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Secondary Cerenkov-induced fluorescence imaging (SCIFI) is an
emerging optical imaging technology that affords high signal-to-
noise images by utilising radionuclide-generated Cerenkov lumines-
cence to excite fluorescent probes. BODIPY dyes offer attractive
properties for SCIFI, including high quantum yields and photochemical
stability, yet their utility in this application in combination with
largely
unexplored. In this report, the fluorescence properties of three
meso-substituted BODIPY analogues have been assessed in combi-
nation with the positron emitter zirconium-89. Most notably, SCIFI
data acquired over 7 days shows the BODIPY scaffold remain largely

clinically relevant B*-emitting radioisotopes remains

inert to radiolysis, indicating the promising utility of this fluoro-
phore class in SCIFI applications.

Cerenkov luminescence (CL) is generated by charged particles
traveling faster than the speed of light through a dielectric
medium."? In recent years, CL has shown promising utility in
several medical applications, including image-guided surgery,’
radiotherapy dosimetry," and activation of photodynamic
therapies.> Examples of non-medical CL-based applications in
radiosynthesis,® microfluidics” and plant sciences® are also
emerging. However, the poor penetrance of this low-intensity,
blue-weighted light, particularly in biological tissues, limits the
scope of this technique.’ More recently, secondary Cerenkov-
induced fluorescence imaging (SCIFI; also known as Cerenkov
Radiation Energy Transfer [CRET]) has emerged offering image
acquisition at greater depths by using CL to excite secondary
fluorophores with more penetrating emissions, obviating the
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need for conventional externally-applied excitation sources
which are limited by autofluorescence, reflection, and scatter.
SCIFI was first reported in 2010 by Liu et al. who observed CL-
induced fluorescence following subcutaneous and intramuscular co-
injection of ™' (B~ emitter) and near-infrared quantum dots
(QD655) in mice.'® Subsequently, a limited selection of fluorophore
and radioisotope combinations have been evaluated in SCIFI inves-
tigations, including a study by Dothager et al. that applied **Cu- and
f-generated CL to excite Qtracker705 quantum dots in a subcuta-
neous pseudotumour mouse model."" Later, Thorek et al used
'®F-generated CL to excite fluorescein in an in vivo subcutaneous
capillary model and observed a 5.7-fold higher signal-to-noise ratio
for SCIFI compared to standard fluorescence. This study also
evaluated the in vivo colocalization of **Zr-DFO-trastuzumab and
cyclic-RGD QD605 in HER2+ tumour xenografts in mice, culminat-
ing in SCIFI images of oyf; in the tumour microenvironment with
low background relative to that obtainable by external excitation.*
Boron-dipyrromethene (BODIPY) fluorophores are attractive
candidates for SCIFI due to their high quantum yields, excellent
photostability, and tuneable spectroscopic properties.'*"?
BODIPY dyes are also typically insensitive to environmental
conditions, such as polarity and pH."® Notably, the nature of
substituents around the BODIPY core can significantly influence
its fluorescent properties. For instance, alkyl substitution at alpha
and beta positions typically results in a slight bathochromic shift
in emission maxima compared to unsubstituted analogues,"*
while more pronounced effects are commonly observed upon
meso-substitution of the BODIPY core."” Leen et al. found that
the addition of a cyano group at the meso-position results in a
drastic bathochromic shift and, in contrast, heteroatomic meso-
substituents (e.g. amines, ethers) lead to hypsochromic shifts.'®
Similar effects have been observed with other meso-substituted
BODIPYs according to the electronic character of the substituent,
however it is worth noting several exceptions to this trend which
indicate the additional influence of other substituent properties.
Recently, Genovese et al. doped Pluronic-silica nanoparticles
with five different fluorophores, including a BODIPY dye, and
combined these with the B -emitting radiopharmaceutical agent
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Fig. 1 Structures of the BODIPY compounds used in this study.

#2p-ATP, leading to the conversion of CL to near-infrared light via an
efficient series of energy transfer processes.'” To the best of the
authors’ knowledge, BODIPY dyes have not previously been used in
combination with positron (3")-emitting isotopes for SCIFI, whereas
the broad utility of clinically-relevant positron emitters in this
application has been well-established with other fluorophores.*

