Received 4th April 2022,
Accepted 20th May 2022

Isothiourea-catalyzed formal enantioselective conjugate addition of benzophenone imines to β-fluorinated α, β-unsaturated esters \dagger

Jerson E. Lapetaje, Claire M. Young, (D) Chang Shu and Andrew D. Smith (DD

DOI: 10.1039/d2cc01936a
rsc.li/chemcomm

Abstract

The isothiourea-catalyzed formal enantioselective conjugate addition of 2-hydroxybenzophenone imine derivatives to α, β-unsaturated paranitrophenyl esters has been developed. Investigations of the scope and limitations of this procedure showed that β-electron withdrawing substituents within the α, β-unsaturated ester component are required for good product yield, giving rise to a range of β-imino ester and amide derivatives in moderate to good isolated yields with excellent enantioselectivity (20 examples, up to 81% yield and $97: 3 \mathrm{er}$).

The development of methods for the enantioselective synthesis of β-amino acid derivatives ${ }^{1 a}$ is of widespread importance due to the prevalence of this structural motif in natural products and medicinally relevant compounds. ${ }^{1}$ Among the synthetic methods that have been developed for the preparation of β-amino acid derivatives, arguably the most simple and elegant involves the asymmetric conjugate addition of an ammonia equivalent to an α, β-unsaturated carbonyl motif. As an example of this approach, the conjugate addition of enantiomerically pure lithium amide derivatives to α, β-unsaturated esters has been developed and exploited extensively by Davies and coworkers. Conjugate addition of lithium N-benzyl $-N-\alpha-$ methylbenzylamide to an α, β-unsaturated ester gives the corresponding β-amino ester with high diastereoselectivity ($>95: 5$ dr), with N -deprotection through hydrogenolysis giving the corresponding β-amino ester derivatives (Scheme 1a). ${ }^{2}$

Over the last two decades, several enantioselective organocatalytic approaches to amine conjugate addition have been introduced. To date, these successful approaches rely upon enals, ${ }^{3}$ enones, ${ }^{4} \mathrm{~N}$-acyl pyrazoles, ${ }^{5}$ and nitro-olefins ${ }^{6}$ as Michael acceptors, with the use of bifunctional thiourea ${ }^{4 a, 5 b, 7,8 a-c, e}$ or squaramide ${ }^{4,5,8 a, b, e}$ organocatalysts, or Lewis basic pyrrolidines ${ }^{3,8}$ commonplace. Catalytic enantioselective amine conjugate additions to α, β-unsaturated esters are rare, reflecting the recognized

[^0]

Scheme 1 Synthesis of β-amino ester derivatives.
recalcitrance of α, β-unsaturated esters as Michael acceptors (Scheme 1b). To date, the current state-of-the-art organocatalytic approach is represented by Seidel and co-workers, ${ }^{9}$ demonstration of the conjugate addition of cyclic secondary amines to β -alkyl- α, β-unsaturated benzyl esters using a selenourea-thiourea catalyst 1 (Scheme 1c). Although limited to β-alkyl substituted Michael acceptors, this impressive methodology was applicable to a range of cyclic amines and the kinetic resolution of (\pm)-cyclic 2-arylamines.

Our approach to enantioselective amine conjugate addition focused upon the use of imines as nucleophiles. The conjugate addition of (diphenylmethylene)amine to α, β-unsaturated esters, nitriles and ketones in racemic form has been demonstrated by de Meijere et al. MeOH was optimal as a solvent and

Scheme 2 Previous imine conjugate additions and this work.
a basic additive (such as NEt_{3}) led to effective product formation (Scheme 2a). ${ }^{10}$ In 2018, Alemán and co-workers successfully demonstrated an enantioselective aza-Michael addition of nucleophilic imines to enals using secondary amine catalyst 2 (Scheme 2b). ${ }^{11}$ Trapping of the resultant β-imino aldehydes with a phosphorane gave the corresponding δ-imino esters in good yield and enantioselectivity. Notably, 2-hydroxybenzophenone imines showed increased reactivity and enantioselectivity compared with the parent benzophenone imine, attributed to an increase in acidity of the imine proton caused by intramolecular hydrogen bonding. ${ }^{12,13}$ In previous work, we and others have demonstrated a range of enantioselective Michael-addition processes of in situ generated α, β-unsaturated acyl ammonium species. ${ }^{14,15}$ Building on these precedents, we report herein the formal isothiourea-catalyzed enantioselective addition of 2-hydroxybenzophenone imines to β-fluorinated α, β-unsaturated paranitrophenyl esters via an α, β-unsaturated acyl ammonium intermediate, giving products in up to 98:2 er (Scheme 2c).

