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Synthesis of Kr@Cg is achieved by quantitative high-pressure encap-
sulation of the noble gas into an open-fullerene, and subsequent cage
closure. Krypton is the largest noble gas entrapped in Cgo using
‘molecular surgery’ and Kr@Cg is prepared with >99.4% incorpora-
tion of the endohedral atom, in ca. 4% yield from Cgo. Encapsulation in
Ceo causes a shift of the ®Kr resonance by —39.5 ppm with respect to
free ®3Kr in solution. The ®3Kr spin-lattice relaxation time T, is
approximately 36 times longer for Kr encapsulated in Cgo than for
free Kr in solution. This is the first characterisation of a stable Kr
compound by 8Kr NMR.

Endohedral fullerenes (endofullerenes) are compounds in which
atoms or small molecules are encapsulated inside fullerenes,
providing a unique opportunity for study of the confined species
in the isolated cavity.'*“ The noble gas endofullerenes of Cg, and
Co (denoted e.g. Ng@Ce, for the former case) are a specific group
that have been the subject of sustained research activity, as
compounds of great interest for study of the interactions between
the encapsulated species and the encapsulating cage,>® the
quantised energy level structure of the endohedral noble gas
atom,” and the effect of the noble gas upon the properties and
reactivity of the fullerene cage.’®” Many theoretical studies have
addressed these areas,”*” and our interest in the practical synth-
esis of noble gas endofullerenes is motivated by both the oppor-
tunity for direct study of these materials, and the value of
resulting data as a test of theoretical models.

Early methods for preparation of Ng@Cs, compounds relied
upon direct encapsulation by exposure of Ce, to the gas under
high temperature and pressure, and led to approximately 0.1%
incorporation of a single endohedral atom of He, Ne, Ar or Kr,
and just 0.03% of Xe.® Under similar conditions, an improved
level of direct encapsulation into Cg, ground with KCN was
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achieved, of 1% He and approx. 0.3% Ar, Kr or Xe.” Enriched
samples have been obtained using recycling HPLC, of ca.
0.1-1.0 mg Kr@Cgo with 90-99% purity,®° and ca. 0.3 mg Xe@
Ceo With 50% purity.”” Resulting **C NMR, UV-visible absorp-
tion, infrared, Raman, X-ray absorption and **°Xe NMR studies
have confirmed a weak interaction between the noble gas atom
and interior cage surface,””® and observed the endohedral atom
to influence cage vibrational and rotational properties.*®°

With the development of the ‘molecular surgery’ method of
endofullerene synthesis, high incorporation to facilitate spectro-
scopic studies on a macroscopic (multi-milligram) scale has
become possible, the synthesis of H,@Cgo and *“He@Cq, being
early examples.'”"" Murata’s open-fullerenes 1 and 3 (Fig. 1)">"?
are key intermediates for ‘filling’ in the syntheses of HF@Ceo,
H,@Cso and H,0@Cg, (1), Ar@Cso and CH,@Ceo (3),”° " and we
recently developed a one-pot filling and partial closure of a
phosphorous ylid derivative 2 that enabled efficient synthesis of
noble gas endofullerenes *He@Cgo, “He@Cgo and Ne@Cgo.'®
Incorporation of approx. 50-60% of the noble gas was accom-
plished, and enrichment of Ne@Cg, to >99.5% encapsulation of
the noble gas atom was achieved by recycling preparative HPLC.

