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Poly(para-phenylene ethynylene)s, or short PPEs, are a class of conjugated and semi-flexible polymers
with a strongly delocalized n electron system and increased chain stiffness. Due to this, PPEs have a
wide range of technological applications. Although the material properties of single-chains or mixtures
of few PPE chains have been studied in detail, the properties of large assemblies remain to be fully
explored. Here, we developed a coarse-grained model for PPEs with the Martini 3 force field to enable
computational studies of PPEs in large-scale assembly. We used an optimization geometrical approach
to take the shape of the m conjugated backbone into account and also applied an additional angular
potential to tune the mechanical bending stiffness of the polymer. Our Martini 3 model reproduces key
structural and thermodynamic observables of single PPE chains and mixtures, such as persistence
length, density, packing and stacking. We show that chain entanglement increases with the expense of
nematic ordering with growing PPE chain length. With the Martini 3 PPE model at hand, we are now
able to cover large spatio-temporal scales and thereby to uncover key aspects for the structural
organization of PPE bulk systems. The model is also predicted to be of high applicability to investigate
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1 Introduction

Poly(para-phenylene ethynylene)s, or short PPEs, are a class of
conjugated and semi-conductive polymers with a strong delo-
calized n electron system extending over the entire backbone.">
Due to the m conjugation of the carbon atoms, PPEs exhibit
unique optical and optoelectronic properties,>® and therefore
have a wide range of applications, ranging from the printing of
electronic devices (e.g. organic transistors, organic light emit-
ting diodes, and organic photovoltaic cells) to the fabrication of
biological and chemical sensors.”** The backbone of PPEs is
composed of aromatic rings and stiff triple bonds, which are
linked by single carbon bonds (Fig. 1). Based on the alternation
of single and multiple bonds, the orbitals of the carbon atoms
overlap and the © electrons are delocalized from one end of the
polymer to the other. The delocalization of the m electrons is the
reason for the planar structure of monomers and the linear
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out-of-equilibrium behavior of PPEs under mechanical force.
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Fig. 1 Chemical structure of the poly(para-phenylene ethynylene)s. The
polymer backbone consists of alternating phenylene rings and a stiff triple
bond linked by single bonds. For the side-chains we assume R = H.

n

backbone together with its increased mechanical bending
stiffness.’® Therefore, PPEs can be classified as semi-flexible
polymers and the bending stiffness can be characterized by the
persistence length of a single polymer.”® Previous studies
determined the persistence length of PPEs through a combi-
nation of light scattering experiments or electron paramagnetic
resonance spectroscopy and computational methods. Cotts
et al. obtained a persistence length of 13.5-16 nm and Godt
et al. obtained an estimate of 14.3-19.1 nm."*"®> PPEs thus
are roughly 10 to 50-fold stiffer than most polymers with
non-conjugated backbones, such as polyethylene (0.45 =+
0.1 nm)'®” or polymethyl methacrylate (1.2 & 0.1 nm),"®'® a
feature that could be exploited in the development of compo-
site materials with tunable elasticity resulting in unique
mechanical properties.”®*!
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Computational simulation is a reliable technique to deter-
mine the material properties of conjugated polymers, such as
PPEs.”>** The molecular origin of the high stiffness has been
addressed with high-level-of-accuracy quantum mechanical cal-
culations. In fact, both the excited states and the energy barrier of
the torsion angle for the backbone rotation of di(para-phenylene
ethynylene)s or bis(phenyl ethynyl) benzenes were determined
using density functional theory (DFT) simulations.**** Bagheri
et al. combined molecular dynamics (MD) with DFT simulations
to improve the Optimized Potential for Liquid Simulation (OPLS)
force field to ensure the planarity of the PPE backbone."”?*
Several studies performed all-atom (AA) MD simulations, using
this developed OPLS force field, to simulate the conformation of
single PPE chains to thereby examine the rigidity and side-chain
aggregation in different solvents.'>**?® However, DFT calcula-
tions and AA-MD simulations are limited to small PPE systems,
since both are computationally costly and sample the conforma-
tional space inefficiently.”” Alternatively, coarse-grained MD is a
well-established approach to cover larger spatio-temporal scales
compared to AA-MD by reducing the atomistic degrees of
freedom.*® Godt et al. developed a simplified freely rotating chain
model for PPE backbones by substituting the phenylene ring, the
bond between the phenylene and ethynylene unit and the triple
bond with one single bead each.” Although this model repro-
duces the global stiff nature of PPEs, it lacks the chemical and
thermodynamic distinction between aromatic rings and triple
bonds giving rise to the m stacking. Hence, there exists no CG
model that considers atomistic structure on the one hand and
enables the simulation of large semi-flexible PPE networks on
long timescales, capturing their thermodynamic behavior appro-
priately, on the other hand.

To address this question, we developed a CG model for PPEs
based on the Martini 3 force field.”® The Martini force field is
one of the most commonly applied CG models in the field of
biomolecules or materials science.’*"** Martini 3 is based on
reparameterised small and tiny beads with improved solute-
solvent interactions to better reproduce stacking properties,
like the bulk density and the oil-water partitioning behavior.>*
The force field offers the advantage of capturing larger spatio-
temporal scales of molecular systems while adjusting the level
of resolution of their molecular components. In particular,
Martini 3 is very suitable to model long PPE chains, and even
mixtures of them, while still taking the essential chemical
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details of the aromatic rings and the triple bond, giving rise to
the enhanced chain stiffness, into account. In detail, the Martini
force field is based on a building block principle.*® Each building
block is parameterised separately to cover a diverse spectrum of
chemical moieties.>® The parameterisation of the building blocks
relies on reproducing experimentally determined thermodynamic
properties, like the partitioning free energies of a broad range of
chemical substances between polar and apolar solvents.*” Besides
this top-down approach, the parameterisation of the bonded inter-
actions relies on a bottom-up method through the use of AA
simulations.*® For PPEs, we used a geometrical model to consider
the shape of the conjugated backbone and an additional harmonic
bond angle potential to fine-tune its mechanical bending stiffness.
We analyzed the structural organization within the bulk material by
characterizing the nematic alighment of PPEs. We find that the
degree of alignment decreases with increasing chain length, show-
ing how the dynamics of long-chain semi-flexible PPEs is increas-
ingly driven by entropic effects. Hence, our Martini 3 PPE model
adequately reproduces the transition from the rigid rod to random
coil like behavior of semi-flexible polymers. It thus enables the study
of large bulk systems of such polymers close to atomistic resolu-
tion, and together with backmapping and multi-scale approaches
allows characterization of the intriguing structural, mechanical
and electronic properties of this remarkable material.

