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On standardised moments of force distribution in
simple liquids†

Jonathan Utterson and Radek Erban *

The force distribution of a tagged atom in a Lennard-Jones fluid in the canonical ensemble is studied with

a focus on its dependence on inherent physical parameters: number density (n) and temperature (T).

Utilising structural information from molecular dynamics simulations of the Lennard-Jones fluid, explicit

analytical expressions for the dependence of standardised force moments on n and T are derived. Leading

order behaviour of standardised moments of the force distribution are obtained in the limiting cases of

small density (n - 0) and low temperature (T - 0), while the variations in the standardised moments are

probed for general n and T using molecular dynamics simulations. Clustering effects are seen in molecular

dynamics simulations and their effect on these standardised moments is discussed.

I. Introduction

Understanding the moments and measures of a distribution for
a fully atomistic molecular dynamics (MD) simulation allow us
to better fit coarser models that reproduce these.1–3 It is often
the case in model coarse-graining that we wish to directly
reconcile the energy landscape of the fully atomistic system
to a more basic representation that allows us to maintain as
many physical properties of the system of interest, with as little
computational cost as possible.4 Though, it is also natural to
match forces between the high and low resolution systems
in an effort to reproduce the force distribution which will
inherently give rise to the energy landscape.5–10

Let F = [F1, F2, F3] denote a force on a tagged atom in a liquid.
Depending on the relative positions of other atoms, force F can
vary over a range of values and a detailed information on F can
be obtained by calculating properties of its equilibrium
distribution, which we will call force distribution in this
manuscript. Considering an isotropic system, the equilibrium
distribution of each force coordinate is the same. We define the
standardised moment of the force distribution by averaging
over the k-th power of its first coordinate as

ak ¼
Fk
1

� �
F1

2h ik=2; (1)

where hFk
1i is the k-th moment of the force distribution and ak

standardises the k-th moment by scaling it with the k-th power

of the standard deviation of the force distribution. In a simple
homogeneous fluid with radially symmetric interactions
between particles, the force distribution will exhibit symmetry
around the origin and thus all odd standardised moments
vanish, i.e. 0 = a1 = a3 = a5 = � � �. As a2 � 1 by definition (1),
the first non-trivial standardised moment is kurtosis, denoted a4,
which provides a measure of spread that details how tailed
the force distribution is relative to a normal distribution.11 In
this paper, we study how the force distribution depends on the
number density of a homogeneous many-body system, and the
temperature of the same system in a canonical ensemble.
We will do this by studying the behaviour of the second moment
of the force distribution hF1

2i and standardised even moments
a4, a6, a8,. . .. If the force distribution was Gaussian, then the even
standardised moments would be

ak ¼ ðk� 1Þ!! ¼
Yk=2
i¼1
ð2i � 1Þ; for k ¼ 2; 4; 6; 8; 10; . . . ; (2)

and the second moment hF1
2i would be sufficient to parametrize

the force distribution. However, the force distributions in
simple liquids have been reported to deviate from Gaussian
distribution.12–14 In particular, by comparing the results of our
analysis with Gaussian moments in eqn (2), we can also quantify
how non-Gaussian the real force distribution is.

Much work has been done in the area of force distribu-
tions of many-body systems: with seminal work from
Chandrasekhar15 that employed Markov’s theory of random
flights to give an expression for the force distribution of a
many-body system interacting through a 1/r gravitational
potential. More recent work has been done with the help of
MD by Gabrielli et al.,16 who derived an expression for the
kurtosis of the force distribution for a lattice system of atoms
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interacting through the gravitational potential. Further, using
the classical density functional theory, an expression for the
probability distribution of force for a system interacting
through an arbitrary weakly repulsive potential was derived by
Rickayzen et al.17,18

In this paper, we study the number density and temperature
dependence of the force distribution for a many-body system
interacting through a Lennard-Jones 12-6 potential,19,20 which
is ubiquitously used and has been shown to model homo-
geneous systems of interacting (Argon) atoms well.21–23

In Section III, an in depth investigation is given to the simple
two-body system in one spatial dimension, which provides the
ideal platform to illustrate the underlying methods while retain-
ing interesting dynamical behaviour. From first principles we
derive first-order partial differential equations (PDEs) describing
the parameter dependence of the standardised moments of the
force distribution. In doing so we further derive an analytic
expression for the partition function of a two-body system that
depends solely on the standardised moments of the force
distribution whereupon the expression is exact in an asymptotic
limit of the density going to zero (n - 0). Similarly, an expres-
sion is derived relating the average energy of the system to
standardised moments of force from the temperature dependent
PDE. In parameter regimes where long-range forces between
atoms dominate, we use a truncated Taylor series expansion to
derive the leading order behaviour of the kurtosis of the force
distribution in the limit n - 0. Finally, we utilise a Laplace
integral approximation to ascertain the leading order behaviour
of the standardised moments of force at low temperatures (T -

0). Results from simple MD simulations are presented to provide
evidence for the efficacy of these methods and underlying
assumptions.

This is followed by Section IV, where the natural idea that long
range force calculations dictate asymptotic behaviour is extended
from the 1D model to many-body systems of arbitrary size in three
spatial dimensions. These systems exhibit the physical properties
of standard MD simulations: i.e. cubic geometry with periodic
boundary conditions that employ the minimum image conven-
tion. In particular, we can analyze the system by performing
calculations on a central cubic cell. In Section IV.B, MD results
are displayed for many-body systems. We present the dependence
of the standardised force moments on density, n, and tempera-
ture, T, and discuss the parameters and integrator schemes
utilised in producing the results of MD simulations.

II. Notation

We consider a system of N identical atoms interacting via
the Lennard-Jones 12-6 potential.19 This is a ubiquitous inter-
atomic pairwise potential; here the potential between atoms
labelled i, j = 1, 2,. . ., N positioned at qi, qj A R3 is given
(in reduced units24) by the expression

UijðrijÞ ¼ 4
1

r12ij
� 1

r6ij

 !
; (3)

where rij = |qi� qj| is the distance between atoms. The Lennard-
Jones potential (3) between two atoms has a unique minima
obtained at rij = r� = 21/6.