In this report, we have examined three BODIPY analogues
derived from {3-ethyl-5-[(4-ethyl-3,5-dimethyl-2H-pyrrol-2-ylidene)-
methyl}-2,4-dimethyl-1H-pyrrolato-1,N5}difluoroboron (Fig. 1) differ-
ing only by the substituent at the meso-position to investigate the
suitability of the BODIPY scaffold for SCIFI. The BODIPYs included
in this investigation are referred to hereafter as BOD-H (hydrogen/
unsubstituted), BOD-Me (methyl) and BOD-Ph (phenyl). The
positron-emitting radiometal **Zr was selected as the source of CL
on the basis of its emerging clinical utility and recent validation in
CL-based imaging studies,"®?' and relatively long halflife (¢, =
78.4 h) for multi-day evaluation which is not possible with shorter-
lived alternatives (e.g. '°F: ¢;,, = 109.8 min). Furthermore, while the
positron yield of *Zr (22.7%) is low compared to more commonly
used PET radioisotopes (e.g '°F: 100%), the mean B* emission
energy and Cerenkov photon yield (CPY) of *Zr (Eg, = 395.5 keV;
CPY = 2.29) are relatively high (e.g. '°F: Ey, = 249.8 keV; CPY = 1.32).”

A partial CL emission spectrum for *°Zr was generated between
500 and 840 nm (20 nm increments) using an optical in vivo imaging
system (IVIS) (Fig. 2). The solution was prepared by diluting **Zr
(10.8 MBq) in 1 M oxalic acid with phosphate-buffered saline (PBS;
pH 7.4, 100 pL, 0.108 MBq pL ") in a black wall clear-bottom 96-well
plate. The resulting emission profile, measured as total photon flux
(photons per second; p/s), is consistent with a previously reported
#7r-generated CL spectrum acquired under different conditions.”
The spectral range of the IVIS emission filters does not extend to the
CL maximum emission peak in the UV-blue region (<500 nm),
however the broad emission profile of **Zr-generated CL lends it
wide-ranging utility as an excitation source.
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Fig. 2 Cerenkov luminescence spectrum of 8Zr-oxalate in PBS.
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The fluorescence properties of each BODIPY dye were first
assessed by conventional external light excitation (Fig. 3A-C). The
water-insoluble BODIPY dyes were dissolved in dimethyl sulfoxide
(DMSO) which has a relatively high permittivity (¢, = 46.6)** and
refractive index (n = 1.477)*° that renders this solvent well-suited to
SCIFI investigations. Absorbance spectra between 440-680 nm
(0.5 nm increments) were acquired on a Nanodrop One® and
fluorescence emission spectra were acquired by IVIS imaging with
an 465 nm excitation filter and emission measured between 500~
660 nm (20 nm increments; [BODIPY] = 1 mM). Additional high-
resolution laser-excited fluorescence spectra were acquired with a
spectrofluorophotometer (Fig. S1, ESIT). The BODIPY dye absor-
bance and emission maxima were measured as follows: BOD-H
Aabsfem = 528/540 nm; BOD-Me: Zypgiem = 518/543 nm; BOD-Ph
Jabs/em = 526/540 nm.

Thereafter, an equivalent series of each BODIPY dye
([BODIPY] = 1 mM in DMSO) was combined with **Zr (0.25 MBq),
and CL-induced BODIPY fluorescence was measured by IVIS
imaging with excitation light blocked (Fig. 3D-F). Promisingly,
this approach enabled rapid (<5 min) acquisition of emission
spectra for all three BODIPYs without the need for an external
light excitation source. This data is largely consistent with the
spectral signature of the BODIPY dyes acquired under specific
excitation and emission filters. A steeper profile is seen in the
higher energy portion of the CL-induced emission spectra which
is attributable to the spectral unmixing process. The absence of
signal <520 nm in the emission spectra generated from
89Zr-containing BODIPY-free control wells reflects the CL energy
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Fig. 3 BOD-H, BOD-Me and BOD-Ph absorption (blue) and fluorescence
emission (red) spectra in DMSO. (A-C) Fluorescence spectra obtained
by external light excitation (465 nm) of 1 mM BODIPY in DMSO.
(D—F) Fluorescence spectra obtained by Cerenkov luminescence excitation
of 1 mM BODIPY in DMSO containing 8°Zr (0.25 MBq).
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transfer to each BODIPY. Lastly, CL-induced fluorescence signal
was considerably lower than obtained by light excitation for
each BODIPY (Fig. 3A-F; inset well-plate images), although it
remained well-within the sensitivity range of the IVIS system.

