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polymorphic biphenyl based Michael addition
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Polymorphic materials have gained significant attention owing to their fascinating physicochemical

properties. Herein, a biphenyl based Michael addition product (compound A) with an active methylene

group (dimedone) was synthesized. Compound A displayed aggregation-induced emission in an ethanol–

water system and in the solid state owing to its highly twisted conformation due to two bulky dimedone

groups connected to a sp3 hybridized C atom. It is dimorphic in nature (forms 1 and 2) with the two forms

having identical crystal packing densities (the calculated density is 1.201 g cm−3). Form 1 was solved in the

P21/c monoclinic space group, whereas form 2 was solved in the P1̄ triclinic space group. The quasi-

isostructural nature of the two polymorphic systems of the synthesized compound resulted in identical

photo-physical behaviours.

Introduction

Organic fluorophores displaying variable solid-state
fluorescence emission have attracted widespread attention.
They have significant applications in the fields of chemical
sensors,1,2 light-emitting diodes,3 lasers,4 photovoltaic
devices,5 mechanical sensors6,7 etc. Switchable fluorescence
can be achieved using a crystal engineering approach8–10 by
preparing cocrystals,11 salts, solvates, and amorphous
formulations12 as well as polymorphic phases.13–18 Among
these, mechanofluorochromic as well as polymorphic
materials are of utmost importance and have broader
application in the design of fluorescence-based sensors.19–24

Polymorphism is the ability of a solid material to exist in
more than one crystalline form. Due to differences in packing
arrangement, polymorphic materials show variable
physicochemical properties which are of significant

importance in designing functional materials, pharmaceutical
solids, explosives, dyes, and pigments.25–27 Some of the
polymorphic organic fluorophores studied in the recent
literature include substituted benzothiazole-fluorene based
materials,28 triphenylphosphonium fluorenylide,29,30

1-acetylpyrene,31 N,N-dimethylanilino naphthalimide,17 etc.
which show outstanding photo-physical behaviour. Apart
from the listed molecules, several polymorphic organic
fluorophores have been synthesized by various research
groups in the recent past, with distinct properties.32–39 In a
recent highlight, Ito40 summarizes various luminescent
organic polymorphs with mechanoresponsive properties along
with pseudopolymorphs and cocrystal polymorphs.

Most of the reported organic fluorophores display high
emission in the solution phase whereas they become non-
emissive in the solid state due to aggregation-caused
quenching (ACQ).41,42 In 2001, an opposite behaviour to that
of ACQ was discovered, known as aggregation-induced
emission (AIE).43 This class of organic molecules shows low
emission in the solution phase but high emission in the solid
state (crystal/powder/film/aggregation in solution and in the
matrix).44,45 Several mechanisms have been proposed to
explain this phenomenon including restricted intramolecular
rotation (RIR),46 the formation of J-type aggregates,47 and
twisted intramolecular charge transfer (TICT).44 AIE based
fluorophores possess a non-planar twisted geometry with
rotator and stator building blocks that induce steric
hindrance resulting in RIR.45,48 Tetraphenylethylene, silole,
and distyrylanthracene derivatives are a few of them.44,49–51
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The factors affecting the optical performance of organic
fluorophores include differences in crystal packing,
molecular conformations, and intermolecular
interactions.52,53 Subtle modifications in intermolecular
interactions such as hydrogen bonding, halogen bonding,
π⋯π interactions, and C–H⋯π interactions produce a
different molecular arrangement and a drastic change in
their optoelectronic properties. In a recent report, Sarma
et al.54 synthesized a few biphenyl based donor–π–acceptor
organic fluorophores that showed AIE along with
mechanofluorochromism. As an extension to that, a
dimorphic biphenyl based Michael addition product was
synthesized. Despite the absence of π-conjugation, bulky
dimedone groups induce a twisted conformation of the
synthesized compound, resulting in AIE features.

Herein, we reported the synthesis, characterization, and
photo-physical properties of an organic fluorophore,
compound A, based on Michael addition. We observed a
counter interfering result i.e., two polymorphic forms of
compound A with identical photo-physical behaviours. The
detailed synthetic procedures are discussed in the
experimental section.

Experimental section
Materials

Biphenyl-4-carboxaldehyde and 5,5-dimethylcyclohexane-1,3-
dione (dimedone) were purchased from Sigma-Aldrich and
used without further purification.

