lattice spacing is now equal to the Kuhn

length b. In normalized units lK = b/l this yields:

GðlK;NKj1Þ ¼
1

6
½4ðPf þ 3PpÞGðlK;NK � 1j1Þ

þ 4PpðGð2lK;NK � 1j1Þ�e�u0 ;
(9)

where G(lK,NK|1) is the propagator for a polymer segment at a
normalized distance lK from the surface. In principle this
approximation is not accurate, as it does not hold in the
region with a large concentration gradient, such as close to
the surface.39 However, we can assume that it is sufficiently
accurate, as it allows us to obtain a continuum expression for
the boundary conditions, which can be solved analytically.
Subsequently, we propose a modified analytical expression
for G, which yields an analytical expression for the statistical
weights and therefore concentration profile of a solution of
semi-flexible polymers at a hard wall.

Some further simplifications are needed to obtain a con-
tinuum expression. Sufficiently long chains are assumed such
that NK E NK � 1; together with 4Pp + Pf = 1 and eqn (3) we
obtain the boundary condition:

eu06 ¼ 2þ 4lK

1þ lK
þ 2

1þ lK

� �
Gð2lK;NKj1Þ
GðlK;NKj1Þ

: (10)

The lattice boundary condition can be translated to a conti-
nuum expression as:38,42

eu06 ¼ 2þ 4lK

1þ lK
þ 2

1þ lK

� �
g1ð2lKÞ
g1ðlKÞ

: (11)

Similarly from the propagator for G(1,s|N) we obtain:

eu06 ¼ 2þ 4lK

1þ lK
þ gNð2lKÞ

gNðlKÞ
; (12)

where gi is the continuum expression for the statistical weight
of a polymer with NK segments with size lK, and the subscripts 1
and N denote that these functions correspond to a solution
with either one of the boundary conditions. In a ground-state
approximating manner13,18,38,43 we use gi(z) E tanh[(z + p)/d0].

The solutions which satisfy these boundary conditions, g1

and gN, are coupled. In a ground-state approximation the
composition law is given by r(z) = g(z)2; combining this with
the lattice composition law for semi-flexible chains, eqn (7), we
find that we can approximate g(z)2 as gN(z)g1(z). Thus the
ground-state composition law for a solution of semi-flexible
chains then becomes:

r(z) = g(z)2 E gN(z)g1(z), (13)

which couples eqn (11) and (12). The functions g(lK) and g(2lK)
require special consideration. When a continuum model is
mapped on a discretized space, the correct values for z = lK

and z = 2lK are found when shifted half a bond length: z = lK/2
and z = 3lK/2.18,38,42 When mapping the continuous functions
within the lattice boundary conditions, these values for z
are used.
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3.2 Concentration profile at a flat wall for dilute conditions

An explicit expression for the density shift length p can be
obtained by solving the boundary conditions derived in the
previous section. The central assumption in this section is that
entropic effects dominate the shape of the depletion concen-
tration profile of semi-flexible polymers. These entropic effects
are entirely described by the chain statistics as obtained from
the boundary conditions, equations eqn (11) and (12). This
assumption allows us to neglect the potential u from the
boundary conditions and obtain a density shift length that
accounts only for the stiffness of the polymer. In other words,
we assume that the density shift length derived from the
boundary conditions for u = 0 holds for all u 4 0.

Starting with gi(z) = tanh[(z + pi)/d0] and introducing the
parameters p1 and pN, corresponding to the density shift
lengths obtained from either one of the boundary conditions,
and using u = 0 in equations eqn (11) and (12) yields:

6 ¼ 2þ 4lK

1þ lK
þ 2

1þ lK

� �tanh
3lK

2
þ p1

d0

0
B@

1
CA

tanh

lK

2
þ p1

d0

0
B@

1
CA
; (14a)

6 ¼ 2þ 4lK

1þ lK
þ

tanh

3lK

2
þ pN

d0

0
B@

1
CA

tanh

lK

2
þ pN

d0

0
B@

1
CA
: (14b)

Assuming p { d0, such that we may approximate tanh(x) E x
and solving for p1 and pN gives:

2p1 ¼ �
lKðlK � 1Þ
2þ 2lK

; (15a)

pN ¼
lKðlK � 1Þ
6þ 2lK

: (15b)

As a final step, p1 and pN are connected through the adjusted
composition law at z = 0 as given in eqn (13). Again assuming
p1,pN,p { d0 and approximating tanh(x) E x provides:

p2 E p1pN. (16)

Because p1 o 0 and pN 4 0 for all lK, p is complex valued. To
account for this we define psf = |p|, where psf denotes the overall
density shift length. Using eqn (15a) and (15b) gives the final
(real-valued) expression for psf (in units of the bond length l):

psf ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lK

2ðlK � 1Þ2
4ð3þ lKÞð1þ lKÞ

s
: (17)

The polymer segment density profile for a solution of semi-
flexible chains then becomes:

rðzÞ ¼ tanh2
zþ psf

d0

� �
; (18)

where d0 ¼ 2Rg=
ffiffiffi
p
p

; with Rg the radius of gyration (in units of

the bond length l) of a re-scaled Kuhn polymer Rg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
NlK=6

p
.