We employ the framework of statistical mechanics for this
closed many-body system and describe atom i = 1, 2,. . ., N by
phase space coordinates {qi, pi} A R6, were pi denotes the
momentum of the i-th atom. We work in the canonical ensemble
with temperature T; the partition function therefore becomes

ZNðT ;VÞ ¼
1

h3NN!

ðð
Oq�Op

exp½�bHðq; pÞ� d3qd3p; (4)

where V is the volume of our closed system, and q = (q1, q2,. . .,
qN)T and p = (p1, p2,. . ., pN)T are vectors containing the positions
and momenta of all atoms in the system. Our integration domain
is given by Oq� Op C R3N� R3N. This denotes the phase space of
our system. For systems of interest Op � R3N. The underlying
geometry of the system (and principle simulation cell) is a cubic
box of size L 4 0, therefore Oq � (�L/2, L/2] � . . . � (�L/2, L/2].
The phase space volume elements in eqn (4) are denoted by

d3q ¼
YN
i¼1

d3qi and d3p ¼
YN
i¼1

d3pi: (5)

Throughout this work we make use of reduced units,24 utilising
Argon parameters.25 In particular, all instances of T in this
work can be translated back to SI units with the transformation
T - kBT where kB is the Boltzmann factor. Therefore, in the
partition function (4), we have b = 1/T and h is the Planck
constant (E0.186 in reduced units). Finally, H(q,p) is the
classical Hamiltonian H(q,p) = K(p) + U(q) with kinetic energy
K(p) = |p|2/2 (where the usual factor of mass is unity under
reduced units) and a general potential U(q). The statistical
average of a quantity X for this N-body system is given by

hXi ¼ 1

ZNh3NN!

ðð
Oq�Op

X exp½�bHðq; pÞ� d3q d3p; (6)

where the Boltzmann factor acts as a statistical weighting for a
configuration {q, p} A R6N, normalised such that h1i = 1.

We label atoms so that the first one is the tagged atom.
Denoting the force on the tagged atom produced from the j-th
atom by Fj = [Fj,1, Fj,2, Fj,3] A R3, for j = 2, 3,. . ., N, the total force
F = [F1, F2, F3] on the tagged atom is

F ¼
XN
j ¼ 2

Fj :

We define

fk ¼
ð
Oq

XN
j ¼ 2

Fj;1

0
B@

1
CA

k

exp½�bUðqÞ� d3q (7)

for k = 0, 1, 2,. . . Then we have

fk

f0
¼
* XN

j ¼ 2

Fj;1

!k+
¼ Fk

1

� �
:
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Then the k-th standardised moment (1) is given by

ak ¼
f
k=2�1
0 fk

f
k=2
2

; (8)

where we are interested in cases k = 4, 6, 8,. . ..
In order to study how the force distribution depends on the

physical parameters of interest it is useful to identify how
changes in these parameters will manifest themselves in the
system. Indeed, we choose to work in the canonical ensemble
with a target temperature of T: this is accomplished with the
use of a thermostat which is discussed further in Section IV.B
and Appendix B. It is more illuminating to see that if we have a
system with a fixed number of free interacting atoms N in
a cubic box of side L; the (reduced) number density is given by
n = N/L3. Therefore the approach we employ in this paper to
ascertain how values of standardised moments depend on
number density, will be to keep the number of atoms fixed
but vary the box width L – this will manifest as a change in
density n. Similarly one could keep the volume of the cubic box
the same and vary the number of atoms though this is a point
of discussion in Section IV.B.

For the remainder of the paper we will study systems with
different spatial dimensions. The size of the system varies by
changing the number of particles N; we will use eqn (8) as a
crucial initial point in each calculation. We will naturally
proceed by investigating systems of increasing complexity;
starting from a cartoon one-dimensional model and culminating
to a general many-body system of arbitrary size in three spatial
dimensions.

III. One atom in a potential well

We now go on to illustrate three approaches to obtain the
dependence of the force distribution on parameters n and T. It
is useful to note that, as we are now working in one spatial
dimension, density n is proportional to 1/L, i.e. we have n p 1/L.
We will consider a simple system in one spatial dimension
consisting of two atoms interacting through the Lennard-Jones
potential (3) in interval [0, L] with periodic boundary conditions.
One of the atoms is considered to be fixed at position q0 = L/2 A
[0, L] and the other atom is free to move, therefore, we have N = 1
free atom. Its position is denoted x A [0, L]. Therefore, the inter-
atomic distance is r = |x � q0|. Using our simplified one-
dimensional set up, F1 = F and Oq = (0, L), eqn (7) reduces to

fkðLÞ ¼
ðL
0

Fk x� q0j jð Þ exp �bU x� q0j jð Þ½ � dx; (9)

which is the marginalised expected value of the k-th moment of
force F(x) = �dU/dx, where we have dropped subscripts in the
Lennard-Jones potential (3) and we write it as U(z) = 4(z�12 � z�6).
Utilising the symmetry of the potential (and therefore the force)
we are left with

fkðLÞ ¼ 2

ðL=2
0

FkðrÞ exp½�bUðrÞ� dr: (10)

In what follows, we will assume that we are in a regime where the
box width L satisfies L c r�, where r� = 21/6 minimizes the
Lennard-Jones potential U.