Synthesis of compound A. A round-bottom flask was
charged with biphenyl-4-carboxaldehyde (364.44 mg, 2.00
mmol), dimedone (560.72 mg, 4.00 mmol), and 2 mL of
polyethyleneglycol (PEG). The mixture was stirred at room
temperature or up to 120 °C for 48 h. 2 mL of water
was added to the mixture resulting in a white solid
precipitate (compound A). The precipitate was filtered,
washed with water to remove excess PEG, dried off, and
purified by recrystallization from ethanol. Block-shaped
single crystals of form 1 was obtained from solution
crystallization with ethanol solvent. Form 2 was obtained
concomitantly during solution crystallization from a 1 : 1
mixture of hexane–tetrahydrofuran (THF) as well as
dichloromethane (DCM). Extensive screening by
mechanical grinding using various liquids as well as
solution crystallization always resulted in the precipitation
of the form 1 material. The use of a previously reported55

porous organic polymer (AmPOP) as the catalyst instead
of PEG resulted in the formation of a non-fluorescent
xanthine derivative (compound B) confirmed using SCXRD
(see the ESI†).

Instrumentation

All the absorbance and fluorescence measurements of the
samples were recorded on Shimadzu UV-1800, Hitachi F-
7000, and Horiba FluoroMax spectrophotometers,

respectively. The fluorescence quantum yields of the samples
were recorded on a Horiba FluoroMax using an integrating
sphere. X-ray reflections were collected on a Bruker SMART
APEX II CCD equipped with a graphite monochromator and a
Mo Kα fine-focus sealed tube (λ = 0.71073 Å). Data
integration was done using SAINT. The intensities for
absorption were corrected using SADABS. Structure solution
and refinement were carried out using Bruker SHELXTL. The
hydrogen atoms were refined isotropically, and the heavy
atoms were refined anisotropically. O–H hydrogen atoms
were located from difference electron density maps, and
C–H hydrogen atoms were fixed using the HFIX command
in SHELXTL. Crystallographic files (CIF) are deposited with
the CCDC (no. 1993302–1993304). X-ray data are
summarized in Table 1. Powder X-ray diffraction (PXRD)
measurements of the samples were performed using a
Rigaku Ultima IV diffractometer with a CuKα X-ray source
and equipped with a Ni filter to suppress Kβ emission and
a D/teX Ultra-high-speed position sensitive detector, and
measurements were performed at room temperature, with a
scan range 2θ = 5–50°, a step size of 0.02°, and scan rate
of 10° min−1. DSC measurements were performed using a
Mettler Toledo DSC 822e module. The typical sample size
is 4–10 mg for DSC. Samples were heated at 10 °C min−1

in the temperature range of 25–300 °C under an ultra-high
purity nitrogen environment purged at 40 mL min−1. HR-
MS measurements of compound A were carried out using a
Waters Xevo G2-XS QTof high-resolution mass spectrometer.
1H and 13C NMR spectra of the samples were measured
using a Bruker 300 MHz nuclear magnetic resonance
(NMR) spectrometer.

Aggregation induced emission (AIE) experiments

The UV-visible spectrum of compound A was recorded in
ethanol (1 mM), as shown in Fig. 4a. Compound A
exhibited absorbance at 265 nm, assigned to the presence
of a biphenyl system. Compound A was soluble in most of
the commonly available organic solvents but insoluble in
water. For the aggregation study, compound A was first
dissolved in ethanol (1 mM) followed by the addition of
varying volumes of water to obtain the desired V/V
percentage of the mixture solvent system and kept for 30
min at room temperature. After 30 min, the fluorescence
spectra of the samples were recorded.

Results and discussion

Herein, we designed and synthesized a Michael addition
product, compound A, that is dimorphic in nature. The
synthesis of compound A is summarized and is shown in
Scheme 1. The formation of compound A was further
confirmed using HR-MS and solution NMR (see ESI† Fig. S2
and S3) as well as single crystal X-ray diffraction (SCXRD)
analysis.
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Structural analysis

Compound A: form 1. During solution phase
crystallization, two polymorphic phases of compound A were
obtained. A stable form 1 was obtained during solution
crystallization from a majority of organic solvents (see
Fig. 2a and b), confirmed using SCXRD as well as PXRD
analysis. SCXRD measurements showed the unit cell
parameters of form 1 to be a = 9.3281 Å, b = 21. 6191 Å, c =
12.2447 Å, β = 95.321°, and V = 2458.7 Å3 and the compound
was solved in the monoclinic space group P21/c containing
one molecule in the asymmetric unit (see Table 1). The
conformation of the biphenyl ring was found to be non-
planar with a dihedral angle of 24.39° resulting in inhibition
of the π–π stacking interactions. Moreover, due to
incorporation of two bulky dimedone units, the biphenyl
rings of adjacent molecules were stacked in a head to tail
arrangement, confined in between the dimedone rings from
both sides. The biphenyl units were well separated with a
centroid to centroid distance of ∼4.2 Å resulting in a dimeric
motif (Fig. 1a and c). In the 3D crystal packing, these
aggregated dimers are arranged in an orthogonal fashion, as
shown in Fig. 1e.

