Open Access Article. Published on 04 March 2022. Downloaded on 1/19/2026 9:06:00 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

PCCP

¥ ® ROYAL SOCIETY
PP OF CHEMISTRY

View Article Online

View Journal | View Issue

’ '.) Check for updates ‘

Cite this: Phys. Chem. Chem. Phys.,
2022, 24,7937

Received 26th October 2021,
Accepted 3rd March 2022

DOI: 10.1039/d1cp04893g

A physics-inspired neural network to solve
partial differential equations — application in
diffusion-induced stress
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Analyzing and predicting diffusion-induced stress are of paramount importance in understanding the
structural durability of lithium- and sodium-ion batteries, which generally require solving initial-boundary
value problems, involving partial differential equations (PDEs) for mechanical equilibrium and mass
transport. Due to the complexity and nonlinear characteristics of the initial-boundary value problems,
numerical methods, such as finite difference, finite element, spectral analysis, and so forth, have been
used. In this work, we propose two whole loss functions as the sum of the residuals of the PDEs, initial
conditions and boundary conditions for the problems with decoupling and coupling between diffusion
and stress, respectively, and apply a physics-inspired neural network under the framework of DeepXDE
to solve diffusion-induced stress in an elastic sphere in contrast to traditional numerical methods. Using
time-space coordinates as inputs and displacement and the solute concentration as outputs of artificial
networks,
concentration in the elastic sphere for both the decoupling and coupling problems. The numerical

neural we solve the spatiotemporal evolution of the displacement and the solute

results from the physics-inspired neural network are validated by analytical solutions and a finite element
simulation using the COMSOL package. The method developed in this work opens an approach to

rsc.li/pccp

1. Introduction

Lithium-ion batteries (LIBs), as one of the world’s most promis-
ing clean energy storage devices, have attracted great attention
due to their higher energy density, larger capacity, and longer
life span. Diffusion-induced stress (DIS) due to the concen-
tration gradient during mass transport and/or the deformation
of active materials during charging and discharging has been
proven to be one of the most important factors contributing to
the failure of LIBs."” DIS can be calculated generally from
partial differential equations (PDEs) for mechanical equili-
brium and mass transport, in which mechanical equations
consist of constitutive equations and equilibrium equations
and the mass transport equation is the diffusion equation. The
methods to solve such a set of PDEs can follow the techniques
in thermo-elasticity, as used first by Prussin.’
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analyze the stress evolution in electrodes due to electrochemical cycling.

For instance, Li* studied DIS in elastic structures of different
geometries (e.g., cylindrical, spherical and thin plate) and
obtained analytical solutions for each geometry by substituting
the analytical solution of the corresponding diffusion equation
with the analytical solution for the corresponding thermoelas-
tic problem. Following the thermal analogy method, Yang®
incorporated diffusion-induced bending in analyzing DIS in
an elastic hollow cylinder, in which the analytical forms of
resultant axial stress and hoop stress were formulated. Hao
et al.® investigated the effects of surface stress on DIS in solid
and hollow nanowire electrode particles and obtained analyti-
cal solutions since the surface stress was used in the boundary
conditions. Ostadhossein et al.” studied stress effects on the
initial lithiation of crystalline silicon nanowires in LIBs based
on ReaxFF. Hong et al® used the numerical simulation in
analyzing the DIS evolution in Sn micropillars.

It is very difficult to obtain analytical solutions due to the coupling
between diffusion and stress with stress-assisted diffusion” and/or a
concentration-dependent elastic modulus'® being included in the
DIS analysis. Similarly, it is very difficult to obtain analytical solutions
when a large deformation,”"™ plastic flow,"*" phase transition,'®"”
chemical reaction,"®*® dislocation motion,**! and mechanical
contact® are considered in calculating the DIS in host materials
of LIBs. Numerical methods, such as the finite difference
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method and the finite element method, are generally used to
obtain numerical results. The increasing demand for fast
charging has led to the observation of some critical experi-
mental behaviors during the charging and discharging of
LIBs,”*** which require the development of numerical
modeling and simulation of DIS in LIBs. However, as numer-
ical modeling and simulation of diffusion-induced stress
become more and more complex, the traditional numerical
methods used to solve related PDEs may face the issues of
numerical convergence and computational cost, resulting in
great hindrance to research and development. Hence, there
is a great need to develop new numerical methods in DIS
research.

In the last decade, explosive growth of data occurred in all
fields, and there has been great progress in computer-related
technologies. All of these have provided the conditions needed
for the development and applications of machine learning.
Deep learning® >’ has become an active area in the field of
machine learning and has made remarkable achievements in
machine translation,”® language processing,”® visual
recognition®® and other related fields. It is now convenient to
use the chain rule to differentiate compositions of functions by
automatic differentiation in machine learning packages, such
as TensorFlow®' and PyTorch,”* ie. neural networks have
become promising and efficient tools for solving PDEs.