The length scales Rg and lK = b/l are schematically shown in
Fig. 1; here the chain stiffness is varied at a constant Rg; which
is achieved by decreasing the number of monomers.

Because psf is a positive quantity the concentration profile is
shifted closer to the surface, as psf increases with increasing
chain stiffness. Effectively, this results in a smaller depletion
layer for stiffer chains. An analysis of the limiting behavior of
eqn (17) reveals that it converges towards psf = lK/2–3/2 for large
Kuhn lengths and psf = 0 for lK = 1. Thus, the theory is
consistent with the theory for flexible polymers;16,18 in the limit
of lK = 1, r(z) = tanh2(z/d0) is recovered.

3.3 Depletion thickness at a flat wall in dilute conditions

From the continuum concentration profile obtained with
eqn (18), an expression for the depletion thickness of a solution
containing semi-flexible polymers at a flat wall can be derived.

Fig. 1 The two relevant length scales for semi-flexible polymers; the radius of gyration Rg and the Kuhn length lK (in units of the monomer length l). The
radius of gyration is kept constant while the Kuhn length increases from left to right.
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The depletion thickness is given by:18

d ¼
ð1
0

1� rðzÞ½ �dz: (19)

Insertion of eqn (18) for r(z) and carrying out the integration of
eqn (19) yields the following expression for the depletion
thickness of a solution of semi-flexible chains:

dsf ¼ d0 1� tanh
psf

d0

� �� �
; (20)

which is valid for dilute polymer solutions.

3.4 Generalized depletion thickness

The depletion thickness as shown in eqn (20) is only valid for
dilute conditions. Fleer et al.18,44 derived a generalized (mean-
field) expression for the depletion thickness dg which applies to
the entire concentration range, including semidilute polymer
solutions:

1

dg2
¼ 1

d02
þ 1

kxð Þ2
; (21)

with

1

d02
¼ p

4Rg
2
; (22a)

1

x2
¼ �3 lnð1� jbÞ � 6wjb; (22b)

where x is the (bulk) correlation length in units of the bond
length l, and k is a numerical constant:

k ¼
1 wo 0:5;ffiffiffi
3

2

r
arctan h

1ffiffiffi
3
p � 0:81 w ¼ 0:5:

8<
: (23)

In order to obtain an expression for the correlation length
for a solution of semi-flexible chains we apply a Kuhn model
approach. The correlation length can be regarded as the size of
a blob.17,18 Let NB be the number of segments inside this blob,
the (mean-field) size of this blob is then

ffiffiffiffiffiffiffi
NB

p
l ¼ x. If we

introduce chain stiffness and apply the Kuhn model, we can
calculate the number of Kuhn segments in this blob: NB,K =

NB/lK. The size of the blob then becomes
ffiffiffiffiffiffiffiffiffiffi
NB;K

p
lKl ¼

ffiffiffiffiffiffiffiffiffiffiffi
NBlK
p

l ¼
xsf ; with xsf the re-scaled blob size. We can write this as:

xsf ¼
ffiffiffiffiffi
lK

p
x: (24)

This expression for the bulk correlation length of a semi-
flexible polymer solution xsf is similar to the bulk correlation
lengths as derived by Shimada et al.45 and Marques et al.46

using random phase approximation theory. These authors
found the same (lK)1/2 dependence of the bulk correlation
length.

Rewriting eqn (21) and applying eqn (20) yields an expres-
sion for the depletion thickness of a solution of semi-flexible
chains:

dg;sf ¼
kxsfd0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkxsf Þ2 þ d02

p 1� tanh
psf

kxsfd0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkxsf Þ2 þ d02

p

0
BBB@

1
CCCA

2
6664

3
7775; (25)

which predicts the depletion thickness over the complete range
of polymer segment volume fractions.

3.5 Extension to spheres

Eqn (18) describes the density profile of a solution of semi-
flexible polymers next to a non-adsorbing wall. An extension
towards the depletion profile around a sphere can be made
using a similar approach. Two research groups independently
found the concentration profile of an ideal, flexible chain near
a sphere with radius a, where a is in units of the bond length
l:16,47

rsðzÞ ¼
z

a

� �2
þ2 z

a

� �
CðyÞ þ kðzÞ

z

a
þ 1

� �2 ; (26)

where k(z) is defined as

k(z) = 2C(y) � C(2y), (27)

with y = z/Rg and C(y) is given by

CðyÞ ¼ erfðyÞ þ 2yffiffiffi
p
p e�y � 2y2erfcðyÞ; (28)

where z is now the distance from the surface of the sphere.
Fleer et al.18 showed eqn (26) can be accurately approximated
with the following expression:

rsðzÞ ¼

z

a
þ tanh

z

d0

� �
z

a
þ 1

2
664

3
775
2

: (29)