Compound A: form 2. Solution crystallization using a 1 : 1
hexane–THF mixture and dichloromethane (DCM) solvent
independently resulted in a concomitant mixture of
polymorphs (form 1 and form 2) based on SCXRD and PXRD
analyses (Fig. 2b). SCXRD measurements show the unit cell
parameters to be a = 9.3146 Å, b = 11.4763 Å, c = 12.2711 Å, α
= 95.205°, β = 106.911°, γ = 98.262°, and V = 1229.77 Å3, and
the compound was solved in the triclinic space group P1̄
containing one molecule in the asymmetric unit. Structural

Fig. 1 Head to tail arrangement of molecules with biphenyl centroid
to centroid distances shown for (a) form 1 and (b) form 2; stacking
arrangements of the dimers in (c) form 1 and (d) form 2; 3D crystal
packing arrangements of (e) form 1 and (f) form 2; (g) molecular
overlay showing the conformation of the biphenyl ring with respect to
the dimedone units in form 1 (red) and form 2 (blue).

Table 1 Crystallographic parameters of compound A (form 1 and form 2)

Compound name

Compound A

Form 1 Form 2

Chemical formula C29H32O4 C29H32O4

Formula wt. 444.54 444.54
Crystal system Monoclinic Triclinic
Space group P21/c P1̄
T, K 296 296
a, Å 9.3281(6) 9.3146(7)
b, Å 21.6191(15) 11.4763(9)
c, Å 12.2447(9) 12.2711(9)
α, deg 90 95.205(4)
β, deg 95.321(4) 106.911(4)
γ, deg 90 98.262(4)
Z 4 2
V, Å3 2458.7(3) 1229.77(16)
Dcalc, gcm

−3 1.201 1.201
μ (mm−1) 0.079 0.079
Reflns collected 34 223 15 144
Unique reflns 3958 3978
R1 [I > 2(I)] 0.0586 0.0429
wR2 (all) 0.1536 0.1316
GOF 1.096 1.057
Data collection Bruker-Apex II Bruker-Apex II
CCDC no. 1993304 1993302

Scheme 1 Synthetic scheme of compound A.
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Fig. 2 (a) PXRD analysis depicting the formation of form 1 upon solution crystallisation in a variety of solvent combinations mentioned; (b) PXRD
analysis depicting the formation of form 2 along with form 1 upon solution crystallization independently from DCM and a 1 : 1 mixture of hexane–
THF; (c) prolonged storage (ageing) of the concomitant mixture of forms 1 and 2 resulted in slow conversion of the material to form 1 due to the
presence of a polymorphic impurity (form 1).
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analysis showed a slightly offset arrangement of these
molecular dimers with a biphenyl centroid to centroid
distance of ∼4.45 Å, which was slightly higher than that of
form 1 with a dihedral angle of 34.15° (Fig. 1b and d). In the
3D crystal packing, these aggregated dimers are aligned along
the (011) plane, as shown in Fig. 1f. A clear difference in
molecular packing compared to a small change in the
biphenyl conformation can be easily visualized from the
molecular overlay shown in Fig. 1g. Hence, the two
polymorphs can be considered as packing polymorphs. The
crystallographic parameters of compound A (forms 1 and 2)
are listed in Table 1.