In industrial applications of deep learning, a feedforward
neural network is one of the simplest, most widely used and
most rapidly developed artificial neural networks. The feed-
forward neural network was designed to approximate target
functions, making it possible to solve PDEs by deep learning.
Raissi et al.*® provided a deep learning framework, which is
referred to as physics-informed neural networks (PINNs), to
solve both forward problems with initial and boundary con-
ditions and inverse problems with some additional informa-
tion for nonlinear problems. Lu et al.** proposed a deep
learning library of DeepXDE and introduced a residual-based
adaptive refinement method to improve the training effi-
ciency of PINNs. Reformulating PDEs with backward stochas-
tic differential equations, Han et al®’ targeted on solving
nonlinear PDEs with hundreds and potentially thousands of
dimensions. Bar-Sinai et al.*® introduced a data-driven dis-
cretization method to resolve spatiotemporal issues over
large length and time scales, and their results suggested that
the accuracy of the proposed method is in accordance with
finite difference methods.

Solving the PDEs, which consist of geometrical equations,
constitutive equations and equilibrium equations, is generally
an effective way to understand the deformation and stress
fields in a solid. Recently, a deep learning strategy has been
used to solve mechanical problems using the strain energy of a
solid as a loss function for a deep neural network.”” In analyz-
ing the Féppl-von Karman equation, Li et al.*® compared the
differences of numerical accuracies for three differnt methods
with a loss function, ie. purely data-driven, PDE-based and
energy-based. These studies suggest that deep learning likely
has broad potential in solving mechanical problems and can
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also be applied to solve chemomechanical coupling prblems,
such as DIS in LIBs.

In this work, we propose two loss functions associated with
mass transport and diffusion-induced stress for decoupling
and coupling between diffusion and stress, respectively, and
use the loss functions in a neural network to numerically solve
DIS in an elastic sphere. Such an approach is different from
traditional deep learning, which needs the exact solution or
reference solution at the corresponding coordinates in the
training. This paper is organized as follows. In part 2, we
introduce mathematical formulations for DIS and mass trans-
port in the elastic sphere. In part 3, we briefly introduce some
basic theory of deep learning and design a physics-inspired
neural network, which is also referred to as the deep neural
network (DNN), to solve the PDEs in part 2. In part 4, we
develop three DNNs with different parameters and compare the
numerical results from deep learning with analytical solutions.
In part 5, we further test the robustness and capability of the
DNN by analyzing DIS in the elastic sphere with stress-limited
diffusion and compare the results with the results from the
finite element simulation. Finally, we conclude the work.

2. Mathematical formulations for
diffusion-induced stress in an elastic
sphere

Consider a classical case, i.e. the DIS in an isotropic, spherical
particle of an initial radius R. The deformation of the sphere is
linearly elastic. Since the velocity of the elastic wave is generally
much faster than the diffusion rate, mechanical deformation
can be regarded as quasi-static. There are only three non-zero
stress components, ie. the radial stress component ¢, and
tangential stress components ¢y = ¢, due to the spherical
symmetry of the problem.

Without any body force, the differential equation for the
mechanical equilibrium in the elastic sphere in the framework
of linear elasticity®® is

do, o, — 0y
o +2 = 0. (1)

3,40

Similar to linear thermoelasticity,””" the constitutive rela-

tionship between stress and strain can be written as

B E e 4 (LEW)OC

o= | e e - R )

SRS R 7
A4+v)(1=20) " 3 ’

where E and v are the Young’s modulus and Poisson’s ratio,
respectively, and C and Q are the molar concentration and the
partial molar volume of diffusive atoms. ¢, and ¢ are the radial
and tangential strain components, respectively, which can be
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calculated from the non-zero radial displacement u as
— &0 = v (3)

Substituting eqn (2) and (3) in eqn (1), we obtain the
differential equation of mechanical equilibrium in terms of
the radial displacement u and the solute concentration C as

u

-t otE @

ror 2 3(1—v) or

For the traction-free condition on the surface of the sphe-
rical particle, the initial and boundary conditions are

u(r,0) = 0,u(0,£) = 0,6,(R,¢) = 0 )

Without the stress effects on diffusion, the differential
equation for mass transport is

9C_D 0 (0c 6
ot r2or\' or)

where D is the diffusion coefficient. Under a constant flux J,
into the surface of the spherical particle, the initial and
boundary conditions are

GCSRJ):ahandaC«LQ

C(r,0) =0, D . .

=0 (7
In this work, we use time-space coordinates as the DNN
inputs and the concentration and displacement as the DNN
outputs. Note that there is a convergence issue for a nanosized
spherical particle when the chain rule is used to differentiate
the function composition via the automatic differentiation of
spatial coordinates. To improve the training precision and
efficiency, dimensionless variables are introduced as follows:

r Dt ., u . DC
X—E,T—ﬁ7 u —E7 andC —RJO, (8)
3(1-v)D 3(1-v)D
2 s and ot = 9
% T TEQIR T T TEgR )

Using the dimensionless variables, eqn (4) and (6) are re-
written as

Put 20u 2wt (14 v)QRJ,OC*
e Lo 10
6x2+x8x x2 3(l—-v) D Ox ' (10)
acr  PCr 20C
ot x> xox =0, (11)
and the initial and boundary conditions as
u(0,7) =0, u*(x,0) =0,and o7 (1,7) =0 (12)
. L oCcH (1) oC*(0,7)
C*(x,0) =0, P 1 and P 0, (13)

with x € [0, 1], which can improve the efficiency as well the
accuracy during the training process.
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3. Deep neural networks for solving
PDEs

DNNs include an input layer, several hidden layers and
an output layer. As one of the most basic DNNs, the feedfor-
ward neural network (FNN) is easy to be trained to solve
problems in most cases. In this work, we mainly use the FNN
to solve the above PDEs. Detailed information is presented in
Appendix.