In the limit of a flat plate (a - N) eqn (29) reduces to r(z) =
tanh2(z/d0). Using the Ansatz that, as for the ideal case, the
density profile shifts by a length psf, we propose the density
profile of a solution of semi-flexible polymers around a non-
adsorbing sphere of radius a is given by:

rs;sf ðzÞ ¼

zþ psf

a
þ tanh

zþ psf

d0

� �
zþ psf

a
þ 1

2
664

3
775
2

: (30)

3.5.1 Depletion thickness around a sphere. Using the seg-
ment density profile around a sphere we can obtain an expres-
sion for the depletion thickness around a sphere. Similarly
to the depletion thickness at a flat wall, in a spherical geometry,
the negative adsorption again gives the depletion thickness.
The depletion thickness for a solution of semi-flexible polymers
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around a sphere (ds,sf) then follows from:8,18

4p
3
ðaþ ds;sfÞ3 � a3
	 


¼ 4p
ð1
0

ðaþ zÞ2½1� rs;sf ðzÞ�dz: (31)

No closed-form solution that we know of exists for this integral,
but it can be approximated as elaborated in Appendix B. The
depletion thickness of a solution of semi-flexible polymers near
a colloidal sphere of radius a then becomes:

1þ ds;sf
a

� �3

¼ 1þ 3d0
a

1� tanh
psf

d0

� �� �

� 3d02

a2
Li2 �e

� 4psf
d0

� �" #
; (32)

where Li2 is the dilogarithm defined as Li2ðxÞ ¼

�
Ð x
0

lnð1� uÞ
u

du. The depletion thickness around a sphere has

the limiting value of 1 + d0
2p2/(4a2) + 3d0/a for lK = 1, which is

the same result as obtained by Fleer et al.18 for a solution of
flexible chains. In their paper it was noted that this result is
approximate. Aarts et al.48 derived the depletion thickness
around a sphere for a flexible chain (lK = 1) using the full
expression given in eqn (26). They obtained an equation that
has nearly the same limits as eqn (32), the difference is in the
numerical pre-factor of the third term, which is a factor p/3
smaller. We incorporate this limit and obtain the following

expression for the depletion thickness around a sphere:

1þ ds;sf
a

� �3

¼ 1þ 3d0
a

1� tanh
psf

d0

� �� �

� 9d02

pa2
Li2 �e

� 4psf
d0

� �" #
: (33)

While all the equations in this section were written in
terms of d0, this can easily be extended towards the semidilute
regime if the generalized depletion thickness is used as shown
in the previous section. In that case, d0 is replaced by

kxsfd0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkxsfÞ2 þ d02

p
.

4 Results and discussion
4.1 Concentration profile near a flat wall

In Fig. 2 we compare the analytical expression (solid curves,
eqn (18)) with numerical SCF calculations (symbols). The seg-
ment density profiles r(z) = j(z)/jb are plotted for different
Kuhn lengths as indicated, and two different values of the
adsorption energy ws. The polymer bulk concentration jb

was set at 10�6 (very dilute) and the radius of gyration Rg (in
units of the monomer length) was fixed at 50 by varying the
number of monomers N, using N = 6Rg

2/(lK) (thus varying the
contour length). As can be seen, there is good agreement
between eqn (18) and SCF results for a wide range of chain
stiffnesses.

In the derivation of the continuum expression for semi-
flexible chains the adsorption energy ws was neglected, while it
is taken into account in the SCF computations. As follows from

Fig. 2 Polymer segment density profile near a hard wall for polymer solutions containing semi-flexible polymer chains, with jb = 10�6, Rg = 50, and ws =
0 (A) or ws = 6 (B). Our result (eqn (18), solid curves) is compared with numerical SCF calculations for a Kuhn length of 1 (circles), 15 (triangles), and 30
(diamonds), corresponding to a contour length (in units of the bond length) of 15 000, 1000, and 500, respectively.
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comparing Fig. 2A (ws = 0) and B (ws = 6), this assumption is
accurate as ws hardly affects the density profiles. This observa-
tion was extensively discussed by Fleer and Skvortsov38 for
flexible polymers; for ws much larger than the critical adsorp-
tion energy ws,crit there is barely any effect of ws on the
concentration profile of depleted polymers. Closer to the cri-
tical adsorption energy there is a shift towards the surface with
decreasing ws. In principle it is possible to take this into
account by defining another density shift length which
depends solely on the adsorption energy, however in this
work we focus on strong depletion. This observation also
indicates the limitations of our presented theory: it is
only valid sufficiently far away from the critical adsorption
energy ws,crit, which was derived by Birshtein et al.21 as

ws;crit ¼ 6 ln lK þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lK2 þ 4

p� �
= 2lK þ 2ð Þ

h i
.