An extensive polymorph screening was carried out using
both solution crystallization and liquid assisted grinding
(LAG). Solution crystallization from most of the laboratory
solvents resulted in precipitation of form 1, except for the
1 : 1 mixture of hexane–THF and DCM that yielded a
concomitant mixture of forms 1 and 2, confirmed by SCXRD
and PXRD measurements (Fig. 2a and b). Although form 2
was obtained concomitantly and had an identical crystal
packing density, this polymorph was relatively unstable and
slowly converted into form 1 under ambient conditions (25
°C and 60% relative humidity) during the aging experiment,
characterized using PXRD (Fig. 2c). The intensity of the
11.6° 2θ peak corresponding to the (011) plane
characteristic of form 2 decreased after storage of the
powder material for a period of 2 months, whereas the
diffraction peaks at 9.5° and 10.9° 2θ corresponding to the
(100) and (021) planes, respectively, characteristic of form 1
increased in intensity. The polymorphic impurity (form 1)

present in the mixture may act as a molecular seed that
initiates phase transformation of form 2 to form 1 as
observed from PXRD measurements. Mechanochemical
milling of compound A with all possible laboratory liquids
(LAG) results in the formation of phase pure form 1 based
on PXRD analysis (Fig. 3).

Photo-physical study of compound A.‡ The UV-visible and
fluorescence spectra of compound A in ethanol (1 mM) are
shown in Fig. 4a and b. Compound A shows an absorbance
peak at around 265 nm which is ascribed to the biphenyl
unit, similar to the precursors.56 The ethanolic solution of
compound A has very low fluorescence with emission
centered at 348 nm (Fig. 4b). The observed low fluorescence
emission could be attributed to free molecular motion in
solution resulting in a high non-radiative decay constant and
the electronically non-conjugated nature of compound A.
Compound A was found to aggregate in the ethanol–water
mixture at a high water fraction ( fw) due to its
hydrophobicity. Increasing the water fraction to above 30% in
ethanol resulted in a significant boost of the emission
intensity with a red-shift in the emission maxima from 348 to
415 nm (Fig. 5a). The high-intensity red shifted emission
peak at 415 nm could be attributed to the formation of
molecular aggregates.57 The plot of fluorescence intensity as
a function of water content (%) at λem = 415 nm (for
compound A) is shown in Fig. 5b (inset: photograph of

Fig. 3 Experimental PXRD patterns obtained from LAG of compound A using various laboratory liquids resulting in the formation of phase pure
form 1. Calculated PXRD pattern of form 1 (red) depicting good agreement with the experimental patterns.

‡ As a polymorphic phase does not exist in solution, all the photo-physical study
results correspond to compound A and a polymorphic phase was not mentioned
during the discussion.
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compound A in ethanol (low fluorescence) and ethanol–water
(violet-blue fluorescence)) ( fw = 90%, where fw is the
percentage of water). The fluorescence quantum yields of
compound A were determined to be 0.00992% and 0.0263%,
respectively, in ethanol and in the 90% ethanol–water system
based on a standard method,32 which correlates well with its
increasing fluorescence intensity in the mixture solvent
system due to the formation of aggregates.

The fluorescence lifetime measurement of compound A in
ethanolic solution was performed using a 290 nm pulsed
diode laser (Fig. 6). The average lifetime of compound A was

found to be 0.5 ns, confirming the involvement of an
excitation–emission process.

In the solid state, both phase pure form 1 and the mixture
(forms 1 and 2) of compound A displayed fluorescence. The
fluorescence spectra of both of these forms were recorded
and their emission maxima came out to coincide at 486 nm
under a 372 nm excitation wavelength (Fig. 7a and b) (insets:
photographs of the two polymorphic forms under daylight
and 365 nm UV light). Both forms displayed green
fluorescence which could be clearly visualized from the
photographs taken under 365 nm UV light irradiation. The

Fig. 4 (a) UV-visible spectrum of compound A in ethanol (1 mM) and (b) the corresponding fluorescence spectrum in ethanol (1 mM) under a 310
nm excitation wavelength.

Fig. 5 (a) Fluorescence spectra of compound A in ethanol–water with different water percentages (%), fw (inset: the corresponding normalized
spectra) under a 310 nm excitation wavelength; (b) plot of fluorescence intensity at 415 nm with varying percentages of water (%), fw (inset: the
corresponding photographs under daylight and 365 nm UV light irradiation).
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presence of a non-planar biphenyl ring and two bulky
dimedone units resulted in restricted intramolecular rotation
(RIR) of the biphenyl ring thus preventing non-radiative
decay. As a consequence, AIE was observed in the solid state,
similar to the ethanol–water system (Fig. 5a).57 In the
literature, many reported organic fluorophores exhibited
outstanding fluorescence behaviour due to conformational
rigidity.58–60 The fluorescence quantum yields of form 1 and
form 1 + 2 of compound A were determined to be 1.8% and
0.9%, respectively, by using the integrating sphere method.