In previous studies, most researchers had adopted a
‘data driven’ method to solve PDEs by deep learning. In the DIS
analysis, using the ‘data driven’ method to deal with PDEs
requires the coordinate r and time ¢ as the inputs of a neural
network and the numerical solutions of the displacement « and
the concentration C as the outputs. A key part of the neural
network to evaluate the results is the loss function, which can
be expressed in the ‘data driven’ method as

35,36

Nira

_ 1 . 2,114 2
L_WmlZ:;<||”i—uf\|2+||C,-—C,-H2>7 (14)

where Ny, is the number of training points, and #; and C; are
the exact solution or reference solution at the corresponding
coordinates, which need to be known in advance.

As given by eqn (14), the loss function for the data-driven
model can be minimized only when the solution field of a
sufficiently large number of sample points can be observed.
However, for the PDEs in the DIS analysis, exact solutions or
reference solutions are generally difficult to derive and/or
obtain. Hence, it is necessary to develop new loss functions to
obtain the solutions.

To use DNNs to solve the DIS problems, the outputs of the
DNN must satisfy the PDs of (10) and (11) and the corres-
ponding initial and boundary conditions of (12) and (13).
Following the work by Lu et al,** we construct a whole loss
function of the PDEs for the DIS in the spherical sphere as the
sum of the residuals of the PDEs and the initial and boundary
conditions in analyzing the discrepancy between the DNN and
constraints.

Let Lppgs be the residuals from the two PDEs as

Lppgs = Lequi + Laitr

205 (. T (s T 2
0°u* (x;, 7)) +28u (x,,‘z:,)x

oz Ox ‘
Ny * (. T
1 (1+v)Q RJy OC*(xi,7)
L B 2o X;
Dy B R T by Pl R
E?C*(xhn) R 82C*(x,-7r,~) c’)C*(xi,r;) 2
* H or T o T 2 Ox )
(15)

where (x;, 7;) are the residual points that are sampled in the
solution domain, and Ny is the number of the sample points.
Lequi and Lgjg represent the losses of the equilibrium equation
and the mass transport equation, respectively.
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Fig. 1 Flow chart of the DNN to solve the PDEs for the DIS in the elastic sphere.

The boundary conditions for mechanical deformation
include the traction and displacement conditions, and both
can be regarded as the Dirichlet boundary condition. For the
mass-transport equation, the boundary conditions are
the Neumann boundary conditions. The loss function of the
initial conditions can be treated as the ones similar to the
Dirichlet boundary condition in DNNs. Thus, the loss functions
for the four boundary conditions Lgcs and two initial conditions
Ly are constructed, respectively, as

lor (0, %)) |13+]| (1, %) 3

Npcs
Lycs = ac(0,7)|*  [[oc (L,7) | |» (16)
: ;NBCS +‘ (;xr) +H a(xr)—l
2 2
Nics
1 * *
Lo = 2 (167G O+ (v OlE). - (47

Here, (0, 7,),(1, ;) and (x;, 0) are the residual points sampled
randomly on the boundary (i.e., x = 0 and x = 1) at the initial
time (i.e., t = 0). Npcs is the number of points sampled on the
left and right boundaries, and Nj¢cs is the number of points
sampled at initial time.

The whole loss function is then constructed as

Lpis = Lepes + A(Lpcs * Lics) (18)

where / is the weight of loss. Note that the finite difference is
used in the calculation of the derivatives in eqn (16) during the
numerical calculation.

The minimization of the total loss Lps is performed to
determine the appropriate whole weight matrix and bias vector
0* = [W, b] in the DNN, which is used to obtain the numerical
solution of the corresponding PDEs for the given initial and
boundary conditions for a pre-determined error limit &. When
the whole loss function is smaller than the error limit, the DNN

7940 | Phys. Chem. Chem. Phys., 2022, 24, 7937-7949

stops training and establishes the whole weight matrix and bias
vector. The flow chart of the DNN with the loss functions to
solve the PDEs for the DIS in the elastic sphere is shown in
Fig. 1, and some parameters and optimizers used in the DNN
are listed in Table 1. Note that we can pre-determine an
iteration number as the stop signal instead of the error toler-
ance for optimization. The open-source machine learning
libraries Tensorflow®! and DeepXDE** were used in the DNN
to obtain related parameters.

According to eqn (18), the training data in this work are
different from those used in the traditional ‘data driven’
method®® and possess the following pivotal features.

e The dataset does not contain exact solutions (reference
solutions).

e The dataset only relies on the coordinates in the solution
domain, which indicates that the number of training points can
be infinite theoretically.

e The training sample can be arbitrary and can be adjusted
during the training process.