Lastly, since psf 4 0 for all lK 4 1, eqn (18) predicts a
relatively large segment density at the surface. Fig. 3 shows
details of the layers close to the surface from Fig. 2A. As can be
seen, the agreement is good for all layers, except for the first.
The deviation in the first layer can be explained by realizing
that the adsorption energy is neglected in deriving of the
density shift length. The deviations for layer z 4 1 are small
because ws is only felt by polymer segments in the first layer.
Thus, the assumption of u = 0 hardly affects the density profiles
for z 4 1.

4.2 Depletion thickness at a flat wall

In Fig. 4 the result of eqn (20) (solid curves) is compared to SCF
results (symbols) as a function of the Kuhn length for the three
values of Rg indicated in the plot. In order to keep Rg constant,

the contour length (number of monomers N) is varied and
rounded to the nearest integer. A bulk polymer segment volume
fraction of jb = 10�6 and an adsorption energy of ws = 6 was
used in the SCF calculations. As is shown, there is good
agreement between the analytical expression for the depletion
thickness at a wall in contact with solutions containing semi-
flexible chains and the results obtained from SCF. Again, as
expected from the concentration profile, the depletion thick-
ness of a semi-flexible chain is smaller as compared to a flexible
chain with the same radius of gyration. In turn, the depletion
thickness becomes a monotonically decreasing function of
chain stiffness if the radius of gyration is kept constant.

For the calculations where the polymers have a radius of
gyration Rg of 25 and 50, the deviations between the predictions
of eqn (20) and SCF results are small but slightly increase with
increasing Kuhn length. These deviations can be explained
because the number of Kuhn segments NK becomes increas-
ingly smaller for larger Kuhn lengths. As an example, in the
case of Rg = 25 at lK = 50, the number of Kuhn segments is NK =
1.5. For a small number of Kuhn segments the physics of the
polymer chain deviates from a statistical Gaussian chain and
becomes more rigid-rod-like, which is not accounted for in
continuum theories of polymer solutions. For NK 4 8 the error
between the numerical SCF and the analytical theory is smaller
than 5%.

4.3 Concentration dependence of the depletion thickness

In Fig. 5A we show the concentration dependence of the
depletion thickness of semi-flexible polymer solutions. The
generalized depletion thickness is plotted as a function of

Fig. 3 A close-up of Fig. 2 A around the layers close to the non-adsorbing
surface. Our analytical result (eqn (18), solid curves) is compared with
numerical SCF computations for a Kuhn length of 1 (circles), 15 (triangles),
and 30 (diamonds).

Fig. 4 Chain stiffness dependence of the depletion thickness: dsf is
plotted as a function of the Kuhn length lK for three radii of gyration as
indicated. Parameters: ws = 6 and jb = 10�6. The solid curves follow
eqn (20).
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the polymer bulk concentration for various Kuhn lengths, again
for Rg = 50. The symbols are results from numerical SCF
computations, and the solid curves are the predictions of
eqn (25). An adsorption energy of ws = 6 is used in the SCF
calculations. The polymer bulk concentration can be converted
to concentrations in terms of fractions of the overlap concen-
tration fb using jb/jov = fb, where jov = N/(4/3pRg

3). For Kuhn
lengths lK = 1, lK = 10, and lK = 20 used in the Figure this
corresponds to jov = 0.0286, jov = 0.0029, and jov = 0.0014.

The general observation is that increasing the polymer
segment bulk concentration above a certain concentration
compresses the depletion zone. This can be understood by
the increase in osmotic pressure with increasing polymer
segment bulk volume fraction, which pushes polymer chains
towards the non-adsorbing surface.17,18 In turn, the depletion
thickness decreases. Eqn (25) is in good agreement with SCF
calculations. A notable result is that increasing the chain
stiffness results in a more extended concentration range where
the depletion thickness is constant; the decrease of dg,sf shifted
to higher polymer concentrations for solutions with stiffer
polymer chains. Additionally, because the semi-flexible poly-
mers have less configurational entropy, the depletion thickness
is smaller in the dilute limit compared to the flexible case.
These two effects result in a cross-over concentration,
after which the solution containing more flexible polymers
has a smaller depletion thickness than a solution with stiffer
polymers.

The larger range of ‘dilute’ behavior can be explained by
looking at the osmotic pressure P of the polymer solution,
which for polymer solutions in a y-solvent is given by the

approximate (mean-field) Flory–Huggins expression:49,50

Pl3

kBT
¼ jb

N
þ 1

3
jb

3; (34)

where N is the number of monomers in the polymer chain. In
the dilute limit the osmotic pressure approaches the van ’t
Hoff limit P0l3/kBT = jb/N. Let us now define a compressi-
bility factor Z:

Z ¼ P
P0
¼ 1þN

3
jb

2: (35)

For polymers with a constant radius of gyration, increasing
the Kuhn length scales down the number of monomers as
N B Rg

2/lKl2. Therefore, Z increases more for solutions
containing flexible polymers than for solutions containing
stiffer polymers. This phenomenon results in a lower poly-
mer concentration at which Z increases sufficiently to facil-
itate the compression of the depletion layer, which is shown
in Fig. 5B.