A. Differential equation for standardised moments

We consider a perturbation of the form L - L + dL. Using
eqn (10) and considering terms to the order O(dL), we obtain

fkðLþ dLÞ ¼ fkðLÞ þ f 0kðLÞ dLþO dL2
� �

¼ fkðLÞ þ FkðL=2Þ

� exp½�bUðL=2Þ� dLþO dL2
� �

:

Using eqn (8), we approximate ak(L + dL) by

ak(L) + ak(L) nk(L) exp[�bU(L/2)] dL + O(dL2),

where our notation ak(L) highlights the dependence of the
standardised moments of force, ak, on L, and function nk(L) is
given by

nkðLÞ ¼
k� 2

2 f0ðLÞ
þ FkðL=2Þ

fkðLÞ
� kF2ðL=2Þ

2 f2ðLÞ
: (11)

Taking the limit dL - 0, we obtain the derivative of the k-th
standardised moment of force, with respect to L, as

@ak
@L
ðLÞ ¼ nkðLÞ exp½�bUðL=2Þ� akðLÞ; (12)

where nk(L) are expressed in terms of integrals (10) as given by
eqn (11).

B. Far-field integral approximation

To further analyze integrals (10), we introduce a cutoff c, which
satisfies that r�o c o L/2, where r� = 21/6 is a unique maximum
of exp[�bU(z)], which can be Taylor expanded as b(1 + 4z�6 +
4z�12 � 16/3z�18 + 8z�24. . .). Considering sufficiently large L, we
can choose the cutoff c, so that

f0ðLÞ � 2

ðc
0

exp½�bUðrÞ� drþ b
ðL=2
c

1þ 4

r6
dr

 !�����
����� � e; (13)

where tolerance e is chosen to be 10�4 in our illustrative
computations. This splitting allows us to numerically calculate
the bulk of the integral (10) as a constant independent of L and
then use the second term to give an analytic expression for ak

with dependence on L, and ultimately on n.
The range of values of T that are of typical use are chosen in

order to maintain the liquid state of Argon during simulation.
These are approximately temperatures in the interval 0.70 o
T o 0.73 under ambient conditions.26 Therefore, as volume is
varied we are in a regime where b = O(1), for convenience we set
b = 1. Though given that the density of our system changes
between each simulation some systems will be in a liquid phase
and others in a gaseous phase, this is a point of discussion in
Section IV.B.

Splitting the integration domain [0, L/2] of integral (10) into
[0, c] and [c, L/2], we use the exact form of the integrand in [0, c]
to obtain a ‘near-field’ contribution. Utilising an approximate
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form for the integrand given by the truncated Taylor expansion
f (z) in the domain [c, L/2] gives rise to a density dependent ‘far-
field’ contribution. Combining these we arrive at the approx-
imate form for f0(L). Using cutoff c = 2, eqn (13) is satisfied with
e = 10�4. Therefore, upon numerically calculating the bulk
contribution for the integral with domain [0, 2], we get

f0ðLÞ ¼ 2

ðL=2
0

exp½�bUðrÞ� dr ¼ b0 þ LþO L�6
� �

(14)

with b0 =�0.71832, which depends on our choice of cutoff c = 2.
Similarly, we can calculate far-field integral approximations of
integrals (10) for general values of k = 2, 4, 6, 8, 10, 12. The
integrand Fk(r) exp[�bU(r)] has maxima when r = r� = 21/6 or
when kU00(r) = b(U0(r))2. This forms a cubic in r6 that can be
solved. For the values of k used in this work, this sometimes
results in a global maximum, that always lies at a distance less
than r o r� from the origin. Therefore r� = 21/6 is the furthest
maximum of the integrand from the origin.

Splitting integral (10) into a near-field and far-field contribution,
using the general cutoff c = 2, we find

fk(L) = bk + O(L�7k) (15)

The near-field contributions, bk, generally increase vastly if we
increase the value of k, for example

b0 = �0.71832, b2 = 130.64 and b4 = 2.5727 � 105,
(16)

while the dependence on L decreases more rapidly for larger
values of k. Therefore, the non-negligible density contributions
to ak(L) in the low density limit come exclusively from the
normalisation f0(L) given by (14).

Substituting eqn (14) and (15) in eqn (8), we obtain an
expression for the general k-th standardised moment of force

akðLÞ ¼
b
k=2�1
0 bk

b
k=2
2

1þ L

b0
þO L�6

� �� �k=2�1
: (17)

Using the values of b0, b2 and b4 given by (16), we obtain the
dependence of the kurtosis of the force distribution on the
reduced number density n = 1/L in the dilute limit n - 0 as
a4 = �10.828 + 15.074n�1 + O(n6). Fig. 1 compares this result
with the results obtained by MD simulation of the one atom
system. We observe that MD is in good agreement with the
results obtained by formula (17).

C. Leading order behaviour for differential eqn (12)

Since L/2 4 r�, the force F (L/2) monotonically decreases as a
function of L. When looking at leading order approximations in
the low density limit n - 0 (equivalent to limit L - N) to
eqn (12), we need to analyse nk(L). The second and third term in
eqn (11) converge to zero more rapidly than the first term as
L - N, therefore the leading order behaviour is given by the
first term

nkðLÞ 	
k� 2

2 f0ðLÞ
as L!1: (18)

By utilising the far field integral approximation (14), we arrive
at f0(L) B (b0 + L), where b0 = b0(c) is a constant term that
depends on cutoff parameter c. With this, our leading order
approximation of the k-th standardised moment, a0

k, obeys

@a0k
@L
ðLÞ ¼ k� 2

2 ðb0 þ LÞ a
0
kðLÞ:

Finally this gives us that

a0
k(L) = Ck (b0 + L)k/2�1 = Ck (b0 + n�1)k/2�1, (19)

where n = 1/L is the reduced number density and Ck is a
constant. Eqn (19) gives the same leading order behaviour
n1�k/2 in the limit n - 0 as eqn (17): the same behaviour is
also seen for the Lennard-Jones fluid in Section IV. Though the
method above is more generally applicable to include potentials
that monotonically decay as r�a as r - N for a 4 0. We next
make the observation that eqn (4) in 1D can be written as:

Z1ðT ;VÞ ¼
1

h

ðL
0

exp½�bUðqÞ� dq
ð1
�1

exp �bp
2

2

	 

dp; (20)

where the Planck factor of 1/h arises instead of 1/h3 due to the
fact that we are in one-dimensional physical space. Using (10),
we obtain

f0ðLÞ ¼ h Z1ðT ;VÞ
ffiffiffiffiffiffi
b
2p

r
: (21)