2 Methods

For Martini 3, on average, four heavy atoms plus the associated
hydrogens are replaced by one CG interaction site.”” To take more
complex structures into account (e.g: especially aromatic rings as
in the case of PPE), higher resolution mapping is recommended,
where three or two heavy atoms plus the associated hydrogens are
substituted by one small or tiny bead.”®*** For PPEs, we followed
the standardized bottom-up top-down Martini philosophy and
defined four tiny beads as our main building block (Fig. 2A). Next,
we compared the octanol-/water partitioning free energy of di(para-
phenylene ethynylene) to experimental measurements reported in
the literature to select the respective bead type of each building
block.>**° For the optimization of bonded interactions, we used a
bottom-up strategy by matching the probability densities, describ-
ing the bonded potentials, from CG to AA reference simulations.>
We performed all simulations, both Martini 3 and AA, with the

Fig. 2 Mapping scheme and geometrical modeling. (A) Mapping from AA (black) to CG (orange) resolution. The dotted lines represent the bonded
potentials of the CG model. (B) The geometrical model takes the shape of the PPE backbone into account. PPEs are represented as a linear chain of
regular triangles with side length dg and spacing du. The remaining equilibrium values are calculated by trigonometrical relations (egn (8)—-(10)).
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GROMACS 2020 molecular dynamics simulations package.*' A
detailed protocol regarding the setup of each simulation is
described in the following sections.

2.1 All-atom simulation protocol

For the AA simulations of PPEs we used a modified version of
the OPLS force field. The modification is implemented by
converting parameters from the Polymer Consistent Force Field
to OPLS and applying a Rickaert-Bellemanns torsion potential
to keep the backbone of the polymer planar.”® Bagheri et al.
performed DFT simulations to determine an energetic barrier
of 4 k] mol ™" for the rotation of phenylene units, slightly above
the experimental values of approximately 2 to 2.5 k] mol ™" from
fluorescence spectroscopy.*?™** The setup of the AA force field
for PPEs is described in more detail by Bagheri et al.'>**

2.1.1 All-atom single and multiple chains. As a reference
system for the parametrization of the CG model, we selected
one single chain of PPE, consisting of four monomers, solvated
with the SPC2016 water model in a cubic simulation box. We
performed an energy minimization using the steepest descent
algorithm by gradually switching off the restraints along the
backbone.*> Next, we increased the temperature of the system
to 300 K by operating the velocity rescaling thermostat for
500 ps with a relaxation timestep of 7 = 0.1 ps.*® For the
NPT equilibration, we stabilized the pressure at 1 bar using the
Parinello-Rahman barostat for 500 ps with 7p = 2 ps and a
compressibility of 4.5 x 10~* bar™".*” During the equilibration
steps, we applied the Verlet-scheme to cut off the short-range
electrostatics and van der Waals interactions at 1.0 nm."® The
long-range electrostatic interactions were treated with the
Particle-Mesh-Ewald scheme.***® We simulated the solvated
PPE chain for 100 ns. For simulations of multiple chains, we
randomly distributed ten single chains of the same length in a
simulation system of 10 x 10 x 10 nm?, and solvated the chains
in water. We then used the same setup described above for a
single chain and performed a 100 ns production run to monitor
the chain packing within the polymer bundle.

2.1.2 All-atom bulk system. To setup the bulk system for
the packing analysis of PPEs, we first applied the GROMACS
gmx insert-molecules command to randomly insert 300 chains,
consisting of four monomers each, into a box of 80 x 80 x
80 nm>. Next, we energy minimized the system in three steps
and applied the stochastic dynamics integrator to perform a
NVT equilibration for 1 ns at 300 K with 7p = 0.1 ps.”" We
gradually reduced the box volume for 100 ns to give the chains
enough time to assemble into a dense structure and used the
Parinello-Rahman barostat with 7 = 2 ps and a 1 fs timestep to
equilibrate the system and prevent numerical instabilities.>>
Finally, we performed a 1 ps production run to allow the
alignment of PPEs to form an equilibrated bulk system.

2.2 Coarse-grained simulation protocol

To develop a CG model of PPEs, we chose the Martini 3 force
field.>® We used the Martini PolyPly package to generate the
topology and coordinate files for PPEs with a different poly-
merization degree.*® We applied the common Martini 3 MD

10000 | Phys. Chem. Chem. Phys., 2022, 24, 9998-10010

View Article Online

Paper

simulation parameters to calculate the neighbor list and to
consider the electrostatics or van der Waals interactions.> The
Verlet neighbor search algorithm updated the neighbor list every
20 to 40 steps with a buffer tolerance of 0.005 k] mol * ps*. For
electrostatics, the reaction-field cut off the coulomb potential at
7. = 1.1 nm with a relative permittivity of ¢, = 15. We modeled the
van der Waals interactions with the Lennard-Jones potential, a
cutoff at r. = 1.1 nm and the potential-shift with the Verlet
scheme.>®”® If not stated otherwise, we selected the common
Martini 3 MD parameter set from the Martini webportal (https://
www.cgmartini.nl)®* for the equilibration and production run
simulations.>*?*>?

2.2.1 Coarse-grained single and multiple chains. The para-
meterisation of the bonded potentials between the CG beads
was derived from a single chain in solution simulation. We
used the steepest descent algorithm to energy minimize one
single chain of four monomers in a vacuum, which we then
solvated in a cubic box with Martini 3 water beads and a van der
Waals radius of 0.21 nm as well as a box with toluene.>® The
solvated system was energy minimized, while restraining the
positions of the polymer backbone. For the constant tempera-
ture, volume and particle number ensemble, the velocity rescal-
ing thermostat increased the temperature to 300 K for 5 ns with
a time constant of 7 = 1.0 ps. Next, we equilibrated the system in
the NPT ensemble applying the Parinello-Rahman barostat to
stabilize the pressure at 1 bar with 7 = 12 ps and a compressi-
bility of 3 x 10~* bar™'. Subsequently, we performed a produc-
tion run for 100 ns with a 20 fs timestep for both the single chain
in solution and the assembly of ten chains in the solution setup.