The cross-over discussed earlier indicates the existence of a
Kuhn length at which the depletion thickness has a maximum
at fixed polymer bulk concentration; this is shown in Fig. 6.
Here the generalized depletion thickness in the semidilute
regime is plotted as a function of the Kuhn length for a bulk
concentration of jb = 0.03 and jb = 0.01. We now indeed find a
maximum as a function of both the polymer bulk concentration
jb and the Kuhn length lK. The previously mentioned effects
can explain this maximum; a solution containing stiffer poly-
mers behaves quasi-ideal up to higher concentrations because
the coils are more dilute. On the other hand, because of the

Fig. 5 (A) The generalized depletion thickness as a function of the polymer bulk concentration for a solution of polymers with a radius of gyration of 50,
contour lengths of the polymers (in units of the bond-length) are 15 000, 1500, and 750 and overlap concentrations of the polymers are jov = 0.0286,
jov = 0.0029, and jov = 0.0014 for lK = 1, 10, and 20, respectively. The symbols are numerical SCF data and the solid curves are calculated using eqn (25).
(B) The compressibility factor as defined in eqn (35) as a function of the polymer bulk concentration for polymers with a gyration radius of 50.
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decrease in configurational entropy, the depletion thickness in
the dilute limit is smaller for solutions containing more stiff
polymers. The balance between these two effects results in a
maximum of the depletion thickness. This maximum also has
important implications for the interactions between colloids in
colloid–polymer mixtures. The concentration dependent
decrease of the depletion thickness in the semidilute regime
has a major impact on the location of the triple point, as shown
by Fleer et al.51 As we observed a maximum in the depletion
thickness as a function of chain stiffness, one might expect that
chain stiffness thus also impacts the location of the triple
point. However, the specific implications of chain stiffness on
the phase behavior of polymer–colloid mixtures is out of scope
of this work.

It is known that concentrated semi-flexible polymer solu-
tions undergo an isotropic–nematic phase transition at suffi-
ciently high chain stiffness.45,52–54 This effect is neglected in
our theory, which limits our work to polymer concentrations
below the isotropic-nematic phase transition. Semenov and
Khokhlov showed55,56 that in the limit of N c lK a semi-
flexible polymer solution is isotropic for jb t 10.48/lK. In the
case displayed in Fig. 5, this corresponds to jb t 0.5 for lK = 20
and jb t 1 for lK = 10. However, semi-flexible polymers near a
non-adsorbing surface also show nematic ordering close to
the surface.57–60 While this effect is also present for flexible
polymers, it is much more pronounced for semi-flexible
polymers with some form of intrinsic stiffness.58,60 This
confinement-based nematic ordering results in an ordered
layer with a thickness on the order of the persistence length
of the polymer.57–60 Zhang et al. showed60 that within a lattice-
based self-consistent field model for semi-flexible polymers,

neglecting the free energy gain of nematization through a
nematic aligning potential results in an underestimation of
the effective ordering parameter of the polymers. Incorporating
the nematic aligning potential would thus result in a further
decrease of the depletion thickness, as the polymer segment
density is increased near the surface due to the ordering of the
chains. While it is possible to take bond-correlations into
account within the Scheutjens-Fleer SCF formalism,32,39 it does
not lead to tractable analytical equations, thus we did not
include this in our theory. Nevertheless, we expect that there
is qualitative agreement with models that do include the
nematic field coupling of the polymer chains. Additionally,
we must note that the nematic ordering of semi-flexible poly-
mers is significantly enhanced when the polymers are confined
between two surfaces, thus careful consideration of the approx-
imate character of the presented theory must be taken into
account when describing, for example, depletion interactions
between two surfaces.

4.4 Depletion thickness around a sphere

Fig. 7 shows the depletion thickness around a sphere (eqn (33))
as a function of the polymer–colloid size ratio qR = Rg/a. We
compare the analytical equation (solid curves) with numerical
SCF calculations (symbols). The radius of gyration of the
polymers (in units of the monomer length) is Rg = 100, the
Kuhn length is varied from 1 to 40, and the effects of colloidal
sphere radius are scanned from a = 10 000 to a = 10, where a is
again in units of the bond length l. To obtain the numerical

Fig. 7 The depletion thickness around a sphere as a function of the
polymer to colloid size ratio qR for Rg = 100 and a variable colloidal radius
a. Results are shown for lK = 1, 10, 20 and 40, corresponding to a contour
length (in units of the bond-length) of 60 000, 6000, 3000, and 1500,
respectively. The solid curves are predictions of eqn (33) and the symbols
correspond to results from SCF computations using a polymer bulk
concentration of jb = 10�6.