Considering the low density limit n - 0 (i.e. L -N) in eqn (12)
and using (18) and (21), we obtain

Z1ðT ;VÞ 	
ðk� 2Þ

ffiffiffiffiffiffi
2p
pffiffiffiffiffiffiffi

h2b
p akðLÞ

@ak
@L
ðLÞ

� ��1" #
; (22)

as L - N. In particular, we can obtain the partition function (20)
in the dilute (low density) limit by using information about the

Fig. 1 Plot of a4 as a function of n = 1/L for the illustrative one-atom
system. Results of MD simulations are compared with a4 = �10.828 +
15.074n�1 obtained by using eqn (17) with b0, b2 and b4 given by (16) (blue
dashed line). MD simulation results for temperature T = 1 utilising Langevin
dynamics27 described in eqn (B1), with friction parameter g = 0.1,
are represented by red dots. The MD simulation length was a total of
1.1 � 108 time steps with the first 107 time steps used for initialisation.
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moments of the force distribution. The accuracy of eqn (22) is
illustrated in Fig. 2, where we use k = 4. We use MD simulations
of a single atom, using a range of simulation box widths L. We
estimate the values of kurtosis of the force distribution, its
derivative with respect of L and use the right hand side of
eqn (22) to estimate the Z1(T, V). Considering L Z 10, the result
is within 5% error when compared with the exact result (20),
while for larger values of box width L the error decreases to
around 1%, confirming that the formula (22) is valid in the
asymptotic limit L - N.

D. Temperature dependence of standardised moments

One can perform a similar analysis as in Section III.A, viewing
the moments ak = ak(T) as a function of temperature T = 1/b.
To do that, we consider the moment definition (10) as a
function of temperature T, namely, we define

fkðTÞ ¼ 2

ðL=2
0

FkðrÞ exp �UðrÞ
T

	 

dr: (23)

Considering small perturbations of these functions with
respect to T - T + dT, while fixing the domain length L, and
collecting terms up to first order in dT, we obtain

@ak
@T
ðTÞ ¼ nkðTÞ akðTÞ; (24)

where

nkðTÞ ¼
k

2
� 1

� �
f
0
0 ðTÞ
f0ðTÞ

þ f
0
kðTÞ
fkðTÞ

� k

2

� �
f
0
2 ðTÞ
f2ðTÞ

: (25)

Combining eqn (24) and (25) with eqn (21) where b = 1/T, we
obtain

@

@T
ln

ak2f k2
fk2

� �
¼ k� 2ð Þ @

@T
lnðZ1Þ �

1

2T

� �
:

Since �q/qb(lnZ1) is equal to the average energy of the system,

hEi, we have

hEi ¼ T

2
þ T2

k� 2

@

@T
ln

ak2f k2
fk2

� �
; (26)

where the first term on the right hand side of eqn (26) is the
average kinetic energy of our one-atom system. Substituting
eqn (8) into the second term on the right hand side, it can be
rewritten as T2 q(ln f0)/qT. Thus, using eqn (6), we confirm that
the second term on the right hand side of eqn (26) is the
average potential energy.

E. Low temperature limit

Next, we consider the behaviour of the k-th standardised
moment of force, ak(T), given by eqn (8), in the low temperature
limit, T - 0, which is equivalent to the limit b - N. Since the
inter-atomic potential U(r) has a global minimum at r = r� in
interval [0, L/2], integrals of the form (10) and (23) can be
approximated by Laplace’s method in the limit b - N and
T - 0, respectively. A general discussion of Laplace’s method is
given in Chapter 6 of the book by Bender and Orszag.28 We
calculate the asymptotic expansion of f0(T) by applying Lapla-
ce’s method to integral (23) for k = 0. We approximate the
integration limits of integral (23) to lie within the domain r A
(r� � e, r� + e), where e { 1, and we Taylor expand U(r) at r = r�.
Using U0(r�) = 0, we have

UðrÞ 
Uðr�Þ þ ðr� r�Þ2U 00ðr�Þ=2

þ ðr� r�Þ3Uð3Þðr�Þ=6þ ðr� r�Þ4Uð4Þðr�Þ=24;

where we denote the m-th derivative of U as U(m) for m Z 3.
Substituting into integral (23), we arrive at the asymptotic
expansion

f0ðTÞ 	
ffiffiffiffiffiffiffi
pT
p

exp �Uðr�Þ=T½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2U 00ðr�Þ

p 1þ B0T þO T2
� �� 

; (27)

as T - 0, where constant B0 is given by28

B0 ¼
5 Uð3Þðr�Þ
� �2
24 U 00ðr�Þð Þ3

� Uð4Þðr�Þ
8 U 00ðr�Þð Þ2

: (28)

To apply Laplace’s method to integral (23) for k = 2, 4, 6,. . ., we
note that Fk(r) = (U0(r))k for even values of k. Using the truncated
Taylor expansion around r = r� and noting that U0(r�) = 0,
we have

Fk(r) E (r � r�)
k ((U00(r�))

k + (r � r�) Ck,1 + (r � r�)
2 Ck,2),

(29)

where Ck,1 and Ck,2 are constants, which can be expressed in
terms of the derivatives of potential U(r) at r = r� (see eqn (A1)
and (A2) in Appendix A). This gives the asymptotic expansion

fkðTÞ 	
ffiffiffiffiffiffiffi
pT
p

exp½�Uðr�Þ=T �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2U 00ðr�Þ

p
� Ak Tk=2 þ BkT

k=2þ1 þO Tk=2þ2
� �h i

:

(30)

as T - 0, where constants Ak and Bk are given by

Fig. 2 Approximation of the partition function Z1(T, V) obtained using the
right hand side of eqn (22) with k = 4 and values of kurtosis (a4) estimated
from MD simulation (blue dashed line). The exact values obtained by
eqn (20) are plotted as the red dots.
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Ak = (U00(r�))
k/2(k � 1)!!