Generally, the validation and test processes are important to
DNNs;*"*? however, the DNN used in this work can be regarded
as a computation tool in solving the PDEs rather than training a
“universal” model to find the solution of any PDE. Since the
dataset can be sampled arbitrarily, we only used sample 2000
points to test during iterations. Meanwhile, it should be noted
that once the training is completed for the given coordinates of
any point, the DNN can give the corresponding solutions. Thus,

Table 1 Parameters and optimizers of the DNN

Number of hidden layers 5

Number of neurons in each hidden layer 80

Learning rate (s ') 107*

Optimizers Adam,”® L-BFGS™

Error limit ¢ 10°°

This journal is © the Owner Societies 2022
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Table 2 Material properties of the elastic sphere*®

Parameters E v Q Jo R D Co
Value 10" 0.3 3.497 x 107° 0.001 2.0 x 1077 7.08 x 107 0

Unit Pa — m?* mol ! mol (m?s)~* m m?s ! mol m?

one can obtain the results of all the domains without consider-
ing the results in the test set that is a sub-domain of the whole
solution domain.

4. DISs in the elastic sphere without
stress-limited diffusion

The procedure for solving the PDEs by deep learning is sum-
marized here. First, we construct a neural network @ = (y;0*) as a
surrogate of the solution u(y), which takes the inputy = [x, 1]
and the output vector with the same dimension as u. Second,
two training sets for the PDEs and initial/boundary conditions
are specified. A loss function consisting of the summation of
the weighted L> norm of both the PDE equations and initial/
boundary conditions is established to measure the discrepancy
between the neural network 1i(y;0*) and constraints. Finally, the
minimization of the loss function of the DNN allows for the
determination of the parameter 0%, which is referred to as
the “training” process. It should be noted that there is no
guarantee for a unique solution because of the nonconvex
optimization problem. A common strategy is to perform
random initialization a few times for the training process and
choose the final solution from the solutions with the smallest
training loss. In this work, all the training tasks are handled
using a Nvidia Titan Rtx GPU.

According to the reports in the literature,® the number of
training points and the weights of loss may heavily affect the
final results. Based on the loss weights and the number of
training points, we adopted three DNNs with different para-
meters to investigate the effects of the number of the sample
points on the stress distribution and mass transport. We set the
first DNN with Ng: Ngcs : Nigs = 10 000 : 200 : 100 and 2 = 1.0, the
second one with Ng: Ngcg: Nics = 10000:200:100 and 4 = 0.1,
and the third one with Ng: Npcs: Nics =20 000:400:200 and 4 =
0.1. One can analyze the effect of the number of training points
by comparing the results between the DNN solution with N4 =
10000 and 24 = 1.0 and the DNN solution with Ng = 20 000 and
4 =1.0, and from the DNN solution with Nq = 10000 and 4 = 1.0
and the DNN solution with Ng = 10000 and A = 0.1, one can
determine the effect of the loss weight. It needs to be pointed
out that all the training points in the domain, on the boundary
and at the initial time, are chosen randomly from a uniform
distribution.

All the properties of the material used in the loss function of
eqn (18) are listed in Table 2, which are the material properties
of the electrode material Mn,O, used in LIBs.*® After complet-
ing the training, the DNN, we can obtain the DNN solutions of

This journal is © the Owner Societies 2022

the dimensionless displacement and the concentration for the
given initial and boundary conditions.

The numerical results obtained from the DNN with the
proposed architecture and loss function are compared to the
analytical solution of the corresponding problem. Without the
stress-limited diffusion, the concentration distribution in the
elastic sphere in a dimensionless form is*’

C*(x,7) =3t + la_ 3 %iMexp(—C"zr), (19)

2 10 x4 {?sin((,)
where {, (n = 1, 2, 3...) are the positive roots of the equation
tan[Cn] = (ne

To visualize the accuracy of the prediction and analyze the
error, we sampled 2000 points uniformly at several fixed times
(e.g, T = 0.01, 0.1, 0.2 and 0.4) and then plotted the DNN
solutions under different parameters. For comparison, the
results from the analytical solutions at these typical dimension-
less times are also shown in Fig. 2. Here, the red solid lines
represent the spatial distribution of the solute concentration
and the displacement obtained from the analytical solutions at
different dimensionless times, and the blue dashed lines, green
dashed-dot lines and yellow dotted lines represent, respec-
tively, the numerical results obtained from three different
DNNs at different dimensionless times. To more intuitively
compare the differences between different DNN solutions and
the analytical solutions, we enlarge the plots at some key
dimensionless time nodes in Fig. 2.