2.2.2 Coarse-grained bulk system. The bulk system for the
Martini 3 model consisted of hundreds of PPE chains of varying
polymer length. To get the initial positions of the chains, we
applied the GROMACS gmx insert-molecules command to
randomly insert between 300 and 800 PPEs, each with a chain
length of 20, 40 and 60 repetition units, in a large 1000 x
1000 x 1000 nm? box of vacuum. For the energy minimization
of the bulk system, we applied the steepest descent algorithm.
Next, we used the stochastic dynamics integrator to ensure a
stochastic temperature coupling during the equilibration steps.
The stochastic integrator stabilized the temperature for 5-8 ns
at 300 K with a relaxation timestep of 7t = 1.0 ps. Subsequently,
we decreased the box volume for 1 ps to give the PPE chains
sufficient time to assemble into a network structure. To this
end, we deformed the simulation box constantly with a defor-
mation velocity of —1.2 to —0.8 m s~ " and a reduced timestep of
5 fs to ensure numerical stability. Starting from the deformed
bulk system, we applied the Parinello-Rahman barostat with
p = 12 ps and a reduced timestep of 2 fs to stabilize the
pressure at 1 bar for 2-10 ns to prevent numerical instabilities.
At the end, we performed a 5 microseconds production run
with at least a 20 fs timestep to sample the free energy land-
scape of the bulk system sufficiently. In addition, we performed
simulated annealing simulations,”” based on the Martini setup
for polymers,”®>° to sample energetically favourable states of
the PPE networks. For this purpose, we increased the tempera-
ture to 400 K for 20 ns, 500 K for 20 ns, 600 K for 160 ns and
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finally to 800 K for 1.8 microseconds using a 10 fs timestep. Next,
we cooled down the system to 300 K during a 400 ns equilibration
giving the polymer chains sufficient time to self-organize. In
comparison with experimental annealing cycles at ~360 K, we
annealed on a shorter timescale at higher temperatures.®°

2.3 Free energy calculations

The partitioning free energy of tolane, short for di(para-
phenylene ethynylene), in an octanol-/water system forms the
basis for selecting the Martini 3 bead types. We performed
umbrella sampling of tolane in an octanol-/water simulation
box to determine the free energy of transfer together with the
potential of mean forces and the partition coefficient. The
partition coefficient describes the distribution of solute between
two immiscible solvents and can be compared to experiments.®’
For the umbrella sampling, we defined a reaction coordinate
pointing from the center of the hydrophilic solvent towards the
center of the hydrophobic one with a 0.05 nm window spacing.
Next, we restrained the solute for 100 ps with a force constant of
1000 kJ mol~" nm™?, energy minimized each window with the
steepest descent algorithm and equilibrated the system for 3 ns
with a 10 fs timestep. We applied the velocity rescaling thermo-
stat to stabilize the temperature at 300 K with 71 = 1 ps and the
Parrinello-Rahman barostat to keep the pressure at 1 bar with
7p = 12 ps and a compressibility of 3 x 10™* bar '. To ensure
appropriate sampling of the free energy landscape, we simulated
each window for 500 ns with a 25 fs timestep. We applied the
weighted histogram analysis method,®* as implemented in gmx
wham,®® to estimate the potential of mean forces (PMF) and
derive the partition coefficient:*"

log Poct-n,0 = %, (1)
where logPoc: 20 is the partition coefficient for tolane in an
octanol-/water system, AG; describes the free energy for tolane in
solvent 7, T is the temperature and R is the universal gas
constant. In addition, we checked for PMF convergence® by
backward block averaging the free energy barrier for tolane in
the biphasic octanol-/water system using a 5 ns step size and
performed a Bayesian bootstrap analysis to quantify the statis-
tical uncertainty of the free energy estimates.®*

2.4 Methods for validation

The validation of the developed CG model followed a mixed
bottom-up top-down strategy by comparing the properties of
interest with experimental data or AA simulations. In particu-
lar, we focused on reproducing the mechanical bending stiff-
ness of the polymer by identifying the persistence length, and
on its packing properties, by calculating the bulk density and
the orientation of packed chains. For this purpose, we imported
the trajectory into Python using the Molecular Dynamics Ana-
lysis software package (MDAnalysis) and determined the prop-
erties with the Numerical Python package (NumPy).*> " In the
case of the packing analysis, we not only calculated the ortho-
gonal distances between aligned chains, but also projected the
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center-of-mass of each polymer onto the main center-of-mass
(COM) axis of the polymer bundle.

2.4.1 Persistence length. The persistence length describes
the intrinsic bending stiffness of the polymer chain, thereby
characterizing its local flexibility.*®®® The persistence length Lp
is defined from the gradient of the exponentially declining
orientation correlations of the unit tangent vector along the
backbone of the polymer chain:”®

(cos dyy) = (4-6:)/(In®) = exp(—Nyi(Ln)/Lp) 2

Here, {; and ZJ are the unit tangent vectors of segment i or j,
respectively; ¢;; is the angle spanned between ;and fj; Ny is the
number segments between i and j, and (L) is the average
length of one segment. To get an estimate for the persistence
length, we loaded the CG trajectory into Python and applied the
scalar product function of NumPy to determine the angle
between each pair of segments along the backbone ¢;. More
specifically, we defined the CG beads representing the triple
bonds as the segments of the polymer chain, linked adjacent
segments by a vector, and then normalized each vector to
obtain the unit tangent vector. Hence, we received a chain of
unit tangent vectors following the backbone of the polymer.
From this chain, we calculated the pair-wise scalar product %, ¢
to estimate the cosines of the angles ¢; enclosed by two
segments i and j. Next, we averaged the cosines of the angles
over the number of segments Ny = |j — i| before averaging over
time. We also applied the worm-like chain theory to estimate
the persistence length.”! For this purpose, as proposed by Doi
et al., the square of the orientation correlations (eqn (2)) was
integrated along the curvature of the chain,”

it ()]

(3)

(R2) = 2NM<LM>LP{1 -

where (R.) is the mean squared end-to-end distance of the
polymer to be determined from CG simulations. For this
calculation, we used the trajectory from the single chain in
solution protocol to calculate the end-to-end distance between
each pair of segments along the polymer chain with NumPy.
Subsequently, we squared and averaged the end-to-end dis-
tances over the count of chain segments Ny, before averaging
over time, as described above. After preparing the CG data, we
plotted both the averaged cosine angles (cos ¢y) and squared
end-to-end distances (R.?) as a function of the count of seg-
ments Ny. To estimate the persistence length of semi-flexible
PPEs, we fitted eqn (2) and (3) to the trajectory obtained from
CG simulations using the curve fitting function from the
Scientific Python package.”