and

Bk ¼
ð4k� 15Þðk2 � 1ÞðUð3Þðr�ÞÞ2

72ðU 00ðr�ÞÞ3
þ ðk

2 � 1ÞUð4Þðr�Þ
8ðU 00ðr�ÞÞ2

;

where the last formula reduces to eqn (28) for k = 0. Substitut-
ing (27) and (30) into (8) gives the following expression in the
limit T - 0:

ak 	 ðk� 1Þ!! 1þ ðk� 2ÞB0 þ 2Bk � kB2

2
T þO T2

� �� �
:

In particular, we have a2 B 1 + O(T2) and

a4 	 3þ 3
ðUð3Þðr�ÞÞ2
ðU 00ðr�ÞÞ3

þ Uð4Þðr�Þ
ðU 00ðr�ÞÞ2

� �
T þO T2

� �

¼ 3þ 203

6
T þO T2

� �
: (31)

Therefore, Laplace’s method predicts that the standardised
moments of the force distribution, ak(T), tend to the values
given in eqn (2) for Gaussian moments in the low temperature
limit. This limiting behaviour is to be expected as during the
Laplace approximation we use a Gaussian distribution to
approximate the Boltzmann factor. We can interpret this
approach as approximating the force distribution as Gaussian
and perturbations of the system around small temperatures
give rise to non-Gaussian contributions to the standardised
moments.

Results from MD simulation are illustrated in Fig. 3 over the
range of values of temperature T. We see that the behaviour of
kurtosis, a4, is well approximated by the linear approximation
3 + 203 T/6 given in eqn (31) for the temperature values
satisfying T r 0.1, though this agreement diverges as temperature
T increases and higher order terms, O(T2) in eqn (31), become
significant. In Fig. 3, we fix the box width as L = 10. Increasing
the box width much further would take us to a regime where the
particle is essentially free and the approximation calculated by the
Laplace method around the potential minimum would lose
validity.

IV. Many-body systems

In this section we employ the far field approximation approach
introduced in Section III.B and we will vary the number density of
the system by changing the size L of the integration domain,
which will be given as the three-dimensional cube [0, L]3. Using
notation introduced in Section II, the distance between atoms
labelled i, j = 1, 2,. . ., N positioned at qi, qj A R3 is denoted by
rij = |qi � qj|. Taking into account the periodic boundary condi-
tions, the distance |qi � qj| is the minimum image inter-atomic
distance given by

qi � qj
�� �� ¼ qxi � qxj

� �
2 þ q

y
i � q

y
j

� �
2 þ qzi � qzj

� �
2

� �1=2

; (32)

where the overline denotes �z = z�L [z/L] for zA R and [�] rounds a
real number to the nearest integer. For an interacting N-body

system the dimensionality of the integral given by eqn (7) is 3N.
We first present an illustrative calculation with N = 2 interacting
atoms in Section IV.A and then we study systems with larger
values of N in Section IV.B.

A. Dependence of ak on density for N = 2 interacting atoms

In Section III, we have considered two atoms in the one-
dimensional spatial domain, where one atom was fixed at position
q0, i.e. we have effectively studied a single atom in a one-
dimensional potential well. Here, we will consider N = 2 interacting
atoms in the three-dimensional cubic domain [0, L]3 with periodic
boundary conditions. We calculate the k-th standardised moment
of force according to eqn (8). To do so, we consider eqn (7), where
we have d3q = d3q1 d3q2, U(q) = U(r12), F1(q) = F1(r12) and we
integrate over the domain O = [0, L]3 � [0, L]3 to get

fk ¼
ð
O
Fk
1 ðr12Þ exp½�bUðr12Þ� d3q1 d3q2: (33)

It is useful to introduce a change of coordinates xc = qc1 � qc2 and
Zc = qc1 + qc2 for c = x, y, z. We note that r12 is only dependent on the
xc variables, therefore one can trivially integrate (33) through the Zc

variables as the integrand has no dependence on these to obtain

fk ¼
L3

8

ðL
�L

ðL
�L

ðL
�L

Fk
1 ðr12Þ exp½�bUðr12Þ� dxx dxy dxz;

where r12 is the minimum image inter-atomic distance (32).
This integral can be written in terms of standard Euclidean
distance r2 = (xx)2 + (xy)2 + (xz)2 as

fk ¼ 8L3

ðL=2
0

ðL=2
0

ðL=2
0

Fk
1 ðrÞ exp½�bUðrÞ� dn; (34)

where dn = dxx dxy dxz. In order to analyse fk further by
implementing a far field approximation, we need to make sure
we are in a regime where the integrand is small – we do this by
introducing a cutoff g, which will divide the cube [0, L/2]3 into 8

Fig. 3 Kurtosis, a4, as a function of temperature, T, for T r 0.3. The linear
behaviour is estimated as a4(T) B 2.9388 + 37.002T for T A (0.01, 0.10)
(using the MD computed data, with density n = 0.1, visualized as red dots).
We compare this to the theoretical linear result 3 + 203 T/6 predicted by
eqn (31) (illustrated by the blue dashed line).
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cuboid subdomains, including

O1 ¼ ½0; g�3; O2 ¼ ½0; g�2 � ½g;L=2�;

O3 ¼ ½0; g� � ½g;L=2�2; O4 ¼ ½g;L=2�3:

Utilising the symmetry of the problem, we can rewrite integral
(34) as

fk ¼ 8L3

ð
O1

þ 3

ð
O2

þ 3

ð
O2

þ
ð
O4

� �
Fk
1 ðrÞ exp½�bUðrÞ� dn:

(35)

Considering (35) for k = 0, the integral over O1 is independent of
L and provides a bulk contribution to f0 that will depend on g.
The remaining three terms have integration domains that allow
the integrand to be accurately described by a Taylor expansion
giving the leading order contribution in the asymptotic limit
L - N as f0 p L6, which can be rewritten in terms of the
density, n, in the form

f0 p n�2 as n - 0. (36)