Fig. 6 The generalized depletion thickness as a function of the Kuhn
length for jb = 0.03 and jb = 0.01. The radius of gyration of the polymers
is kept constant at 50. The symbols are numerical SCF data and the solid
curves are our analytical expression, eqn (25).
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SCF data a polymer bulk concentration of jb = 10�6 and ws = 6
was used.

Also, for spherical geometry, the depletion thickness
decreases for solutions containing stiffer chains. In the limit
of qR - 0 the exact flat plate result is re-obtained as expected.
When qR increases, the depletion thickness decreases as a
result of an increase in the number of polymer configurations
near the curved surface. When the polymers are large compared
to the spheres, configurations where the polymer is wrapped
around the colloidal sphere are possible.16 This increase in the
number of configurations results in a smaller perturbation of
the polymer solutions and thus a smaller depletion thickness.
Intuitively, chain stiffness also has an effect on the number of
available configurations of the polymer. Remarkably, it is
observed that incorporating the density shift length psf

accounts accurately for this effect on the number of configura-
tions, even in spherical geometry.

It can be observed that eqn (33) starts to deviate consider-
ably from the SCF data for qR 4 2. This is due to the less
accurate approach of using eqn (29) for large qR, as noted by
Fleer et al.18 and Tuinier and Lekkerkerker.61 While corrections
to the concentration profile, and therefore the depletion thick-
ness, are possible,61 they do not result in analytical equations
for the depletion thickness; thus, we are satisfied with the
current approximate result. We note that for polymer solutions
in y-solvents in the semidilute regime, eqn (33) overestimates
the depletion thickness around a sphere up to 10% at large
values of qR. This is because the tanh(z/d0) approximation in
eqn (29) is strictly speaking not accurate for y-solvent condi-
tions, as noted by Fleer et al.18 This can be corrected by
replacing tanh(z/d0) with a more involved function, accounting
more accurately for the energetic interactions between the
solvent and polymer segments.

5 Conclusions

In this paper simple, yet accurate analytical expressions for the
concentration profile and depletion thickness of solutions
containing semi-flexible polymers near a hard flat plate and
near a sphere have been derived. Using previous results for
solutions of flexible polymers and surface boundary conditions
derived from self-consistent field theory, we introduced a
density shift length psf which accounts for the decrease in
configurational entropy of a semi-flexible polymer. The result-
ing theoretical predictions quantitatively describe the segment
density profiles from self-consistent field lattice computations
for solutions containing semi-flexible polymer chains. The
general finding was that stiffer chains lead to a decrease of
the width of the depletion zone.

Using the standard definition of the depletion thickness
we derived that the depletion thickness dsf of a solution con-
taining semi-flexible polymers has a simple form; dsf =
d0[1 � tanh(psf/d0)], with d0 ¼ ð2=

ffiffiffi
p
p
ÞRg and Rg the radius of

gyration of the polymers. This approach was extended towards
spherical geometry with similar findings: stiffer chains in

solution lead to smaller depletion zones. Also, in this case,
the theoretical predictions describe the numerical SCF calcula-
tions very well, except for the case where the polymers are much
larger than the spheres.

Above a certain polymer concentration the depletion thick-
ness drops with increasing polymer concentration. We found
that solutions containing stiffer polymers behave quasi-ideal (d
E d0) over a more extended range of concentrations. Further-
more, it was shown that there is a local maximum in the
depletion thickness as a function of chain stiffness in the
semidilute regime. This maximum may have important impli-
cations for the phase behavior of colloid–polymer mixtures.

The mean-field treatment presented in this article is built
upon the mean-field theory for flexible polymers. The latter has
its limitations; both within the self-consistent field calculations
and the analytical expressions fluctuations are not accounted
for. This means that the scaling exponents for the correlation
length differ from more accurate treatments such as scaling
theory or renormalization group theory (RGT) calculations.
However, the results shown here provide significant insight
in the effect of chain stiffness on the depletion behavior of
polymer solutions. As a next step, for good-solvent conditions,
chain swelling, and fluctuations in the semidilute regime
should be incorporated in the presented theory. One possible
methodology is by using the correct scaling exponents obtained
from scaling theory or RGT calculations.51

One of the main benefits of the new theory is that concen-
tration effects in the semidilute regime are taken into account.
Furthermore, it is entirely consistent with the theory of deple-
tion for solutions of flexible polymers, enabling a general
theoretical approach that extends towards stiffer polymer
chains. A useful application of this new theory is to predict
the phase behavior of mixtures of semi-flexible polymers and
colloids, which we intend to work on in the future.
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Appendix

A Comparison with earlier theories

In the introduction of this paper we noted that the theories of
Ausseré et al.29 and Lue30 are inconsistent with numerical SCF
calculations. In this appendix we reproduce Fig. 4 and 7 with
dashed lines that represent the expressions obtained by Aus-
seré et al.29 and Lue,30 respectively. It must be noted that Lue
did not derive an expression for depletion thickness but rather
for the excluded volume; Tuinier used this to obtain an expres-
sion for the depletion thickness,62 which is what is shown.