2.4.2 Packing properties. The packing of the CG model is
characterized by the assembly of multiple PPEs into a parallelly
aligned bundle. We analyzed the packing of the Martini
3 model by comparing the axial and radial displacement of
single chains within the bundle to experiments and AA simula-
tions. For the radial displacement, we estimated the 7 stacking
by calculating the orthogonal distance between chains of the
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bundle. For the axial displacement, we determined the main COM
axis of the bundle, and projected the COM of each polymer onto the
main COM axis. To estimate the orthogonal distance between
adjacent polymers d,;, we defined the end-to-end vector for a single
chain of the bundle R., and linked the COM of all the other
polymers to one end of the end-to-end vector ﬁp. From the norm
of the vector product between R. and fip, we computed the area
content spanned by both vectors and divided the normalized vector
product by the length of the end-to-end vector |R.| to estimate the
orthogonal distances between adjacent polymer chains:
g = [Bo X Re| @)
|R|

In addition, we determined the axial displacement describing
the movement of parallelly aligned polymers. We estimated the axial
displacement of chains by projecting the COM for each polymer
orthogonally onto the main COM axis of the bundle. More precisely,
we defined the main COM axis as the vector between the COMs at
both ends of the bundle Ry, linked one end of the COM axis to the
COM of any other polymer Ry and projected the COM of each
polymer onto the main COM axis, according to”*

B} Re Ry
Pry(Ri) === Ry, )
b b

Here, ﬁRb(Rk) denotes the vector projection of the COM of the
polymer onto the COM axis of the bundle. We normalized the
projected vector |Pg,(R;)| and subtracted half the length of the main
COM axis |Ry| to obtain the axial displacement for the COM of each
polymer with regard to the COM of the bundle. In the end, we used
the kernel density estimator from the Seaborn package to compute
the respective probability density.”

2.4.3 Density of the bulk system. For the analysis of the
bulk system, we focused on both macroscopic and microscopic
properties that characterize the packing of multiple PPEs
within a polymer network. On the macroscopic scale, we
estimated the bulk density of PPEs from both AA and CG
simulations by performing a NPT equilibration and computing
the property of interest from the resulting energy file with the
gmx energy command. In addition, we rescaled the Martini 3
density with the ratio of molar masses from the AA and CG
representation to enable the comparison with AA simulations.

2.4.4 Radial distribution function. On the microscopic
scale, we analyzed the spatial correlation by computing the
radial distribution function (RDF). To allow a detailed evalua-
tion of Martini 3 simulations with respect to the AA ones, we
first mapped both the AA and CG trajectory to the same one-
bead-per aromatic ring resolution. Next, we imported the
mapped trajectory into MDAnalysis, excluded the intrachain
beads and used the InterRDF command to compute the RDF
between Np polymers consisting of Ny, beads each. The RDF
£;(r) quantifies the probability of finding bead i from polymer I
at a distance r from bead j belonging to polymer J > I"°

No Np Nm Nu
gi(r) = (NeNwgo) D D D > s(|[f =7l =r),  (6)
=1 J=1 i=1 j=1

iel i/‘e‘]
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where 7; and 7; denote the position vectors of bead i and j from
polymer I and J and with i € I and j € J, respectively; r is the
distance from a reference bead #; 0 corresponds to the Dirac
delta function and g, = 4pnr*dr represents a factor used to
normalize the RDF with respect to a uniform system.

2.4.5 Nematic correlation function. Besides the pair-wise
spatial correlation, we estimated the nematic correlation func-
tion (NCF) to characterize the orientation of different polymer
chains relative to each other.”” The NCF II;r) quantifies the
alignment of different PPE chains within the bundled network
by combining the orientation correlations with the RDF. The
NCF weights the probability of finding two beads i and j at a
distance r = |F; — ;| with the absolute value of the dot product of
their tangent vectors ¢; and ¢, as defined in eqn (7):

S % TS fHl a7l -
SRS B B >) o ey I

1 J>1T1ieljel

As before, i and j denote the beads of polymer I and J. Hence,
the NCF describes the decay of orientation correlations with
increasing distance between beads. We notice that the upper
and lower limit of eqn (7) is given as a step function with height
one for parallelly aligned and one half for randomly oriented
chains.”” To estimate the NCF, we extended the InterRDF
command by multiplying the dot product of the unit tangent
vectors with the probability of finding bead i and j at a distance
r= |Fl - ;Jl

3 Results

The development of the CG model included the mapping of the
AA structure to CG resolution, the identification of bead types
for the non-bonded interactions and the parameterisation of
bonded terms, along with an experimental or AA based valida-
tion. By an iterative process we validated our parametrization
against experimental data, such as the mechanical bending
stiffness, partitioning free energies, the m stacking or bulk
density. In the supplementary information, we provided a flow
chart showing each step of the force field parameterization
(Fig. S1, ESIt) and a table summarising the properties used for
validation (Table S1, ESIY).

3.1 Mapping scheme for PPE

We followed the building block principle of Martini to identify
the mapping scheme for PPE that properly resembles its
chemistry and shape of its © conjugated backbone.***® The
PPE backbone consists of alternating phenyl rings and triple
bonds, interconnected by single carbon bonds as shown in
Fig. 1. Due to the alternation of single and multiple bonds, the
n orbitals of the carbon atoms overlap and the electrons are
delocalized from one end of the backbone to the other. To
adequately represent the n conjugated backbone of PPEs, we
divided the monomer into two building blocks, using similar
but different bead types for each (Fig. 2). We substituted the
phenyl ring with three apolar TC5 beads forming a triangle with
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constrained bond lengths to mimic the rigidity of the aromatic
ring. For the triple bond between the phenyl rings, we chose
one slightly less polar TC4 bead.