Considering fk for k a 0, the integral over O1 in eqn (35) is again
independent of L. However in the far field expansion the
integrals over O2, O3 and O4 all decay with L due to the force
factor. As the integration domain has essentially been transformed
into that of inter-atomic distances about the three coordinates,
when we increase the domain length, the inter-atomic force
necessarily decays to 0. Therefore in the limit L -N the dominant
term arises from integrating over O1, and we see that, for k = 2, 4, 6,
8,. . .,

fk p n�1 as n - 0. (37)

This leaves us with the final result that in the low density limit
n - 0, combining eqn (8) with asymptotic expressions (36)
and (37),

ak p n1�k/2 as n - 0. (38)

While this result has been calculated for N = 2 interacting
atoms, it is also confirmed for larger values of N by estimating
the k-th standardised moments using MD simulations, as it is
shown in the next section.

B. MD simulations with N interacting atoms

In this section we present the results from MD simulations of
many-body systems in three spatial dimensions using different
values of N, including the case N = 2 (analyzed in Section IV.A).
Atoms are subject to pairwise interactions governed by a
Lennard-Jones potential, given in eqn (3). For each system we
use a velocity-Verlet23 integrator and maintain the system in the
canonical ensemble by incorporating a Nosé–Hoover
thermostat,37 see Appendix B. We perform two types of MD
simulation studies: those that are used for studying how the
number density, n, of a system affects standardised moments,
and those that aim to probe temperature dependency. In all
cases we utilise a time step Dt = 0.01. In the case of the
simulation with N = 2 atoms, we initialise the positions of
atoms by setting q1 = 0 and q2 = (L/2, L/2, L/2), whereas for the

N = 8, 64, 512 atom systems, we choose to initialise these on a
uniform cubic lattice.

The MD simulation parameters are summarised in Table 1,
where tsim is the total simulation time used for calculating the
required statistics, which is preceded by the initial simulation
of length tsim/10 used for equilibrating the system. When
investigating the number density dependence, we perform 20
simulations each with a box width of L = L0 � (6/5)i�1, where i =
1, 2,. . ., 20 labels the simulation number and L0 is the smallest
cubic box width. We simulate the N = 8, 64, 512-atom systems with
L0 = 3, 5, 10, respectively. This enables direct comparison because
we can identify triplets of simulated systems corresponding to
systems of the same number densities. The two-atom system
however is simulated in a sparser regime with L0 = 5. We calculate
statistics on the fly for every time step, for every atom and for each
coordinate – therefore we average the computed results over the
number of time steps (tsim/Dt) and atom coordinates (3N).
In particular, the statistics are calculated over 3 N tsim/Dt data
points. This is equal to 6 � 1011 (resp. 1.536 � 109) data points in
the simulation with N = 2 (resp. N = 512) atoms.

Calculating the number density in three spatial dimensions
by n = N/L3, we can study the behaviour of kurtosis a4 as
n varies. The results are presented in Fig. 4. We see general
agreement between behaviour of each of the four systems.
We see when n is equal, the values of kurtosis are larger for
N = 2 than for the many-body systems with N = 8, 64, 512, which
agree well amongst themselves.

The results in Fig. 4 enable us to test the asymptotic
expression (38) for k = 4 derived in the limit n - 0. Utilising
similar log–log plots for MD data, we estimate the power law
behaviour of each standardised moment, ak, for k = 4, 6, 8, 10,
12. Fig. 5 illustrates the results. All systems agree well with the
predicted asymptotic behaviour (38), in particular the N = 512
atom system. There is a slight deviation between the results due
to the fact that the smaller atom systems require a larger tsim in
order to converge fully to the predicted value. This discrepancy
is amplified when looking at higher standardised moments due
to the fact that we are calculating statistics resulting from F12

1

(i.e. for a12) compared to F4
1 (i.e. for a4), for example.

The dependence of kurtosis a4 on temperature T is pre-
sented in Fig. 6, where we keep the density fixed at n = n0 given
in Table 1. We observe that as temperature increases so does
the kurtosis of the force distribution associated with each
system. This can be explained in terms of the dynamics of
the interacting atom system. If we maintain each system in the
canonical ensemble, we expect on average that each atom will

Table 1 The length of MD simulation, tsim, the (smallest) box width, L0,
used for simulations with N atoms and density n0 for MD simulations with
varying temperatures

N tsim L0 n0

2 109 5 0.016
8 107 3 1/64
64 106 5 1/64
512 104 10 1/64
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have a kinetic energy equivalent to 3 T/2 (when in reduced units).
As we increase this target temperature, the atoms become more
energetic and thus are able to probe closer inter-atomic dis-
tances before a large repulsive force overcomes this inertial
attraction. The range of forces on the tagged particle widens as
temperature increases and therefore contributes to more outlier
results in the distribution – leading to heavier tails and therefore
distributions which become increasingly leptokurtic.

In Fig. 6, we observe that there is a qualitative difference
between the results for N = 2 and larger atom systems. We see a
bifurcation for the N = 64 and N = 512 systems at some
temperature T�A (0.6, 0.65), where a steady increase in kurtosis
changes to a rapid increase. This bifurcation point in the phase
plane lies on the coexistence boundary with (n, T) = (1/64, T�)
and is due to a clustering mechanism which has been seen in

MD simulations of Lennard-Jones fluids.29 From our results we
see that the N = 2 system has missed this behaviour completely.
Snapshots of the N = 512-atom system at some T = 0.6 o T�, and
T = 0.66 4 T� are displayed in Fig. 7. For T = 0.6, we see a large
cluster has formed in the many-atom system. There would be far
fewer outlier force results in this case due to the fact that the
large majority of atoms are moving as a collective and effectively
have fixed inter-atomic forces. Compared to the T = 0.66 snap-
shot, where we see that the atoms are too kinetically unstable to
form these larger stable cluster structures, this results in more
outlier forces felt between atoms due to the fact that the system
is intrinsically more disordered. It is useful to note that this
bifurcation point is located on the vapour-liquid coexistence
boundary, the mechanisms of which have been studied on dilute
Lennard-Jones fluids;30 here we see that this results in a bifurca-
tion on standardised moments of the force distribution.