The L” relative error between the DNN results and the
analytical solutions is calculated as

N . . 2
Z:l (y’cxact - y;;red)
2 |i=
L= v, (20)
Z (yf:xacl)
i=1
and the L? relative error correlation coefficient « is
N . . 2
‘Zl (ylexact - y;rcd)
— _ =
o=1 5 . (21)

> Phaet)”

i=1

Here, Yexace and Ypreq correspond to the results obtained from
the analytical solutions and the DNN solutions, and N is the
number of points selected in computing the L? relative error. It
should be noted that the accuracies of both the dimensionless
concentration and dimensionless displacement are measured
by the L? relative error of eqn (20). We uniformly sampled 100

Phys. Chem. Chem. Phys., 2022, 24, 7937-7949 | 7941
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Fig. 2 Numerical results from the three different DNN solutions and the analytical solutions: (a) dimensionless concentration and (d) dimensionless
displacement at dimensionless times of = 0.01, 0.1, 0.2 and 0.4; (b and c) enlarged view of the dimensionless concentration and (e and f) enlarged view
of the dimensionless displacement at some key dimensionless times.

points from x = 0.01 to 1.0 (i.e. 0.01, 0.02, ..., 0.99, 1.0), which is
used to quantitatively calculate the L? relative error between the
exact solutions and DNN solutions. All the correlation coeffi-
cients of the L? relative error under different DNN solutions are
listed in Table 3. Table 3 also lists the training time under

different DNN solutions.

It can be observed from Fig. 2a that the red solid lines, blue
dashed lines, green dash-dot lines and yellow dotted lines at

7942 |

different dimensionless times nearly overlap, suggesting that
the DNN successfully predicts the concentration distribution.
Such a result is also confirmed in Table 3, as the correlation
coefficients of the L relative error for the dimensionless
concentration at different dimensionless times are approxi-

mately equal to 1. According to Fig. 2d, the red solid lines,

Phys. Chem. Chem. Phys., 2022, 24, 7937-7949

blue dashed lines, green dash-dot lines and yellow dotted lines
at dimensionless times 7 = 0.01 and 0.4 nearly overlap; however,
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Table 3 L2 relative error correlation coefficients between the numerical
results of the DNN solutions and the analytical solutions without coupling.
(@) DNN solution with Ny = 10000 and 4 = 1.0, (b) DNN solution with Ny =
10000 and 4 = 0.1, and (c) DNN solution with Ny = 20000 and A = 1.0

@)

T 0.01 0.1 0.2 0.4
Accuracy of C* 0.9889 0.9973 0.9984 0.9993
Accuracy of u* 0.9376 0.9801 0.9900 0.9952
Training time(s) 295

(b)

T 0.01 0.1 0.2 0.4
Accuracy of C* 0.9798 0.9952 0.9973 0.9988
Accuracy of u* 0.8951 0.9672 0.9826 0.9926
Training time(s) 261

(©

T 0.01 0.1 0.2 0.4
Accuracy of C* 0.9998 0.9989 0.9992 0.9997
Accuracy of u* 0.5976 0.9307 0.9784 0.9835
Training time(s) 443

the red lines slightly deviate from the results from the
DNN solutions at dimensionless times 7 = 0.01 and 0.1,
leading to the L” relative error of the dimensionless displace-
ment at dimensionless times 7 = 0.01 and 0.1 larger than
those of the corresponding ones at T = 0.2 and 0.4. The
numerical results from the DNN solutions have slight errors

(a) 0.2

0.15 - . 1=0.4

1=0.1"
< 0.1
— Analytical solution
0.05 DNN solution
0'%.0 0.2 0.4 0.6 0.8 1.0
X

(c) 0.2

0.1

-
S 0.0
ol —— Analytical solution
B DNN solution
—~0.2
0.0 0.2 0.4 0.6 0.8 1.0
X
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in predicting the spatial distribution of the dimensionless
displacement at dimensionless times t = 0.01 and 0.1, while
the numerical results from the DNN solutions are still
acceptable.

According to Fig. 2 and Table 3, we can conclude that the
DNN solution with Ng = 10000 and 4 = 1.0 gave the best
results with the least training time and the DNN solution
with Ng = 20000 and A = 1.0 took the longest training time
and had the worst results. For the DNN solution with Ny =
20000 and /4 = 1.0 at t = 0.01, the relative error of the
dimensionless displacement is very large because the exact
dimensionless displacement is close to 0. In fact, this is a
common behavior in the training process of the DNN, which
is referred to as “overfitting’’.*®

The analytical solutions of the radial and hoop stresses are
calculated from the theory of elasticity®® with eqn (10) and the
initial/boundary conditions (12). Using eqn (19), we have the
DIS in the elastic sphere as

oi(x,7) = %(1 —2x%)

4 > sin({,x) — {,xcos({,x)
R4 e

exp(—g“ﬁr), (22)

op(x,7) = %(1 - 2x%)

d exp(f ,2,1) sin({,x) sin({,x) — {,xcos({,x)

+2 p
=1 Cn s1n(C,,) Cﬂx C,:zx3
(23)
(b) 0.2
0.15 (=02
* — Analytical solution N
Gl e— DNN solution
0.05
1=0.01

0'?).0 0.2 0.4 0.6 0.8 1.0

X
(d) 02—
1=02"
0.1
N SR 2
S 0.0 0.01
01 — Analytical solution
oo DNN solution
-0.2
0.0 0.2 0.4 0.6 0.8 1.0

X

Fig. 3 Spatial distribution of the dimensionless radial and hoop stresses at four dimensionless times t = 0.01, 0.1, 0.2 and 0.4. (a and b) radial stresses and