In order to understand and quantify the intermolecular
interactions present in the two polymorphic systems,
Hirshfeld surface analysis and the associated 2D fingerprint
plots were generated using Crystal Explorer 3.7.61,62 As shown
in Fig. 8 and Table 2, the relative contributions of the major
intermolecular contacts present in both polymorphs are
nearly the same. From the Hirshfeld surface analysis, it was
observed that both polymorphic forms do not have any
strong directional H-bond interactions. The weak C–H⋯π

and van der Waals interactions contribute to the overall
crystal packing and they are nearly identical for the two
polymorphs.

Energy framework analysis. A comparison of energy
frameworks computed for the systematic comparison of the
interaction topologies showed a remarkable similarity
between the two polymorphs. As both of the polymorphic
forms did not posess any strong hydrogen bond interactions,
the energy framework of both polymorphs exhibited a 3D
network of weakly bound molecules viewed along all three
directions (Fig. 9). Interestingly, both electrostatic and
dispersion energy frameworks also exhibited similar
topologies for forms 1 and 2. Very recently, Chopra and
coworkers have reported63 a dimorphic benzamidamide
derivative that showed a quasi-isostructural behaviour based
on energy framework analysis. They proposed that a quasi-
isostructural polymorph might show similar physical
properties; likewise, we also observed near identical photo-
physical behaviours for the two polymorphic forms.

Theoretical calculations. All theoretical calculations were
performed using the Gaussian 09 program package. The
ground state geometries of both forms 1 and 2 of compound
A were optimized by employing the density functional theory
(DFT) method with functional B3LYP and 6-31G(d) basis sets.
Moreover, to study the photo-physical properties such as
fluorescence emission of the two forms (1 and 2) of

Fig. 7 Solid state fluorescence spectra of (a) form 1 and (b) form (1 + 2) using a 372 nm excitation wavelength (inset: photographs of the two
polymorphic forms under daylight and 365 nm UV light).

Fig. 6 Fluorescence lifetime decay profile of compound A in ethanolic
solution under 290 nm excitation (top) along with the residual fitting,
with a χ2 value of 1.003 (bottom).
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compound A in the solid phase, we have employed the time-
dependent density functional theory (TD-DFT) method at the
same level of theory. The fluorescence properties of both
forms 1 and 2 of compound A have been reported in Table 3
and their optimized molecular HOMO–LUMO structures have
been provided in Fig. 10.

From Fig. 10 it was observed that the HOMOs of both
forms 1 and 2 are mainly distributed over the biphenyl rings
and are partially distributed over the dimedone units. On the
other hand, the LUMOs are completely distributed over the
dimedone units. Moreover, from Table 3 it is observed that
the calculated absorption wavelength of form 2 (calcd. λabs =
333.69 nm) with an oscillator strength of 0.0021 is
significantly shifted in the bathochromic direction relative to
that of form 1 (calcd. λabs = 319.95 nm) whose oscillator
strength is 0.0005. Besides, the contribution of charge-
transferred HOMO to LUMO transition was observed to be
larger for form 1 (0.67264) compared to form 2 (0.56265). The
larger value of the contribution of charge-transferred HOMO

Fig. 8 Hirshfeld fingerprint plots (de vs. di) of compound A showing the contributions of individual interactions in (a) form 1 and (b) form 2.

Table 2 Contributions of individual intermolecular interactions to the
Hirshfeld surface of forms 1 and 2 of compound A

Polymorph C–H C–C H–H Others

Form 1 14.2 2.2 65.6 18
Form 2 17.5 1.0 63.5 18

Fig. 9 Energy frameworks corresponding to the electrostatic, dispersion, and net interaction energy components in form 1 and form 2.
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to LUMO transition for compound A in polymorphic form 1
might probably be due to its relatively planar structure.

Conclusions

In conclusion, we have synthesized compound A that shows
solid-state fluorescence as well as AIE behaviour in an
ethanol–water system. Compound A is dimorphic in nature
with the occurrence of a metastable concomitant polymorph.
The presence of bulky dimedones and weak C–H⋯π

interactions in compound A leads to RIR, resulting in an AIE
behaviour which is further confirmed by a photo-physical
study. The identical photo-physical behaviours of the two
polymorphic systems are attributed to the nearly identical
HOMO–LUMO gap and intermolecular interactions present
in the crystal structures, as indicated by the DFT calculation.
Our findings show that the presence of identical
intermolecular interactions along with a quasi-isostructural
nature results in similar photo-physical properties for a
polymorphic organic fluorophore.
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