To understand the underlying variations of kurtosis, a4, with
respect to changes in temperature and density, we use 12 � 16

Fig. 4 Dependence of kurtosis a4 on density n. Each of the larger atomic systems (N = 8, 64, 512) is simulated over the same domain of number
densities, while the N = 2 system is simulated in a sparser domain, though all are simulated in three spatial dimensions. We truncate the results of the
N = 2 simulation in the plot, however the additional data points are used to calculate the results displayed in Fig. 5.

Fig. 5 Comparison of the results of MD simulations for a range of values
of the number of atoms, N. After long time simulation, we compute the
asymptotic behaviour ak p n�k and compare the leading order power
scalings for each system. We compare this with the theoretical result (38)
(denoted as a blue dashed line) that in the limit n - 0 we expect the
universal behaviour k = k/2 � 1, where k = 2, 4, 6,. . . denotes which
standardised moment of force we are looking at.

Fig. 6 Dependence of kurtosis a4 on temperature T. Each atomic system
is simulated at approximately the same density n = n0 given in Table 1.
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MD simulations with N = 512 atoms and tsim = 3 � 106, varying
simulation parameters (n, T), where n = 10�2 + (i � 1)/10, for
i = 1, 2,. . ., 12, and T = 10�1 + j/10, for j = 1, 2,. . ., 16. The
sampled values of kurtosis, pressure and internal energy are
included in the ESI.† The results for excess kurtosis (a4 � 3) are
displayed in Fig. 8. Here a bifurcation can be seen when using
the smallest density n = 0.01, as the change in colour is
prominent in this vertical strip, indicating a large change of
kurtosis. This occurs around T = 0.6, which is consistent with
the result in Fig. 6, where we saw the bifurcation similarly
located, though the slight shift in temperature is accounted for
by the change in density parameters used in each simulation
(namely n = 0.01 in Fig. 8 and n = 1/64 in Fig. 6).

In general, this low density strip contains the largest values
of kurtosis, and covers much of the purely gas phase of the
Lennard-Jones fluid. This paper has so far probed the low
density limit in an attempt to understand why the standardised
moments of force are so large, though Fig. 8 gives a good
overview that in general, regardless of phase, a decrease in

temperature, or an increase in density, systematically lead to a
lower value of standardised moments. In this case as n -N or
T - 0, we expect the a4 - 3 (excess kurtosis tends to zero). This
limiting regime corresponds to the solid phase of a Lennard-
Jones system, where the force variations are minimal and the
distribution is Gaussian. There is not enough space, nor
energy, that lead to (many) outlier forces experienced by any
atom, so the force distribution becomes less and less skewed
from Gaussian, the deeper we probe in these regions. This
intuition was demonstrated analytically in Section III.E when
we showed this limiting behaviour on a 1D cartoon model with
eqn (31). It is interesting to note that these changes in values
of a4 appear smooth about changes in temperature and density
(in absence of the bifurcation point for larger values of n),
regardless of phase transitions.

V. Discussion and conclusions

In Section III we have demonstrated use of a variety of methods
to study the standardised moments of the force distribution in
order to probe both their temperature and number density
dependence. This gave way to a rich structure where we show
that the partition function for a 1D system can be calculated
entirely from these standardised moments. Extending the far
field method introduced in Section III.B to a system with
N atoms in three-dimensional physical space, Section IV studies
the dependence of ak on number density n, deriving the
asymptotic expression (38). Our analytic results are contrasted
with MD simulations of four systems of N = 2, 8, 64, 512
interacting Lennard-Jones atoms and these are compared.
The results agree well with theoretical predictions though the
results for systems with larger values of N are seen to converge
more readily to the theoretically predicted results. In particular,
rich dynamics such as clustering of Lennard-Jones fluids is
completely missed by the systems with smaller values of N, but
captured for systems with N as small as N = 64 atoms. In
general, as temperature increases ak increases due to energetic
nature of atoms allowing them to push closer together and
experience larger forces. Clustering exhibited at the vapour–
liquid coexistence phase incurs a bifurcation point whereby a
large increase is seen in the standardised moments of force in
Fig. 6, though a general increase in temperature, or decrease in
number density, results in an increase in a4 regardless of the
temperature/number density domain studied, as shown in
Fig. 8.

Data availability

In compliance with EPSRC’s open access initiative, the data in
this paper is available from https://doi.org/10.5287/bodleian:
GOMrMbXQe and in the ESI.†
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Fig. 7 Snapshots31 of the MD simulation are taken for the system with
N = 512 atoms at time t = 7.5� 105 for: (a) T = 0.6 o T�; and (b) T = 0.66 4 T�.
Density is n = 1/64.

Fig. 8 The excess kurtosis, a4 � 3, calculated as a function of density n
and temperature T for n r 1.11 and T r 1.7. The white dotted lines
describe coexistence lines of different phases of a Lennard-Jones fluid
taken from the literature.32–35 The solid black dots indicate (from left to
right), the critical point and vapour–liquid–solid triple points.
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Appendix A: constants Ck,1 and Ck,2 in
eqn (29)

The constants appearing in eqn (29), namely Ck,1 and Ck,2, are
given by formulas

Ck;1 ¼
kðU 00ðr�ÞÞk�1Uð3Þðr�Þ

2
; (A1)

Ck;2 ¼
k

24
ðU 00ðr�ÞÞk�2

� 3ðk� 1Þ Uð3Þðr�Þ
� �2

þ4U 00ðr�ÞUð4Þðr�Þ
� �

;

(A2)

which can be derived in the following manner. Using Fk(r) =
(U0(r))k for even values of k and U0(r�) = 0, we first note that

Fk,k(r�) = k! (U00(r�))
k,

Fk,m(r�) = 0, for m r k � 1,

where Fk,m denotes the m-th derivative of Fk, i.e. the m-th
derivative of the k-th power of F. Therefore, the first three
non-zero terms of the Taylor expansion of Fk(r) around r = r� are

FkðrÞ 
ðr� r�Þk U 00ðr�Þð Þkþðr� r�Þkþ1
Fk;ðkþ1Þðr�Þ
ðkþ 1Þ!