(c and d) hoop stresses.
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Note that the dimensionless concentration and dimension-
less displacement are the outputs of the DNN solutions. We
used the dimensionless concentration, the dimensionless dis-
placement and the constitutive relationship to calculate the DIS
in the elastic sphere. The dimensionless stresses in the elastic
sphere are

3(1 - v)D de _w (1+1)QC*RJ,
- - ot TR BN
or QJoR(l-i-l/)(l—zI/)[( Ve TS 3 D)
(24)
o 3(1-uD di' ' (14+1)QC"RY;
0= QIR+ v)(1—20)|"dx " x 3 D

(25)

In the following discussion, we use the dimensionless
concentration and dimensionless displacement obtained
from the DNN solution with Ngq = 10000 and 4 = 1.0. Fig. 3
shows the spatial distribution of the dimensionless radial
and hoop stresses at four dimensionless times 7 = 0.01, 0.1,
0.2 and 0.4. Solid lines represent the numerical results from
the analytical solution, and dashed lines represent the
numerical results obtained from the DNN solution. It is
evident that the solid lines and the dashed lines nearly
overlap at different dimensionless times, suggesting that
the DNN solution exhibits a high accuracy in calculating
the DIS in the elastic sphere.

It needs to be pointed out that the numerical results
obtained from the DNN solution exhibit sharp increases for
the radial and hoop stresses at the spherical center. In the
numerical calculation, the term u/r (hoop strain) will numeri-
cally approach infinity as r approaches 0, leading to the sharp
increase of the spatial distribution of radial and hoop stresses
near the electrode center. In general, the numerical results
obtained from the DNN solution are in good accordance with
the results from the analytical solution. The difference between
the numerical results obtained from the DNN solution and the
results from the analytical solution decreases with an increase
in the diffusion time, which indicates that the DNN gradually
‘learns’ how to solve the PDEs.

5. DISs in the elastic sphere with
stress-limited diffusion

One of the important features of the DNN is the capability of
solving nonlinear problems. In this section, we incorporate
the stress-limited diffusion in mass transport.” Yang’
reviewed the interaction between chemical stress and diffu-
sion, which includes hydrostatic stress in the chemical
potential. In an ideal solid solution, chemical potential u

can be expressed as
W=y + R;TInC — Qop, (26)

where i, is the constant, R, is the gas constant, T'is the absolute
temperature, and oy, = 1/3(g, + 09 + 0,)) is the hydrostatic stress
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that can be computed by eqn (2) as
1 1 E du u
(7/1_5(0,+0()+0(/,> —m{a+2;796‘:|. (27)
The species flux J can be calculated as
DC
= ———=VU, 2
J RgTV'u’ (28)
Substituting eqn (26) in (28) yields
0C  QC Oy,
J__D<E_Rgrar>' (29)
According to the mass conservation, there is
ocC
o +V.-J=0 (30)
Substituting eqn (29) in (30), we have
oc
ot
D 20C &*C 2QCds, Q 0CIs, QC I ay

T ror
=0.

o2 rRT Or B R, T Or Or h R,T 0r?

(31)

Finally, the diffusion equation considering the effect of
hydrostatic stress can be obtained by substituting eqn (27) in
(31).

ac

ot
9C_PC 20 (1 E (i iy o
ror 0rr rR,T\3(1=2v)\dr* rdr "r* = Or
QoC(l E d*u 2du _u _OC

-D 25— 0—
RgTal‘(3(1—21/)<dr2+rdr r? 6;))
QC /(1 E dPu 2d*u 4du u _0*C
_ e e/ Radiiye i
RgT(3(1721/)(afr3_‘_rdr2 a3 81‘2))

=0.

(32)

Similar to the case of Fick’s diffusion under the galvanostatic
operation with a constant flux J, at the surface of the spherical
particle, the initial and boundary conditions take the forms

c(r, 0)= 0 (33)
J(0,t) =D <acg:, H_ Qii(;:t)aaha(g’ [)) =0, (34)
J(Rt)=—D (acgrz, 0. Qi(:; DooiCLR ’)) — )y (35)

Here, we set T = 300 K in the calculation. Other material
parameters used in this section are listed in Table 2.

The effect of the stress-limited diffusion is explicitly
expressed in the differential equation for the mass transport,
as revealed in eqn (31) and the corresponding boundary con-
ditions of (32). Using the same dimensionless variables in
eqn (8), eqn (32)-(35) are expressed as

This journal is © the Owner Societies 2022
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ocr ,  PCr 5, QC E Pu 5 0wt , QIR _IC* , QJRPC 2
ac 5 o T _RgT(3(1—2 o™ T4 "% p QW”“ D 02 ) 0 36)
ot Q oC* E Pu ou* 2 2ty JOR 6C o
R,T 0x \3(1 —2v) ax2 ox” ax
C¥r,0)=0 (37)
-y aC*(0,7) B QC*(0,7)1 E u*(0,7)  20u*(0,1) B u*(0,7) 3 QRJ,0C*(0,7) —0 (39)
" ox R, TJy 3(1—2v) Ox? x Ox X2 D Ox o
3 J@C*(l,r)iQC*(l,r)l E 0*u*(1,1) 20u*(1,7)  u'(l,7)  QRJH,OC(1,7) _7 (39)
" ox R.TJ, 3(1-20)\ 0x2 x Ox X2 D ox -