The first comparison is shown in Fig. 8; here the depletion
thickness is plotted as a function of the Kuhn length for three
radii of gyration as indicated. The dashed lines are the
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expression of Ausseré et al.,29 dsf = d0 � lK, and the symbols are
numerical SCF calculations. The SCF calculations are obtained
using jb = 10�6 and ws = 6. As can be seen, the analytical

approximation starts to deviate from the SCF calculations
substantially at larger Kuhn lengths.

Next, we compare the results of Lue30 to SCF computations
in Fig. 9. Here we plot the depletion thickness around a sphere
as a function of the polymer to colloid size ratio qR. The dashed
curves again are the analytical approximation, and the symbols
are numerical SCF calculations. Remarkably, for smaller qR the
analytical approximation overestimates the depletion thickness
for all lK 4 1, while for large qR it is consistent with the SCF
calculations.

B Analytical approximation for the
spherical depletion thickness

In order to obtain an analytical equation which can be used
in further theoretical investigations, the excluded volume inte-
gral, eqn (31), must be solved approximately. This approxi-
mation can be done as follows. We can change the equations
for the concentration profile such that it closely approximates
eqn (30) but has a closed-form solution to the excluded
volume integral. If we then match the flat plate limit and
flexible chain limit it approximates the numerical integral fairly
well. Through trail-and-error it was found that one such
function is:

rsðzÞ �

z

a
þ tanh

zþ 2psf

d0

� �
z

a
þ 1

2
664

3
775
2

: (36)

This function can be used as an input in the excluded volume
integral and has the solution:

1þ ds;sf
a

� �3

¼ 1þ 3d0
a

1� tanh
2psf

d0

� �� �

� 3d02

a2
Li2 �e

� 4psf
d0

� �" #
: (37)

We find that in the limit of a -N this equation results in dsf =
d0[1 � tanh(2psf/d0)]. To match the flat plate result in this limit
we have to replace 2psf - psf in the second term of eqn (37) and
thus we end up with eqn (32).

C The depletion thickness in a good
solvent

In this section we check the validity of eqn (25) for the good-
solvent case (w o 0.5). It must be noted that within the mean-
field treatment presented in this article, chain swelling and the
w-dependency of the concentration-independent depletion
thickness d0 is not taken into account.18 Hanke et al. found36

that for excluded volume polymers d0 = 1.07Rg, where Rg scales
with Nk

0.588.
In Fig. 10 the result of eqn (25) (solid curves) is compared to

SCF results (symbols) as a function of jb for three values of lk as
indicated in the plot. The polymer radius of gyration is 50 and

Fig. 9 The depletion thickness around a sphere as a function of the
polymer to colloid size ratio qR for Rg = 100 and a variable colloidal radius
a. A Kuhn length of 1, 10, 20 and 40 is shown, corresponding to a contour
length (in units of the bond-length) of 60 000, 6000, 3000, and 1500,
respectively. The dashed curves are the Padé approximation of Lue30

converted to a depletion thickness by Tuinier,62 and the symbols are
SCF calculations. A polymer bulk concentration of jb = 10�6 was used
for the SCF calculations.

Fig. 8 Chain stiffness dependence of the depletion thickness. dsf is
plotted as a function of the Kuhn length lK for three radii of gyration as
indicated, ws = 6 and jb = 10�6. The dashed curves are the result of Ausseré
et al.,29 dsf = d0 � lK, and the symbols are numerical SCF computations.
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the solvency parameter w = 0, thus we are in the good-solvent
limit of pure excluded volume interactions. As can be seen, the
agreement is quantitative within the mean-field approximation
used. We find similar trends as discussed in Section 4.3: with
increasing polymer segment bulk concentration the depletion
zone is compressed. This effect is more pronounced in good-
solvent conditions as compared to the y-solvent condition, as
was first shown by Fleer et al.18 Interestingly enough the cross-
over concentrations are recovered, thus, there is also a max-
imum in the depletion thickness in good-solvent conditions.
This leads us to the conclusion that within a mean-field
approximation, the existence of the maximum is a semi-
flexible polymer specific effect, independent of the solvency.

Acknowledgements

J. O. gratefully acknowledges the financial support from the
Dutch Ministry of Economic Affairs of the Netherlands via the
Top-consortium Knowledge and Innovation (TKI) roadmap
Chemistry of Advanced Materials (No. CHEMIE.PGT.2018.006).
M. V. acknowledges the Netherlands Organization for Scientific
Research (NWO) for a Veni grant (No. 722.017.005). S. H. M. van
Leuken acknowledges the financial support of the InScite
HiperBioPol project. The authors acknowledge Professor Frans
Leermakers for the sfbox software package and useful discus-
sions on SCF theory. Additionally, the authors would like to
thank a helpful referee for pointing out the wall-induced
nematization in depleted polymer solutions.