þ ðr� r�Þkþ2
Fk;ðkþ2Þðr�Þ
ðkþ 2Þ! :

(A3)

Therefore, we have Ck,1 = Fk,(k+1)(r�)/(k + 1)! and Ck,2 = Fk,(k+2)(r�)/
(k + 2)! and, to derive eqn (A1) and (A2), we need to express
derivatives Fk,m(r�) for m = k + 1 and m = k + 2 in terms of
derivatives of U(r) at r = r�. Using the product rule, the m-th
derivative of Fk(r) can be, in general, written as a finite sum of
the form

Fk;mðrÞ ¼
Xk

a0;a1;...;am¼0
Cða0; a1; . . . ; amÞ

Ym
i¼0

F ðiÞðrÞ
� �ai

; (A4)

where F(i)(r) is the i-th derivative of function F(r) and C(a0, a1,. . ., am)
are constants, many of them equal to zero. In fact, all terms in the
expansion (A4) have multiplicities that sum to k, that is we can only
sum over sequences satisfying

Xm
i¼0

ai ¼ k; (A5)

and all terms in the expansion (A4) have m derivatives, that is,
we have

Xm
i¼0

i ai ¼ m; (A6)

where ai A {0, 1,. . ., k} for i = 0, 1, 2,. . ., m. Eqn (A6) is of the form of
a finite Diophantine equation, which has no closed form for the
number of solutions. In particular, simplifying eqn (A4) by solving
eqn (A5) and (A6) is, in general, not possible. However, noting the
specific property that F(r�) = 0 = U0(r�), we see that all terms that
have a0 a 0 will vanish when evaluated at this unique minimum

r = r�. In particular, we will obtain relatively simple forms of the
sum (A4) for m = k + 1 and m = k + 2 by considering eqn (A5) and
(A6) with a0 = 0.

First, let us consider that m = k + 1. Using a0 = 0, there is only
one solution of eqn (A5) and (A6) in non-negative integers,
namely a1 = k� 1, a2 = 1 and a3 = a4 = . . . = 0. Therefore, eqn (A4)
implies

Fk,(k+1)(r�) = C(0, k � 1, 1, 0,� � �, 0) (F(1)(r�))
k�1 F(2)(r�).

Using the general Leibniz rule,36 we evaluate the combinatorial
prefactor as C(0, k� 1, 1, 0,. . ., 0) = k (k + 1)! /2. Substituting into
Ck,1 = Fk,(k+1)(r�)/(k + 1)! and using F(r�) = �U0(r�) and that k is an
even integer, we obtain formula (A1).

Second, we consider the case m = k + 2. Using a0 = 0, there
are two solutions of eqn (A5) and (A6) in non-negative integers.
The first solution is a1 = k � 1, a2 = 0, a3 = 1 and a4 = a5 = � � � = 0.
The second solution is a1 = k � 2, a2 = 2 and a3 = a4 = � � � = 0.
Therefore, eqn (A4) implies

Fk;ðkþ2Þðr�Þ ¼ Cð0; k� 1; 0; 1; 0; . . . ; 0Þ F ð1Þðr�Þ
� �k�1

F ð3Þðr�Þ

þ Cð0; k� 2; 2; 0; 0; . . . ; 0Þ F ð1Þðr�Þ
� �k�2

F ð2Þðr�Þ
� �2

:

Using the general Leibniz rule,36 we evaluate these combinatorial
prefactors as

Cð0; k� 1; 0; 1; 0; . . . ; 0Þ ¼ k

6
ðkþ 2Þ!;

Cð0; k� 2; 2; 0; 0; . . . ; 0Þ ¼ kðk� 1Þ
8

ðkþ 2Þ!:

Substituting into formula Ck,2 = Fk,(k+2)(r�)/(k + 2)! and using F(r�) =
�U0(r�) and that k is an even integer, we obtain eqn (A2). Thus, we
have arrived at the expressions for Ck,1 and Ck,2 that are used in
eqn (29).

Appendix B: thermostats used in MD
simulations

Considering simulations presented in Fig. 2–6 and 8, we use a
Nosé–Hoover thermostat. Its parameter, originally37 denoted Q,
is the relaxation time of the thermostat. It is a measure of how
strongly the thermostat is attached to the dynamics of the
system. Its value for each simulation is given in the ESI.† In
Fig. 6, we choose Q = 10T for each simulation; this linear
scaling with T is necessary as we need to more tightly couple
the thermostat at lower temperatures in order to accurately
maintain the system in the canonical ensemble.38

For 1D simulations in Fig. 1, we maintain the canonical
ensemble at a target (reduced) temperature T by implementing
a Langevin thermostat. This is due to problems with ergodicity
utilising the Nosé–Hoover thermostat for small systems,39,40

which can be seen in Fig. S3 in the ESI,† although the Nosé–
Hoover thermostat ensures good temperature control for the
average simulation temperature in Fig. S3 (ESI†). Fig. S4 in the
ESI† highlights that the many body systems display ergodicity.
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With the Langevin dynamics for simulations in Fig. 1, the
evolution of the free particle is modelled (in reduced units)
as41,42

€x ¼ �dU
dx
� g _xþ

ffiffiffiffiffiffiffiffiffi
2gT

p
RðtÞ; (B1)

where R(t) is standard white noise and g = 0.1 acts as a friction
parameter.
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