Similar to the case of Fick’s diffusion, the whole loss
function of PDEs is calculated as the sum of the residuals of
the PDEs and initial and boundary conditions, Lpis = Lppgs +
MLgcs + Lics), with Lics the same as the case without the stress-
limited diffusion and

* R 2% (e
28C (,x,,t,)x%+6 C ()»,,T,)x?
Ox?

and yellow dotted lines represent the numerical results obtained
from three DNNs with different parameters at different dimension-
less times. The correlation coefficients of the L? relative error, as
listed in Table 4, are also used to analyze the accuracy of the
numerical results obtained from the DNN solutions.

2

N, " *x T T 2 k(e o (e o 2 k(e
fan= ,-:]1 Nid 5 g: - QCR(XYIJT[) (3(1 f2u) (6 ua(;“mx?”a ua(xxz”rl)x'LQgR@aC éi,,r,)x%ﬁ Cag”mx’?)))
e (D0 A0 a0 ||
(40)
e (0,20) |3+ ]| (1,7 |5+ 2
T | R = IE vl e e R | K
JﬁcgjmxzQf;j;’;j’);(l_Ezy)(02“553’”vuza“*g%%M(o,f,.)szwxzz

The procedure for solving the PDEs with the stress-limited
diffusion by the DNN is similar to that discussed in Section 4,
except the change of the whole loss function with eqn (40) and
(41). Three DNNs with the same parameters as Fick’s diffusion
are used. The numerical results obtained from the DNN solu-
tions are compared to the numerical results from the finite
element simulation (FEM) to evaluate the accuracy of the DNN
solutions. The PDE module in the commercial multi-physics
software of COMSOL was used in the finite element simulation.
The 2-node linear element with an element length of R,/1000
was used to ensure the convergence and accuracy of the FEM
results. Note that there is no analytical solution for the non-
linear diffusion eqn (32) with the initial and boundary condi-
tions (33)—(35).

Fig. 4 shows the spatial distributions of the dimensionless
concentration and dimensionless displacement at four dimension-
less times 7 = 0.01, 0.1, 0.2 and 0.4. The red solid lines represent the
spatial distribution of the FEM results of the dimensionless
concentration and dimensionless displacement at different dimen-
sionless times, and the blue dashed lines, green dashed-dot lines

This journal is © the Owner Societies 2022

According to Fig. 4, the red solid lines, blue dashed lines,
green dashed-dot lines and yellow dotted lines at different
dimensionless times nearly overlap, suggesting that the DNN
solutions successfully obtain the spatial distributions of the
solute concentration and the displacement. As listed in Table 4,
the L” relative error of the dimensionless concentration at
different dimensionless times increases slightly with the
increase of the dimensionless time and are larger than the
corresponding one without the coupling effect. Such a trend in
the L” relative error of the dimensionless concentration is likely
due to the coupling between stress and diffusion, leading to the
increase in the numerical error. A similar conclusion can be
drawn from the L” relative error of the dimensionless displace-
ment at different dimensionless times, i.e. the accuracy is lower
than the corresponding one without the coupling effect.

For three different DNN solutions, the DNN solution with
N4 =20000 and 4 = 1.0 provides the best results in contrast to
the case without coupling. Note that the accuracy may increase
slightly if we use more training points (e.g., 50 000 points in the
solution domain). However, this will significantly increase the
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Fig. 4 Numerical results from the DNN solutions with different parameters and the FEM simulation: (a) dimensionless concentration and (d)
dimensionless displacement at dimensionless times of © = 0.01, 0.1, 0.2 and 0.4; (b and c) enlarged view of the dimensionless concentration and (e
and f) enlarged view of the dimensionless displacement at some key dimensionless times.

training time with a slight increase in the accuracy (e.g., from
0.9998 to 0.9999).

Using the numerical results of the dimensionless concen-
tration and dimensionless displacement obtained from the
DNN solution with Ng = 20000 and A = 1.0, we calculated the

7946 | Phys. Chem. Chem. Phys., 2022, 24, 7937-7949

DIS in the elastic sphere with the coupling between diffusion
and stress. Fig. 5 displays the spatial distributions of the
dimensionless radial and hoop stresses at four dimensionless
times t = 0.01, 0.1, 0.2 and 0.4. Solid lines represent the FEM
results, and the dashed line represents the numerical results
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Table 4 Correlation coefficients of the L2 relative error between the
numerical results of the DNN solutions and the FEM simulation with
coupling. (@) DNN solution with Ng = 10 000 and 4 = 1.0, (b) DNN solution
with Ny = 10000 and 4 = 0.1, and (c) DNN solution with Ny = 20 000 and 4
=10

(@

T 0.01 0.1 0.2 0.4
Accuracy of C* 0.9256 0.9257 0.9402 0.9693
Accuracy of u* 0.8092 0.9165 0.9398 0.9561
Training time(s) 166