3.2 Parameterisation of the bonded potentials for PPE

The parameterisation of the bonded potentials followed a
bottom-up strategy based on both the identification of bond
potentials between Martini 3 beads and the fine tuning of them
through comparison to AA simulations or by taking the shape
of the molecule into account.>® This methodology has been
previously outlined for modeling non-complex molecular struc-
tures with Martini and has been partly automated for high-
throughput applications.*>”#° To begin with, we mapped the
AA trajectory to CG resolution by placing each CG bead at the
center-of-geometry of the underlying AA structure (Fig. 2A).
From the mapped trajectory, we computed the probability
densities for the bonded terms and performed CG simulations
to determine the exact same distribution functions. Next, we
iterated over the force constants and equilibrium values of the
Martini 3 force field to match the resultant probability densities
to the mapped AA ones (Fig. S2, ESIT).

3.2.1 Bonds, angles and dihedrals from the all-atom
model. We started the parametrization of the PPE backbone
with the identification of bond potentials between the CG
beads. As shown in Fig. 2A, one monomer of PPE consists of
three Martini beads forming a triangular structure [BB;-BB,~
BB;] and a single bead BB, at the left and right edge of each
triangle. In particular, we used three constrained bond length
potentials to model the edges of each triangle [BB;-BB,-BB;].
For the bond between the triangle and the adjacent single
beads BB; or BB; to BB,, we applied a harmonic potential
without constraints to provide a certain degree of flexibility
along the backbone. To stabilise the linkage between the
mapped fragments, we selected two bond angle potentials.
We applied the first one between the base of the triangle and
the neighboring ethyne bead [BB;-BB;-BB,], and the second
one between each side of the triangle and the adjacent single
bead [BB,-BB;-BB,]. The application of dihedral potentials
allows us to keep the aromatic rings along the backbone planar,
but also leads to smaller time steps. Hence, we reduced the
number of dihedral angles to one improper dihedral potential
between each triangle and its two neighboring single beads
[BB,-BB,-BB;-BB;] or [BB,~BB¢-BB,-BB;] to prevent the out-of-
plane bending and numerical instabilities. The resulting CG
Martini-based parameters thus allow for stable simulations
with at least a 20 fs timestep.

However, due to the planar structure of the monomers, we
underestimated the volume of the phenyl rings and thus over-
estimated the PPE bulk density compared to the AA one by
roughly 5% (Fig. S4, ESIt). Accordingly, our method required
further optimization to consider the shape and volume of the ©
conjugated backbone as explained in the following section.

3.2.2 Geometrical modeling based optimization. To reduce
the density mismatch and better represent the shape of PPEs,
we refined the bond lengths and bond angles between the CG
interaction sites. For this purpose, we approximated the
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polymer backbone as a chain of benzene molecules. According
to Martini 3, as a concatenation of regular triangles with side
length dy and spacing dy, (Fig. 2B). We assumed the triple bond
bead to be positioned in the geometric centre of two adjacent
phenyl rings at a distance dgr. We set the orthogonal distance
between the base of the triangle and the triple bond bead to
half the altitude of the regular triangle /7 = /3 /4 - dp. Based
on these assumptions, we finally derived the following equa-
tions for the unknown bond length dgr and bond angles ¢4,
with 7 = (1,2), ¢o,= 180° and ¢o,= 120°:

dgr = ([ h® + (M): and (8)
$an = Pon — arcsin (%) . (9)

As shown in Fig. 2B, the equation for the equilibrium bond
length (eqn (8)) and angles (eqn (9)) only depends on the side
length dg and spacing dy; of the triangles. To identify each
unknown, we set the distance between monomers dy; to 0.7 nm
in agreement with the AA simulations (0.7 nm) and experi-
ments (0.69 nm).">>® In addition, we estimated the side length
of the regular triangle dy by matching the solvent accessible
surface area (SASA) of PPEs from Martini 3 to AA
simulations.>>®' We retrieved the SASA from AA simulations
of one small four-monomer long PPE chain (Agasa = 13.22 nmz).
By setting the side length of the triangle to dg = 0.325 nm, the
SASA with our Martini 3 model was Agysa = 13.20 nm” (Fig. S5,
ESI{), a value which is in very close agreement with the AA
prediction. The equilibrium values obtained from this opti-
mized geometric model are summarized in Table 1.

3.2.3 Modeling the n conjugated backbone of PPE. We next
focused on modeling the m conjugated backbone of PPEs,
which spans from one end of the polymer to the other, and is
the reason for the complex shape, backbone linearity and
increased mechanical bending stiffness. We introduced an
extra harmonic bond angle potential, which extends over three
neighboring TC4 beads [BB,~-BBg-BB;,] and has an equilibrium

Table 1 Martini 3 force field parameters. Force constants were derived
from AA data and equilibrium values from the geometrical model

Selected beads for Reference value Force constant

bonded potentials ~ [nm or °] [k] mol ™" nm ™2 or kJ mol ']
BB;-BB, 0.325 Constraint
BB,-BB; 0.325 Constraint
BB,-BB; 0.325 Constraint
BB;-BB, 0.234 9000
BB,-BB,-BB, 143 550
BB-BB,-BB, 83 650
BB,-BBg-BB,,* 180 50
BB,-BB,-BBg** 165 50
BB,-BBg-BB,; 165 50
BB,-BB,-BB,-BB; 0 50

“ Extra harmonic bond angle potential models the © conjugated back-
bone. Force constant is identified by matching the persistence length
from Martini 3 simulations to experiments reported in the literature."*">
b Extra harmonic bond angle potential extends over both polymer ends.
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value of 180° to keep the backbone linear. Additionally, we
applied a harmonic bond angle potential at both ends of the
polymer chain to prevent the last monomer at both ends from
bending over. The bond angle potential at each end of the
chain included the outermost bead BB, or BB;; and its two
closest triple bond beads [BB,-BBg] (Fig. 2A). We applied the
geometric model to derive an expression for the reference bond
angle describing the © conjugation at both ends of the polymer:
) . hT