References

1 G. J. Fleer, Adv. Colloid Interface Sci., 2010, 159, 99–116.
2 H. N. W. Lekkerkerker, W. C.-K. Poon, P. N. Pusey,

A. Stroobants and P. B. Warren, Europhys. Lett., 1992, 20,
559–564.

3 R. Mezzenga, P. Schurtenberger, A. Burbidge and M. Michel,
Nat. Mater., 2005, 4, 729–740.

4 K. Park, H. Koerner and R. A. Vaia, Nano Lett., 2010, 10,
1433–1439.

5 A. Polson, G. M. Potgieter, J. F. Largier, G. E. F. Mears and
F. J. Joubert, Biochim. Biophys. Acta, Gen. Subj., 1964, 82,
463–475.

6 M. Vikelouda and V. Kiosseoglou, Food Hydrocolloids, 2004,
18, 21–27.

7 S. Asakura and F. Oosawa, J. Polym. Sci., 1958, 33, 183–192.
8 H. N. W. Lekkerkerker and R. Tuinier, Colloids and the

Depletion Interaction, Springer, 2011.
9 A. Vrij, Polymers at interfaces and the interactions in

colloidal dispersions, Pure Appl. Chem., 1976, 471–483.
10 S. J. Park and J. U. Kim, Soft Matter, 2020, 16, 5233–5249.
11 R. Tuinier and A. V. Petukhov, Macromol. Theory Simul.,

2002, 11, 975–984.
12 J. M. H. M. Scheutjens and G. J. Fleer, J. Phys. Chem., 1979,

83, 1619–1635.
13 G. J. Fleer, M. A. Cohen Stuart, J. M. H. M. Scheutjens,

T. Cosgrove and B. Vincent, Polymers at interfaces, Chapman
& Hall, 1998.

14 W. Li, K. T. Delaney and G. H. Fredrickson, J. Chem. Phys.,
2021, 155, 154903.

15 E. Eisenriegler, J. Chem. Phys., 1983, 79, 1052–1064.
16 E. Eisenriegler, A. Hanke and S. Dietrich, Phys. Rev. E, 1996,

54, 1134–1152.
17 P. G. De Gennes, Scaling Concepts in Polymer Physics, Cornell

Univ. Press, 1979.
18 G. J. Fleer, A. M. Skvortsov and R. Tuinier, Macromolecules,

2003, 36, 7857–7872.
19 J. Dinic and V. Sharma, Macromolecules, 2020, 53,

4821–4835.
20 A. McMullen, M. Holmes-Cerfon, F. Sciortino,

A. Y. Grosberg and J. Brujic, Phys. Rev. Lett., 2018,
121, 138002.

21 T. M. Birshtein, E. B. Zhulina and A. M. Skvortsov, Biopoly-
mers, 1979, 18, 1171–1186.

22 S. Yamazaki, M. Kawaguchi and T. Kato, J. Colloid Interface
Sci., 2002, 254, 396–401.

23 A. M. Kulkarni, A. P. Chatterjee, K. S. Schweizer and
C. F. Zukoski, J. Chem. Phys., 2000, 113, 9863–9873.

24 N. Kozer, Y. Y. Kuttner, G. Haran and G. Schreiber, Biophys.
J., 2007, 92, 2139–2149.

25 J. L. Doublier, C. Garnier, D. Renard and C. Sanchez, Curr.
Opin. Colloid Interface Sci., 2000, 5, 202–214.

26 R. Hoskins, I. D. Robb, P. A. Williams and P. Warren,
J. Chem. Soc., Faraday Trans., 1996, 92, 4515–4520.

27 A. Omari, M. Moan and G. Chauveteau, J. Rheol., 1989, 33,
1–13.

Fig. 10 The generalized depletion thickness in a good-solvent as a
function of the polymer bulk concentration for polymers with Rg = 50,
contour lengths of the polymers (in units of the bond-length) are 15 000,
1500, and 750 for lK = 1, 10, and 20, respectively. The symbols are
numerical SCF data and the solid curves are calculated using eqn (25) with
w = 0.

PCCP Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

1 
Fe

br
ua

ry
 2

02
2.

 D
ow

nl
oa

de
d 

on
 7

/3
0/

20
25

 2
:4

3:
21

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d1cp05026e


This journal is © the Owner Societies 2022 Phys. Chem. Chem. Phys., 2022, 24, 3618–3631 |  3631

28 V. F. D. Peters, R. Tuinier and M. Vis, J. Colloid Interface Sci.,
2022, 608, 644–651.
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