Preliminary investigations used $\beta-\mathrm{CF}_{3}$-substituted α, β unsaturated para-nitrophenyl ester 4 (1.0 equiv.) in toluene as standard. Given the moderate reactivity of α, β-unsaturated acyl ammonium ions, imine 3 (2.0 equiv.) bearing an electron donor 4 -OMe-substituent was postulated to enhance nucleophilicity (Table 1). Attempted isolation of the para-nitrophenyl ester product led to low and irreproducible product yields, so addition of pyrrolidine to give the isolable amide 5 was adopted. Screening of isothiourea catalysts 6-8 ($10 \mathrm{~mol} \%$) at $1: 2$ substrate ratio of ester 4: imine 3 (entries 1-3) showed that tetramisole 6 and BTM 7 gave promising product yield ($\sim 50 \%$) whereas HyperBTM 8 showed poor catalytic activity ($<10 \%$ yield). Excellent enantioselectivity (96:4 er) was observed using BTM 7. Altering the

Table 1 Reaction optimisation
(S)-Tetramisole 6

Entry	Catalyst (mol\%)	Temp. $\left({ }^{\circ} \mathrm{C}\right)$	Solvent	3:4	Yield ${ }^{a}$ (\%)	
$1{ }^{\text {c }}$	6 (10)	rt	Toluene	1:2	50	12:88
$2^{\text {c }}$	7 (10)	rt	Toluene	$1: 2$	54	96:4
$3{ }^{\text {c }}$	8 (10)	rt	Toluene	1:2	<10	68:32
4^{c}	7(10)	rt	Toluene	1:1.5	42	95:5
5^{c}	7 (10)	rt	Toluene	$1.5: 1$	38	97:3
6^{c}	7 (10)	40	Toluene	1:2	52	94:6
7^{c}	7 (10)	60	Toluene	$1: 2$	47	91:9
8^{c}	7 (2.5)	rt	Toluene	$1: 2$	<10	91:9
9^{c}	7 (5.0)	rt	Toluene	1:2	18	96:4
10^{c}	7 (20)	rt	Toluene	1:2	71^{d}	96:4
11^{c}	7 (20)	rt	THF	1:2	31	96:4
$12^{\text {c }}$	7 (20)	rt	$\mathrm{Et}_{2} \mathrm{O}$	1:2	30	96:4
$13^{\text {c }}$	7 (20)	rt	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	1:2	37	96:4
14^{e}	7 (20)	rt	Toluene	1:2	31	98:2
15^{f}	7 (20)	rt	Toluene	1:2	42	96:4
16^{g}	7 (20)	rt	Toluene	1:2	36	96:4

${ }^{a}$ Using ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis and 1,3,5-trimethoxybenzene as internal standard. ${ }^{b}$ Ratio of $(R):(S)$ enantiomers determined by HPLC analysis on a chiral stationary phase. ${ }^{c} \mathrm{Ar}=4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} .{ }^{d}$ Isolated yield. ${ }^{e} \mathrm{Ar}=2,4,6-\mathrm{Cl}_{3} \mathrm{C}_{6} \mathrm{H}_{2} .{ }^{f} \mathrm{Ar}=\mathrm{C}_{6} \mathrm{~F}_{5} .{ }^{g} \mathrm{Ar}=3,5-\left(\mathrm{CF}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}$.
reaction stoichiometry (entries 4 and 5) led to reduced product yield. A detrimental effect on product enantioselectivity (91:9 er) was observed when the reaction temperature was increased to $40{ }^{\circ} \mathrm{C}$ or $60{ }^{\circ} \mathrm{C}$ (entries 6 and 7). Lowering the catalyst loading showed a significant decrease in product yield and enantioselectivity (entries 8 and 9), while using $20 \mathrm{~mol} \%$ BTM 7 gave increased yield (71\% yield, 96:4 er, entry 10). Screening of a alternative solvents gave high product enantioselectivity but reduced yields (entries 11-13). Further optimisation probed the effectiveness of alternative electron-deficient aryl esters. Comparison of para-nitrophenyl with 2,4,6-trichlorophenyl, pentafluorophenyl, and 3,5-bis(trifluoromethyl)phenyl esters (entries 14-16) showed that excellent enantioselectivities were observed in each case (up to 98:2 er), with the para-nitrophenyl ester leading to the best product yield (71\%).