With the aim of elucidating the energy level structure of a
confined noble gas atom and its interaction with the interior

Fig. 1 Open-cage fullerenes 1-3 are key precursors to ‘filling’ by a single
atom or molecule in reported syntheses of H,O@Cgo, HF@Cep, Ho@Cgo
(1), HD@Cgo, D,@Ce0, *He@Cqo, *He@Cqo, Ne@Ceo (2),"® CH4@Cop,
Ar@Ceo (3).141°
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Scheme 1 Synthesis of Kr@Cgq.

cage surface in detail, our syntheses of *He@Cg, and *He@Cs,
have so far enabled characterisation of internuclear interac-
tions in the form of the “non-bonded” J-coupling (’/ic) and
experimental interaction potential - each evaluated against
theoretical models.>® We now describe preparation of pure
Kr@Ceo on a scale of tens of milligrams suitable for detailed
study, including by *C and ®*Kr NMR discussed herein. We
also report upon current limitations to the application of
molecular surgery methods for synthesis of Xe@Ceo.

Synthesis of Kr@Cs, was carried out according to the
methods we have reported for preparation of CH,@Ce,"> and
Ar@Cqgo,"* and is described in Scheme 1. The bis(hemiketal)
hydrate of open fullerene 1 was prepared from Cg, using our
recent optimisation'® of the cage-opening steps earlier
described by Murata and co-workers,">"® before dehydration
to give 1 and insertion of sulfur to furnish 3."> DFT calculations (see
ESIY) indicated AHintry =87 k] mol ! and AH"™ = —57 kJ mol !
for encapsulation of krypton by 3, similar to the values for CH,.
Accordingly, heating powdered 3 under >1500 atm of krypton gas
for 14 h gave Kr@3 with >99% filling estimated from the 'H NMR
and ESI+ mass spectra.

Encapsulation of xenon by 3 was calculated to have AHSmry =
152 kJ mol~* and AH"™ = —56 k] mol*, and attempted prepara-
tion of Xe@3 by heating 3 at 212 °C under 1850 atm of xenon gas
for 17 h gave <1% xenon incorporation, from the ESI+ mass
spectrum. Higher temperature or a longer reaction time led to
substantial decomposition, so xenon ‘filling’ of 3 does not consti-
tute a viable route for the synthesis of Xe@Cs, for which a larger
cage opening is needed.

The rate of first-order thermal dissociation of Kr@3 was
measured between 433 and 453 K. Arrhenius and Eyring plots
are shown in the ESL.{ All parameters for loss of krypton from
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the fullerene (E, exit = 138.5 + 5.6 k] mol™', AH' =
134.8 + 5.6 k] mol™!, AS* = —40.1 + 14.6 ] K mol ™},
(log)A = 11.3 and AG* = 152.4 + 0.1 k] mol " at 165 °C,
closely matched those for loss of CH, from 3.2°

Oxidation of Kr@3 gave sulfoxide Kr@4 cleanly, and photo-
chemical desulfinylation of Kr@4 led to the ring-contracted
product Kr@1, isolated as its hydrate Kr@5 with >99% encap-
sulation. Separation of Kr@Cgo and H,O@Ce, is possible using
recycling preparative HPLC so it was unnecessary to conduct
exhaustive drying of Kr@5 or to use conditions for the following
step that avoid re-encapsulation of traces of water (c¢f our
Ar@Cg synthesis)."* The final ring-closure steps for conversion
of Kr@5 to Kr@Cg, were therefore conducted under the condi-
tions we originally reported for the synthesis of H,O@Cgo;'”
involving dehydration to Kr@1, intramolecular Wittig reaction
of the phosphonium ylid Kr@2 to give Kr@6, then similar
Wittig closure of a phosphite ylid upon heating Kr@6 with
(iPrO);P. Reaction with N-phenylmaleimide in a final step that
involves sequential [4 + 2], retro[4 + 2] and [2 + 2 + 2] cycloaddi-
tion completed the cage closure. Removal of H,O@Cs, and
enrichment of the krypton encapsulation, was achieved by
recycling preparative HPLC.®?%? Overall, Kr@Cg, Was recov-
ered with >99.4% incorporation of the noble gas, and in
3.6-4.1% yield from Cg, over repeated batch syntheses. A crystal
structure of the nickel(u) octaethylporphyrin/benzene solvate of
Kr@Ceo was obtained, in which the noble gas atom is centred
in the cage (see ESIT) as in the previously reported structure of
ca. 9% filled Kr@Cs, {Ni"(OEP)} 2C¢H¢.>"*