To explore the relationship between BODIPY concentration and CL
(based on *Zr activity), serial dilutions of each BODIPY dye ranging
from 1 mM to 10 uM were combined with aliquots of **Zr-oxalate
(0.25 MBg; 0.05 MBq uL ") to a final volume of 100 plL, in DMSO, and
SCIFI images were acquired using the IVIS. The excitation light was
blocked and fluorescence emissions between 500-660 nm, as well as
open filter, were measured. Net photon flux was calculated by
subtracting the average total flux of the **Zr-DMSO wells from the
total flux of each well in the BODIPY serial dilution containing **Zr,
therefore omitting the contribution of the *Zr-generated Cerenkov
luminescence and leaving only the SCIFI signal. Plots of the average
net photon flux values against BODIPY dye concentration (Fig. 4)
reveal a hyperbolic relationship in which fluorescence intensity
reaches a plateau toward higher BODIPY concentrations, representing
the maximum fluorescence threshold attainable by the number of CL
photons generated by ®7zr in these conditions. Dothager et al
reported an analogous effect and similarly attributed this relationship
to the low intensity nature of CR and the high molar absorptivity of
Qtracker705." In addition, a SCIFI study investigating luminescent
lanthanide complexes comprising of terbium(m) and the radioiso-
topes °F and ®Zr also described a comparable non-linear relation-
ship between concentration and fluorescence intensity.”® External
light excitation of the BODIPY dyes yielded significantly higher
photon fluxes (Fig. 3A-C) which remained linear correlated with
dye concentration (Fig. S3, ESIt), supporting this hypothesis.

Lastly, in order to gauge the sensitivity of the BODIPY dyes to
radiolysis caused by prolonged co-incubation with *Zr, we mea-
sured the net photon flux for each BODIPY dye over the course of
7 days using a range of **Zr activity : [BODIPY] ratios from 0.25:1 to
25:1 kBq uM " (Fig. 5; full range tabulated data in Tables $1-S3,
ESIT). Method validation involved longitudinal analysis of the total
flux of *Zr-only control wells which adhered to a exponential one-
phase radioactive decay model (R* = 0.98) consistent with previous
reports.'® The decay half-life of ¥Zr was calculated as 78.3 + 6.9 h
which is in good agreement with the widely reported value of
78.41 h (Fig. S2, ESIt). Thereafter, calculations of the theoretical
photon flux values for each BODIPY at each time point, based solely
on photon flux values at the start of the experiment and the
known physical decay characteristics of **Zr, were performed to
provide reference data (Fig. 5: blue lines). Inspection of the
experimental data (Fig. 5: red lines) reveals close alignment with
these theoretical values for all conditions, with the exception of
a 52.3 £ 23.2% reduction in SCIFI signal for BOD-Me at 168 h
that counterintuitively occurred at the lowest %°Zr/kBq to
[BODIPY]/uM ratio (0.25:1). In contrast, both BOD-H and
BOD-Ph remained inert to radiolysis for the duration of the
experiment, even at the highest **Zr:[BODIPY] ratios, indicating a
promising ability to remain functional in SCIFI investigations for at
least 7 days. Increasing ®°Zr activity up to 10:1 kBq uM ™" with a
constant BODIPY concentration of 150 puM further verified the
stability of these dyes (Fig. S4 and Table S4, ESIt). While the complex
effects of substitution upon the intrinsic properties of BODIPY dyes

This journal is © The Royal Society of Chemistry 2022
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Fig. 4 SCIFl intensity against BODIPY concentration; (A) BOD-H, (B) BOD-Me,
(C) BOD-Ph. Aliquots of 59Zr (0.25 MBq) were added to serial dilutions (10 uM to
1 mM; DF= 1.5199) of each BODIPY dye. Net photon flux (p/s) [dots] measure-
ments were taken with an open filter and the non-linear data was fitted to a
hyperbola curve. IVIS images of the wells are shown in inset panels, and are
normalised to the maximum photon flux (p/s) value. Error bars = SEM.

is a relatively young field of study, the impact of methyl substitution
upon BODIPYs has been the focus of a computational study by
Mukherjee et al. in 2015 which reported significant effects upon of
the photophysical properties and stability of BODIPY dyes.>”
Moreover, a study by Hinkeldey et al that measured the photo-
stability of a small panel of BODIPY derivatives with comparable
meso-substitution, found a methyl-substituted derivative to have
lower photostability than phenyl-substituted and unsubstituted
analogues,”® consistent with the variation observed in this study.
In summary, this study is an informative first step in the
evaluation of BODIPYs as secondary fluorophores in SCIFI appli-
cations involving positron-emitting isotopes. From the data
described herein, BODIPYs appear to represent promising candi-
dates for this emerging optical imaging modality, despite some
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lines) were measured at 0, 24, 72, 120, and 168 h after addition of 9Zr (0.25 MBaq) to serial dilutions of each BODIPY dye (1000-10 uM; DF = 1.5199) using an
open filter; see supplementary Tables S1-S3 (ESIT) for full range tabulated data. Theoretical net photon flux (p/s) values (blue lines) were calculated based on
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bars = SEM. Inset images show representative open filter IVIS images of sample wells for each BODIPY concentration at 0, 24, 72, 120, and 168 h.

substituent-dependant variability in stability. Encouraged by
these findings, we are now exploring the SCIFI utility of more
elaborate BODIPY motifs with larger Stokes shifts resulting in
near-infrared emissions that are of greater biomedical relevance.
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