The scope and limitations of the developed process was explored through variation of the nucleophilic imine reaction component (Fig. 1). Variation of the electronic bias of the 4 -aryl substituent within the imine component showed that decreased product yield was observed upon changing from an electrondonating $4-\mathrm{MeO}-(5,70 \%$ yield) to $4-\mathrm{Me}(9,49 \%$ yield), $4-\mathrm{H}(11$, 36% yield) and electron-withdrawing $4-\mathrm{Br}$ substituent (10, 24% yield) all with $>96: 4 \mathrm{er}$. This is consistent with increasing

Fig. $1 \quad 0.10 \mathrm{mmol}$ scale. Isolated product yield; er determined by HPLC analysis on a chiral stationary phase; [a] $40^{\circ} \mathrm{C}$ for step i; [b] DMAP $20 \mathrm{~mol} \%$ in step ii.
electron density within the imine component leading to increased product yield. Interestingly, comparing the yield and er of products $\mathbf{1 1}$ and $\mathbf{1 2}$ indicates that the 2-hydroxy-substituent within the imine is essential for high product er, but does not affect product yield. The incorporation of an additional electrondonating $4-\mathrm{MeO}$ substituent led to product 13 in reduced yield but maintained high product er. Variation of the β-substituent within the α, β-unsaturated ester indicated that the incorporation of polyhalogenated or ester electron-withdrawing groups was necessary for reactivity as alkyl, aryl, ketone and amide substituted acceptors gave no significant product formation. For example, the introduction of halogenated $\left(\mathrm{CF}_{2} \mathrm{H}\right)$ and polyhalogenated

Scheme 3 Gram scale synthesis of product 5 .
substituents $\left(\mathrm{CF}_{2} \mathrm{Cl}, \mathrm{CF}_{2} \mathrm{Br}\right.$, and $\left.\mathrm{C}_{2} \mathrm{~F}_{5}\right)$ led to products $\mathbf{1 4 - 1 7}$ in up to excellent yields with high enantioselectivity (40% to 81%; $>96: 4 \mathrm{er}$), while the incorporation of ester substituents gave 18-19 in poor 20\% product yield in up to $96: 4$ er. Variation of the post catalysis nucleophilic component (Nuc-H) to incorporate alcohols as well as cyclic secondary and acyclic primary amines gave a range of ester and amide products 20-24 in good yield (42% to 64%) and excellent enantioselectivity ($\geq 96: 4 \mathrm{er}$).

To further demonstrate the synthetic utility of this transformation, it was applied to the gram-scale synthesis of product 5 with consistent yield and enantioselectivity (67%, 96:4 er, Scheme 3). Hydrolysis gave the free β-amino amide product 26 in high yield and enantioselectivity (95%, $96: 4$ er). ${ }^{16}$

A proposed mechanism of this transformation is shown in Scheme 4. Reversible acylation of the isothiourea with the α, β-unsaturated ester 1a generates the key α, β-unsaturated acyl isothiouronium ion pair 26.

Scheme 4 Proposed reaction mechanism.