(b)

T 0.01 0.1 0.2 0.4
Accuracy of C* 0.9264 0.9291 0.9443 0.9714
Accuracy of u* 0.8738 0.9423 0.9558 0.9603
Training time(s) 160

©

T 0.01 0.1 0.2 0.4
Accuracy of C* 0.9583 0.9648 0.9762 0.9937
Accuracy of u* 0.9465 0.9534 0.9659 0.9864
Training time(s) 272

calculated from the DNN solutions. According to Fig. 5, the
numerical results from the DNN solutions exhibit sharp
increases of the radial and hoop stresses at the spherical center,
the same as the case without the coupling. Also, the dashed
lines deviate slightly from the solid lines at different dimen-
sionless times near the surface of the elastic sphere in contrast
to the case without the coupling. This behavior reveals that the
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0.15 )
S =01

* 1=04 “\\ 3 N
S 0.1 S

0.05

) 04 06 08 1.0
X

(¢) 0.2

< 1=04

0.1

*
S 0.0
4. — FE solution
= e== DNN solution
0.2
0.0 0.2 0.4 0.6 0.8 1.0
X

View Article Online

Paper

coupling between stress and diffusion introduces a slightly
larger error than the case without the coupling.

6. Conclusions

In summary, we have demonstrated the feasibility of using
DNNs to solve the DIS problems in a spherical electrode of LIBs
with two whole loss functions for the cases with and without
the coupling between stress and diffusion, respectively. The two
whole loss functions were developed under the framework of
linear elasticity for DIS in an elastic sphere. Three different
DNNs with different parameters were used in the training of the
DNN, and the numerical results obtained from the DNN solu-
tions were compared to those from the exact solutions and the
FEM results, respectively. The results reveal that we can use the
DNN and the whole loss functions to analyze the DIS present in
the elastic sphere during electrochemical cycling.

DNNs have the following advantages over traditional numer-
ical methods in solving the DIS problems in elastic materials.

e The DNN is a mesh-free method that can reduce the error
introduced by meshing to ensure a certain accuracy.

e The DNN can handle two PDEs in DIS problems simulta-
neously, which can limit the errors introduced in the substitu-
tion process.

e Once the DNN for solving the PDEs in DIS problems has
been designed, we only need to change some parameters (e.g.,
boundary conditions and initial conditions) to solve similar
problems, which saves the calculation time.

Compared with the traditional DNN method - ‘data driven’,
the method presented in this work does not rely on any exact

(b2 —— FE solution
‘ DNN solution
0.15
R 1=02
*
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@ 02f
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Fig. 5 Spatial distribution of the dimensionless radial and hoop stresses at four dimensionless times 7 = 0.01, 0.1, 0.2 and 0.4. (a and b) radial stresses; (c

and d) hoop stresses.
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solution, which means it can be implemented to solve the
practical DIS problems because the exact solutions are very
difficult to obtain. It needs to be pointed out that more training
points are needed to reduce the “overfitting” behavior and
increase the accuracy. However, there is only a slight increase in
the accuracy with increasing the training. There is a great need
to design DNNss with less training time, strong adaptability and
high accuracy.
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Appendix. Structure of neural networks

The FNN is also referred to as a multilayer perceptron (MLP)
because it has multiple hidden layers. Consider an L-layer
neural network or an (L - 1) hidden-layer neural network with
S; neurons in the 1-th layer. Let Sy, be the m-th neuron in the n-
th layer, which can be regarded as one of the outputs of the
upper layer that can be obtained by applying an activation
function at the upper layer S"~* as

Sm—1
-1
Sy = “(Z WinS; " + b;?),

i=1

(42)

where g(e) is the activation function, which avoids the outputs
of each neuron to be unbounded. The common activation
functions (e.g., a logistic sigmoid function and a rectified linear
unit) are shown in Fig. 6. W;,, and b are the weight and bias
between the corresponding neurons, respectively. The whole
neural network is presented as

' = g(W'S"" + 1) (43)

with W = [W;] € R* " and b’ = [b/] € R” as the weight matrix
and bias vector, and S’ as the whole neuron matrix.

We set x and 7 as the inputs of the neural network in the
DNN and u* and C* as the outputs. The hyperbolic (tan #)
function is used as the activation function in the calculation.
The whole neural network used to solve the PDEs can be simply

expressed as
Input layer: S°(y) = [x, t] € R* (44)

Hidden layers: S'(y) = a(W’s' '(y) +b) € R®, for1 <1 < L —1
(45)
Output layer: S’(y) = [u*, C¥] € R® (46)

The training process is essentially to find the most appro-
priate weights and bias of the whole neural network by
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Fig. 6 Activation functions: (a) rectified linear unit (ReLU), (b) logistic
sigmoid, and (c) hyperbolic tangent (Tanh)

minimizing the loss function. To achieve this purpose,
backpropagation®® is an important step, in which the most
commonly used method is the gradient descent method.*® In
addition, some common optimizers, such as stochastic gradi-
ent descent (SGD), Adam,*® and L-BFGS,"* are adopted in most
cases as well.
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