Krypton is the largest noble gas so far encapsulated in Cg, by
the ‘molecular surgery’ methods described here, enabling
synthesis on a suitable scale for detailed NMR characterisation.
The C NMR resonance of Kr@Cs, in 1,2-dichlorobenzene-d,
has a chemical shift of J. = 143.20 ppm at 298 K, deshielded by
+0.390 £ 0.001 ppm relative to empty Ce, (Fig. 2a). Yamamoto
et al. reported a consistent value of Ad = +0.39 ppm in benzene-
ds,® and it has been previously noted that deshielding of the
cage *C NMR resonance in the noble gas@Cs, series, with
respect to Cgo, becomes greater with the increasing van der
Waals radius of the trapped atom.'®'®

We observe a pair of side peaks to the main *C NMR
resonance (Fig. 2b), due to minor isotopomers of Kr@Cs, that
each contain two adjacent *C nuclei separated by either a
hexagon-pentagon (HP) or shorter hexagon-hexagon (HH) bond,
present in a 2:1 ratio respectively. One-bond secondary isotope
shifts of *Ayp = 12.45 4 0.01 ppb and *Ayyy = 19.77 £ 0.02 ppb,
shielded relative to the main Kr@Cg, peak, are smaller than those
measured for empty Cgo (‘Awp = 12.56 4 0.01 ppb and
"Aun = 19.98 £ 0.02 ppb)*®> and are the smallest secondary
isotope  shifts measured for atomic or molecular
endofullerenes.

The only stable krypton isotope with a nuclear spin is *Kr
(I=9/2, 11.58% natural abundance) and ®**Kr NMR has been used
to study the surface and void adsorption properties of porous
nanomaterials.***? Hyperpolarised **Kr gas is used for MRI ima-
ging of the lungs, despite the relatively short spin-lattice relaxation
time of the quadrupolar **Kr spin.***” To our knowledge, Kr@Ce,

yet
3,14,18,22
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Fig. 2 (a) ¥C NMR spectrum of Kr@Ceo (99.44 mol% krypton) in 1,
2-dichlorobenzene-d, at a field of 16.45 T (**C Larmor frequency = 176
MHz) and 298 K, acquired with 912 transients. An asterisk marks empty Cgo
(0.56%). (b) Expanded view of the base of the Kr@Cgp resonance to show
side peaks arising from minor isotopomers with two adjacent **C nuclei
that share either a hexagon—pentagon (HP) or hexagon—-hexagon (HH)
edge.

143.21

offers the first opportunity for #*Kr NMR spectroscopy of a stable
compound of krypton. The **Kr NMR spectrum of Kr@Cg in 1,
2-dichlorobenzene-d, solution with dissolved krypton gas at 298 K
is shown in Fig. 3. The 6 = 0 origin of the **Kr NMR chemical shift
scale corresponds to low-pressure Kr gas on the unified IUPAC
referencing scale,® but using an updated Z parameter for **Kr as
determined by Makulski (see ESIT).>

The %Kr chemical shift for **Kr@Cg, in 1,2-dichloro-
benzene-d, solution is Jx, = 64.3 = 0.1 ppm, shifted by
—39.5 ppm with respect to the resonance of free ®Kr in
solution. For comparison *He@Cs, and ***Xe@Cg, are reported
at —6.04 and —16.5 ppm respectively from the dissolved gasses
in this solvent.”” In benzene-d, solution **Kr@Ce, is at
Oxr = 64.3 £ 0.3 ppm, shifted by —32.7 ppm from the dissolved
gas (see ESIf). The reported shifts of '**Xe@Ce, in benzene
are 179.2 ppm from Xe gas, and —8.89 ppm relative to dissolved
gas.”? The shift of *He@Ce is —6.3 + 0.15 ppm in
1-methylnaphthalene or CS, with respect to either dissolved
or free gas.”®