An intramolecular chalcogen 1,5-S $\cdots \mathrm{O}$ interaction $\left(\mathrm{n}_{\mathrm{O}} \rightarrow \sigma^{*}{ }_{\mathrm{S}-\mathrm{C}}\right)^{17}$ provides a plausible stabilising effect and conformational lock. Hydrogen bonding between the 2-hydroxy-substituent and the imine N serves to conformationally restrict this functionality and facilitate deprotonation. ${ }^{11-13}$ Subsequent conjugate addition to the s-cis conformation of the α, β-unsaturated acyl isothiouronium 26 anti- to the stereodirecting phenyl substituent of the isothiourea catalyst generates the ammonium enolate intermediate 27. Proton transfer generates the β-imino acyl isothiouronium intermediate 28, with catalyst turnover facilitated by the aryloxide counterion to form the product and release the isothiourea catalyst BTM $7 .{ }^{18}$

In summary, enantioselective organocatalytic conjugate addition of 2-hydroxybenzophenone imines to α, β-unsaturated esters using the isothiourea BTM as an organocatalyst gives enantioenriched β-imino amides in modest to good yield (20$81 \%$) and excellent enantioselectivity (typically $>95: 5 \mathrm{er}$). ${ }^{19}$

The DOST-SEI and DOST-Foreign Graduate Scholarship Program of the Philippines are thanked for a PhD scholarship (J. E. L) and the Royal Society for a Newton Fellowship (C. S.).

Conflicts of interest

There are no conflicts of interests to declare.

Notes and references

1 For selected discussions of β-amino acids: (a) G. Cardillo and C. Tomasini, Chem. Soc. Rev., 1996, 25, 117-128; (b) C. Shih, L. S. Gossett, J. M. Gruber, C. S. Grossman, S. L. Andis, R. M. Schultz, J. F. Worzalla, T. H. Corbett and J. T. Metz, Bioorg. Med. Chem. Lett., 1999, 9, 69-74; (c) W. J. Hoekstra and B. L. Poulter, Curr. Med. Chem., 1998, 5, 195-204; (d) S. Kosemura, T. Ogawa and K. Totsuka, Tetrahedron Lett., 1993, 34, 1291-1294.

2 (a) S. G. Davies and O. Ichihara, Tetrahedron: Asymmetry, 1991, 2, 183-186for reviews see; (b) S. G. Davies, A. D. Smith and P. D. Price, Tetrahedron: Asymmetry, 2005, 17, 2883-2891; (c) S. G. Davies, A. M. Fletcher, P. M. Roberts and J. E. Thomson, Tetrahedron: Asymmetry, 2012, 23, 1111-1153.
3 Selected examples for aza-Michael additions to enals: (a) Y. K. Chen, M. Yoshida and D. W.-C. MacMillan, J. Am. Chem. Soc., 2006, 128, 9328-9329; (b) J. Vesely, I. Ibrahem, R. Rios, G.-L. Zhao, Y. Xu and A. Córdova, Tetrahedron Lett., 2007, 48, 2193-2198; (c) H. Jiang, J. B. Nielsen, M. Nielsen and K. A. Jørgensen, Chem. - Eur. J., 2007, 13, 9068-9075; (d) P. Dinér, M. Nielsen, M. Marigo and K. A. Jørgensen, Angew. Chem., Int. Ed., 2007, 46, 1983-1987.

4 Selected examples for aza-Michael additions to enones: (a) D. Pettersen, F. Piana, L. Bernardi, F. Fini, M. Fochi, V. Sgarzani and A. Ricci, Tetrahedron Lett., 2007, 48, 7805-7808; (b) X. Lu and L. Deng, Angew. Chem., Int. Ed., 2008, 120, 7824-7827; (c) S. Ma, L. Wu, M. Liu, X. Xu, Y. Huang and Y. Wang, RSC Adv., 2013, 3, 11498-11501.