¢ = ¢op — arctan (m), (10)
where ¢, is the equilibrium angle at both ends; and ¢o, = ¢o1
and dg + dr is the distance between the outermost bead and
closest triple bond bead [BB;-BB,] or [BBg-BB;,], respectively.
The newly introduced harmonic bond angle potential reduces
the bending motion of the backbone as shown by the compar-
ison of the probability densities of three kind of dihedral angles
between the CG and mapped AA simulations (Fig. S2 and S3,
ESIt). We defined the first dihedral angle between two aromatic
rings by connecting the bases of adjacent triangles [BB;-BB;-
BB5-BB,]| and the second dihedral by linking the base of the
triangle to the two neighboring triple bond beads [BB,~BBs—
BB,-BBg]. We also specified a dihedral angle from the apex of
the triangle, over the triple bond bead to the base of the
adjacent triangle [BB;-BB;-BB,~BBy] or [BB,-BB,;~BB;-BB,].
We observed good agreement between the dihedral angle
probability densities obtained from the mapped AA and CG
trajectory (Fig. S3, ESIf). In particular, we noticed that the =
conjugation potential prevents the sampling of unwanted dihe-
dral configurations and keeps the aromatic rings along the
backbone planar. The final Martini 3 parameters resulting from
this optimized geometric model are listed in Table 1.

3.3 Partitioning free energy for tolane

The selected Martini 3 bead types, namely, TC5 for the rings
and TC4 for the triple bonds, specify the non-bonded interac-
tions. We validated the non-bonded interactions by comparing
the solubility of such-chosen CG beads obtained in simulations
with that from experiments. We estimated the partitioning free
energy in a biphasic octanol-/water system to compute the
distribution of the solute between the hydrophilic and hydro-
phobic solvent. Due to the absence of experimental data
regarding the solubility of PPEs, we chose tolane, short for
di(para-phenylene ethynylene), as a reference for validation
purposes. We estimated the free energy of transfer of tolane
from water towards octanol and validated the partition coeffi-
cient with experiments from the literature.*>*°

For this purpose, we calculated the PMF, using the weighted
histogram analysis method, and the resultant partitioning free
energy for tolane AAGoe_m20 = 27.69 kJ mol™" in an octanol-/
water system. Based on a cumulative simulation of 6 micro-
seconds per umbrella, we performed Bayesian bootstrapping to
obtain an absolute error below 0.10 k] mol™*, and backward
block averaging to show convergence within 200 ns (Fig. S6,
ESI1).** For the partition coefficient of tolane 10gPoct_t20 =
4.82 + 0.02, calculated with eqn (1), we observed good
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Table 2 Partition coefficients from experiments and Martini 3. Octanol-/
water partition coefficient of tolane, bibenzyl and trans-stilbene 3°4°

Chemical substance Experiments Martini 3
Tolane*’ 4.78 4.82 + 0.02
Bibenzyl*’ 4.70 £ 0.20

Trans-Stilbene®® 4.81 % 0.40

agreement with experiments reported in the literature 4.78.%
Beyond this, we suggest that similar chemical moieties, such as
bibenzyl or trans-stilbene, could be equally considered with our
Martini 3 model due to a comparable partition coefficient of
4.70 + 0.20 and 4.81 + 0.40, respectively.>® Table 2 gives the
literature values of experimentally measured partition coeffi-
cients for tolane, bibenzyl and trans-stilbene.?**°

3.4 Mechanical bending stiffness for PPE

We further improved our CG model by fine-tuning the bending
stiffness of a single chain backbone such that the experimental
persistence length is reproduced. The n conjugated backbone is
known to induce increased mechanical bending stiffness for a
single PPE which classifies PPEs as semi-flexible polymers. To
estimate the persistence length Lp for the PPE backbone, we
performed simulations of a single chain in solution, and fitted
both the unit tangent vector auto-correlation between pair-wise
segments (eqn (2)) and the squared end-to-end distance (eqn (3))
to the Martini 3 trajectory, as two independent measures for Lp.

We simulated single PPEs of various chain lengths ranging from
20 to 100 monomers with an increment of 10 in both water and
toluene. For each increment, we performed 10 replicas to adequately
sample the free energy landscape and obtain a significant estimate
for the persistence length. To model the n conjugated backbone and
fine-tune the chain stiffness, we introduced an extra harmonic bond
angle potential between adjacent TC4 beads (see section 3.2.3) and
adjusted the force constant to match the experimental persistence
lengths."*" Fig. 3 shows the resulting persistence length for a single
PPE chain for chains of size ranging from 20 to 100 monomers,
obtained when choosing a spring constant of 50 kJ mol™* for the
additional bond angle potential of the CG model. The persistence
length obtained from the unit tangent vector auto-correlation
(14.8 nm) and from the squared end-to-end distances (14.6 nm)
were comparable. A detailed summary of the persistence lengths for
each replica is provided in Fig. S7 and S8 (ESIt) for water and in
Fig. S9 and S10 (ESIf) for toluene. The calculated persistence
lengths are largely independent of the chain length and solely
depend on the chemical nature of the repetition unit.'” The covered
range as well as the obtained average from both estimation methods
and solvents of 14.7 nm (with a standard error of 1.3 nm) is in very
good agreement with the experimental values reported from Cotts
et al. (13.5-16 nm). We thus chose this parametrization for the extra
harmonic bond angle potential for all subsequent Martini 3
simulations.

3.5 Packing within a bundle of PPEs

We next evaluated the properties of systems containing multi-
ple PPE chains. To validate the Martini 3-based CG model
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Fig. 3 Persistence length of PPEs obtained from Martini 3. Average and
standard error for the persistence length of a single PPE chain as a function
of the polymerization degree was computed both in water and toluene.
Estimated with the unit tangent vector auto correlation ?j-?, (blue) and
squared end-to-end distance R.? (orange). Experimental estimates by
Cotts et al, using light scattering experiments (Lp = 13.5-16 nm),** and
by Godt et al., performing electron paramagnetic resonance spectroscopy
(Lp = 14.3-19.1 nm)*® are shown in green.

presented here, we analyzed the local structural organization of
PPE chains, and compared it to AA reference simulations and
experimental measurements. To this end, we constructed and
equilibrated a finite bundle of short PPE chains (10 chains,
each 4 monomers in length), and monitored two major degrees
of freedom, the radial arrangement of aligned polymers, and
their axial displacement within the polymer bundle. These
observables jointly tested the bonded and non-bonded interac-
tions defined in the Martini 3 force field potential.