Simple (non-relativistic) calculations for *He@Cso, **Kr@Cso
and *Xe@Cs, predict cage induced shifts of —7.0, 29.9 and
71.7 ppm, consistent with the relative order, if not absolute
values, observed.?® Recent calculations on *°Xe@Cq, are in
good agreement with the experimental shift.>*® Whilst *He
observes the shielding effect of the cage on the field inside,
for #*Kr and "*°Xe the shift is dominated by an increasing direct
interaction between the atomic orbitals and the m-electron
orbitals of the cage.

The protective effect of the cage is revealed by measurement
of 33Kr linewidths and relaxation times. The ®*Kr peak of
8 Kr@Cqgo has a linewidth of 2.7 + 0.1 Hz at half-height, which
is much smaller than the linewidth of 10.8 & 0.1 Hz for free
8Kr in solution (Fig. 3b and c). Similarly, the ®*Kr spin-lattice

1286 | Chem. Commun., 2022, 58, 11284-11287
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Fig. 3 (a) ®Kr NMR spectrum of Kr@Cgo (99.44 mol% krypton) in 1,
2-dichlorobenzene-d, at a field of 14 T (®*Kr Larmor frequency =
23.1 MHz) and 298 K, acquired with 102 400 transients. (b) Expanded view
of the ®Kr gas peak (dissolved in 1,2-dichlorobenzene-dy). (c) Expanded
view of the 8*Kr@Cgo peak. Horizontal axes in (b and c) both span 4 ppm,
vertical axes are arbitrary.

relaxation time constant of ®*Kr@Ce, (T; = 860 + 24 ms) is
much longer than that of free **Kr in 1,2-dichlorobenzene-d,
solution (T; = 31 + 2 ms), and is longer than that reported for
8Kr dissolved in any other solvent at room temperature
(Fig. 4).*' Presumably the high symmetry and rigidity of
Ceo greatly reduces the magnitude of fluctuating electric field
gradients at the location of the Kr nucleus, which are respon-
sible for quadrupolar relaxation.

In summary, Kr@Ce, is prepared in a yield of approx. 4%
from Cgp, with >99% krypton incorporation, using methods
which overcome the severe limitation of only 0.1-0.3% direct
krypton incorporation that results in very low mass recovery in
the previously reported synthesis. An intermediate open-cage
fullerene, 3, encapsulates krypton under high pressure but was
shown to have a cage opening too small for the entry of xenon
gas. The larger scale synthesis of Kr@Cg, has enabled measure-
ment of fine structure in the solution-phase >C NMR spectrum,
and characterisation by **Kr NMR spectroscopy - the first
example for a krypton compound (i.e., one in which the noble
gas cannot escape without breaking covalent bonds). Endo-
hedral ®Kr has a chemical shift of 64.3 ppm in 1,
2-dichlorobenzene-d,, with respect to *Kr gas. This is less
deshielded than **Kr in solution, presumably because the cage
protects Kr from direct interactions with the solvent molecules.
The %3Kr spin-lattice relaxation for #*Kr@Csg, is approximately
36 times slower than for free **Kr in solution, indicating that

This journal is © The Royal Society of Chemistry 2022
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Fig. 4 Inversion Recovery relaxation curves fitted using a monoexponen-

tial curve, for 8Kr spin-lattice relaxation time (T;) of free 83Kr (red) and
83Kr@Cgo approx. 26 mM (blue) in degassed 1,2-dichlorobenzene-d, at a
field of 14 T (8%Kr Larmor frequency = 23.1 MHz) and 298 K. &3Kr solution
points were acquired with 2560 transients and ®*Kr@Ceo points were
acquired with 1024 transients.

the cage shields the endohedral atom from fluctuating electric
field gradients.
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