First, we characterized the radial displacement between PPE
chains by computing the orthogonal distances between aligned
polymer chains (eqn (4)). We determined the probability
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density for n stacking (Fig. 4A). The © stacking obtained from
the AA and CG trajectories exhibits a similar behavior. In
particular, we observed three distinct peaks of the distribution,
at ~ 0.5 nm, 0.8-0.9 nm and 1.2-1.3 nm. Both the AA and CG
simulations show good agreement with the experimentally
observed interchain distances.®”®* Both models slightly over-
estimated the n stacking distances with reference to the experi-
mental value (~0.4 nm) by 15% for the first and 5% for the
second and third peak. In contrast to the AA case, for Martini 3,
the probability distribution did not drop to zero between the
peaks, the second and third peaks were hardly separated, and
finer structural features seen in the AA model were lost. This
reflects an overall less ordered packing, which is expected,
given the loss of resolution upon coarse-graining. To resolve
the second and third peak in more detail, a finer resolution, i.e.
mapping a ring of six heavy atoms to a rhombus of four beads,
would be suitable at the expense of the performance. Still, the
CG simulations capture the major features of radial packing of
chains and, thus, yield the expected local structure of PPEs.
Second, we characterized the axial degree of freedom by
computing the horizontal displacement of each chain relative
to the centre of the polymer bundle. To this end, we projected
the COM of each polymer onto the main COM axis of the
bundle using eqn (5). We compared the probability densities
from both AA and CG simulations as shown in Fig. 4B. Both the
CG and AA models exhibit distributions around zero displace-
ments with highly similar width. They both strongly disfavor
chains from displacing relative to each other by more than
0.5 nm. Again, the CG model is unable to reproduce a finer
Angstrom-scale structure of the PPEs, namely a bimodal dis-
tribution with peaks at £0.13 nm. Aromatic rings slightly prefer
an axial shift relative to one another by this length, a low-energy
n stacking mode also known for benzene rings that the AA force
field is able to capture.**®*®® In contrast, the probability
density from Martini is unimodal and centered around mode
zero. This deviation is due to the flattened free energy surface
resulting from mapping the AA structure to the CG resolution,

B —— OPLS
1.51 Martini 3
\//\
1.0
0.5
0.0

-1.0 -05 0.0 0.5 1.0
Relative displacement of PPEs [nm]

Fig. 4 Packing of aligned PPE molecules. (A) Radial orientation of aligned chains within the bundle estimated with the n stacking distance. Experimental
measurements reported in the literature used for comparison.828% (B) Axial displacement or side-by-side sliding of single chains within the polymer
bundle. Both packing properties are validated with reference to OPLS atomistic data.?®
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that is, a ring of six heavy atoms to a triangle of three beads.
Yet, on the coarser scale beyond 1-2 A, the CG data closely
follows the AA data. Within the expected level of resolution of
Martini, we conclude that our CG model accurately represents
both the axial and radial degree of freedom within a bundle of
aligned polymer chains.

3.6 Structural organization in PPE bulk systems

We next moved from finite PPE systems to a mid-size bulk PPE
simulation system with full periodicity of the polymer material
and absence of a solvent. The system size was chosen such that
simulations at the atomistic scale are still feasible, and com-
prised 300 chains of 4 monomers each. To characterize the
structural organization within a PPE bulk, we focused on
properties at both the macroscopic and microscopic length
scale, namely global packing by measuring the densities, and
the local packing to short-range structural parameters. First,
we evaluated the bulk densities from CG with AA simulations
and obtained a bulk density of pas = 1092 kg m > and pcg =
1098 kg m > for the AA and CG models, respectively (Fig. S4,
ESIt). This agreement is satisfying, and suggests that the
coarse-grained model largely reproduces the inter-PPE dis-
tances. Note that experimental densities for solid-state PPEs
between 997 and 1118 kg m ~, obtained from X-Ray powder
diffraction, depend strongly on the side-chain concentration,
and are therefore not suited for validation purposes.®”"%®

On the microscopic scale, we characterized the local orga-
nization within the bulk by computing the radial distribution
function (RDF) for the assembly of 300 PPEs with a length of
four monomers each. Fig. 5 shows a snapshot of the PPE bulk
obtained from an AA system in A, from a backmapped CG
system in C together with their respective RDF in B. For direct
comparison, we mapped the AA and CG trajectory to a one-
bead-per aromatic ring resolution and computed the RDF from
the mapped trajectories to analyze the packing of 300 PPEs.
Due to the symmetry along the backbone, the RDF between the
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triple bonds as well as the one between the aromatic and the
ethynylene groups are very similar (Fig. S11, ESIf). For the
mapped AA system, the RDF exhibits a first peak around
0.57 nm, a minimum at 0.73 nm, and a second and third peak
at 0.92 and 1.13 nm, respectively. Hence, the PPE assembly,
obtained from AA reference simulations, possesses a high
degree of local order as shown in Fig. 5A. The RDF computed
from the mapped Martini 3 trajectory exhibits a first peak at
0.58 nm, in close agreement with the AA force field. Its second
maximum at 0.74 nm is broader and covers the second and
third peaks of the RDF from the mapped AA trajectory. Thus,
the Martini 3 model broadly shows a similar packing geometry
also at such large distances. As expected and as also seen for
finite bundles (Fig. 4), it is evident that the PPE assembly
obtained on the CG scale is less locally ordered (Fig. 5C). As a
consequence of this, the CG model for PPEs did not resolve
features beyond the second peak. Still, overall, the packing of
the first and second neighbors (i.e. first and second peaks in
the RDF) is reproduced by the Martini 3 force field.

3.7 Nematic alignment in large-scale bulk systems

The Martin 3 model now opens the route towards analyzing
PPE assemblies at a larger length and time scale. We set out to
construct simulation systems of 300 to 800 chains, with 20 to 60
monomers, resulting in box sizes of 10 nm?® to 20 nm®. In the
largest system, around 200,000 CG beads represent approxi-
mately 600,000 atoms, and have been simulated for 5 micro-
seconds (Fig. 6). Note that these spatial and temporal scales are
already difficult to assess at the all-atom level of resolution.
Fig. 6A shows snapshots for a bulk system containing
500 PPEs consisting of 20, 40 and 60 monomers each. It is
evident that short-chains mostly align in parallel, while this
alignment is lost across larger distances when the chain length
grows. To quantify this nanometer-scale alignment of polymers
within the network, we calculated the nematic correlation
function (NCF). The NCF describes the decay in structural

RDF gj; (r)

11 /\,/\V\\/ A S —

—— OPLS
Martini 3

10

15

20 25 30

Radial distance r [4]

Fig. 5 Packing in mid-size bulk systems. (A) A snapshot of the AA trajectory indicates a high degree of local order. (B) Comparison of the RDF from
mapped AA and CG simulations. The latter shows a less distinct pattern with lower order. (C) Backmapping from coarse- to fine grain resolution reveals a
decrease in patterning. Local ordering of the nearest neighboring chains, given by the RDF's first two maxima, is reproduced by the CG force field.
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Fig. 6 Alignment in large-scale bulk systems. (A) Snapshots for bulk systems of 500 PPEs with a length of 20, 40 or 60 monomers. (B) Comparing the
NCF for bulk systems of various numbers of monomers Ny and polymers Np. Global ordering of PPEs decreases with increasing chain length.

order with increasing radial distance from a reference mono-
mer, as defined in eqn (7). More precisely, the lower limit of the
NCF (with 0.5) defines randomly oriented polymers and
the upper one (with 1.0) parallelly oriented ones. Fig. 6B shows
the results of the NCF analysis for different polymer chain
lengths ranging from 20 to 60 monomers. We computed the
average and standard deviation for the NCF from 8 replicas.
The averaged NCF increases sharply at the beginning and
decreases with increasing distance until the curve asymptoti-
cally approaches the lower limit of 0.5. As reflected by the
standard deviations, the variations in nematic ordering reached
after independent assembly simulations varied strongly for a
given chain length and system size, as the ordering extends
across length scales comparable to the system sizes.

Notwithstanding these fluctuations, the extensive sampling
aided by the efficient Martini model allowed us to reveal
significant differences when modifying the PPE chain length.
Most importantly, we observe a steady decrease in ordering
with increasing polymer chain length, across the whole range of
radial distances. PPEs with a chain length in the range of their
persistence length (20 monomers) show a higher degree of
alignment in comparison to longer-chain PPEs (40 or 60
monomers). The latter are less parallel and rather assemble
through entanglement as opposed to alignment. In this case,
parallel alignment is maintained on a length scale of up to
~5 nm, beyond which a nano-domain forms comprising PPE
chains aligned along a different direction. The decrease in
alignment with increase in polymer chain length can be attrib-
uted to the competition between entropic and enthalpic effects.
The influence of the entropic effects on the polymer dynamics
increases with the polymer length, thus long-chain PPEs exhibit
a random coil-like behaviour with less ordering.

To exclude effects from the limited system size, we also
examined the influence of the number of polymer chains on the

This journal is © the Owner Societies 2022

NCF (Fig. 6B, lighter colors). We compared networks consisting
of 300, 500 and 800 chains (e.g. system sizes of 12.1 nm?
14.3 nm® and 16.9 nm® for a 40-monomer long chain), and
found that the alignment of PPEs within a bulk system is
constant with the increasing number of polymers, and hence
independent of the box size. Starting from the equilibrated bulk
structures, we confirmed our observation regarding the
decrease in order with increasing chain length through anneal-
ing simulations of PPE networks (Fig. S12, ESIT).

Taken together, we observe a decay in nematic alignment of
PPE chains on the nanometer length scale, resulting in the
formation of nano-crystalline domains. The loss of interchain
alignment is more pronounced for long-chain PPEs which form
nano-domains on the ~5 nm scale and are independent from
the system size. Longer chains show more chain fluctuations
and thus entanglement, which impedes the preferred inter-
chain alignment observed for PPE chains with shorter chain
lengths, i.e. lengths in the range of their persistence length.

4 Conclusions

In this paper, we have developed a Martini 3 model for the n
conjugated backbone of PPEs which we validated against
experimental properties for single chains and bulk mixtures,
such as solvation and inter-chain packing. The CG model
reproduced the stacking and axial displacement of polymers
in a bundle as observed in AA reference simulations.®>%* With
the Martini 3 model at hand, we shed light on the structural
properties of PPEs at larger length scales. As a proof of concept,
we here found that the overall high nematic ordering is partly
lost for longer chains (Fig. 6B). In addition, the assembly of
polymers with chain lengths in the range of the persistence
length exhibits parallel alignment across up to ~6 nm.
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We recommend the usage of the PPE Martini 3 model for
understanding the bulk properties of PPEs, that is MD simula-
tions compromising dozens of polymer chains, for which we
observe a pronounced performance boost at the expense of
structural detail. We compared the performance obtained with
a single NVIDIA GeForce RTX 2080 Super GPU and a 20-core
Intel Xeon Gold 6230 processor for the smallest bulk system,
consisting of 300 polymers with 20 monomers each, for a total
of 26,100 coarse-grained beads. Equilibration for this system,
on a timescale of 5 microseconds, would take about 150 days at
the AA level as opposed to 60 hours at the CG one. Obviously,
the applicability of the AA or CG model depends on the
dynamics the user wants to study. In general, the dynamics
from Martini 3 simulations will allow the user to study larger
polymer systems at longer timescales at the expense of loss on
the atomistic accuracy.

The Martini 3 force field can be extended in a straightfor-
ward way to comprise side-chains of different chemistry (R in
Fig. 1) to thereby analyze the packing of PPEs in detail. Future
refinement of the already satisfying packing properties might
involve a finer mapping scheme, a desolvation barrier potential,
although no solvent molecule was found within the bundle of
parallelly aligned polymer chains, or generic labels from Martini
3 to optimize self-interactions between phenyl rings.>* Besides,
backmapping the Martini 3 bulk systems to AA resolution allows
an advanced analysis on different length scales depending on the
required degree of detail. Therefore, our Martini 3 PPE model
opens the pathway to elucidate the mechanical stress-strain
response of PPE bulk systems under mechanical force as well
as the microscopic interactions along the backbone. Finally, the
CG model in combination with the backmapping routine and
QM/MM methods could, e.g. help in understanding the electronic
properties, conductance, or excited states in the environment
found in bulk PPE networks.
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