5 Selected examples for aza-Michael additions to N -acylpyrazoles: (a) M. P. Sibi, J. J. Shay, M. Liu and C. P. Jasperse, J. Am. Chem. Soc., 1998, 120, 6615-6616; (b) L. Simón and J. M. Goodman, Org. Biomol. Chem., 2009, 7, 483-487; (c) M. Sánchez-Roselló, C. Mulet, M. Guerola, C. del Pozo and S. Fustero, Chem. - Eur. J., 2014, 20, 15697-15701.
6 Selected examples for aza-Michael additions to nitroolefins: (a) L. Lykke, D. Monge, M. Nielsen and K. A. Jørgensen, Chem. - Eur.
J., 2010, 16, 13330-13334; (b) S. Ma, L. Wu, M. Liu, Y. Huang and Y. Wang, Tetrahedron, 2013, 69, 2613-2618; (c) B. L. Zhao, Y. Lin, H. H. Yan and D. M. Du, Org. Biomol. Chem., 2015, 13, 11351-11361; (d) M. Moczulski, P. Drelich and L. Albrecht, Org. Biomol. Chem., 2018, 16, 376-379.
7 (a) Y. Sohtome, Y. Hashimoto and K. Nagasawa, Adv. Synth. Catal., 2005, 347, 1643-1648; (b) J. Wang, L. Zu, H. Li, H. Xie and W. Wang, Synthesis, 2007, 2576-2580.
8 Reviews on organocatalytic aza-Michael addition reactions highlighting the use of thiourea, squaramide, and Lewis base pyrrolidine catalysts: (a) D. Enders, C. Wang and J. X. Liebich, Chem. - Eur. J., 2009, 15, 11058-11076; (b) J. Wang, P. Li, P. Y. Choy, A. S. C. Chan and F. Y. Kwong, ChemCatChem, 2012, 4, 917-925; (c) C. Bhanja, S. Jena, S. Nayak and S. Mohapatra, Beilstein J. Org. Chem., 2012, 8, 1668-1694; (d) S. D. Pasuparthy and B. Maiti, ChemistrySelect, 2022, 7, e202104261; (e) Y. X. Song and D. M. Du, Adv. Synth. Catal., 2021, 363, 4667-4694.
9 Y. Lin, W. J. Hirschi, A. Kunadia, A. Paul, I. Ghiviriga, K. A. Abboud, R. W. Karugu, M. J. Vetticatt, J. S. Hirschi and D. Seidel, J. Am. Chem. Soc., 2020, 142, 5627-5635.
10 (a) L. Wessjohann, G. Mcgaffin and A. de Meijere, Synthesis, 1989, 359-363; (b) T. Meiresonne, S. Mangelinckx and N. De Kimpe, Org. Biomol. Chem., 2011, 9, 7085-7091.
11 H. Choubane, A. F. Garrido-Castro, C. Alvarado, A. Martín-Somer, A. Guerrero-Corella, M. Daaou, S. Díaz-Tendero, M. Carmen Maestro, A. Fraile and J. Alemán, Chem. Commun., 2018, 54, 3399-3402.
12 (a) A. Guerrero-Corella, M. A. Valle-Amores, A. Fraile and J. Alemán, Adv. Synth. Catal., 2021, 363, 3845-3851; (b) A. Guerrero-Corella, F. Esteban, M. Iniesta, A. Martín-Somer, M. Parra, S. Díaz-Tendero, A. Fraile and J. Alemán, Angew. Chem., Int. Ed., 2018, 57, 5350-5354.

13 For a review: A. Guerrero-Corella, A. Fraile and J. Alemán, ACS Org. Inorg. Au, 2022, DOI: 10.1021/acsorginorgau.1c00053.
14 (a) A. Matviitsuk, M. D. Greenhalgh, D. J.-B. Antúnez, A. M.-Z. Slawin and A. D. Smith, Angew. Chem., Int. Ed., 2017, 56, 12282-12287; (b) C. Shu, H. Liu, A. M.-Z. Slawin, C. Carpenter-Warren and A. D. Smith, Chem. Sci., 2020, 11, 241-247; (c) M. D. Greenhalgh, S. Qu, A. M.-Z. Slawin and A. D. Smith, Chem. Sci., 2018, 9, 4909-4918.

15 For a review see: J. Bitai, M. Westwood and A. D. Smith, Org. Biomol. Chem., 2021, 19, 2366-2384.
16 The absolute configuration was confirmed by hydrolysis of 25 to obtain the free β-amino acid (exp: $[\alpha] 20 \mathrm{D}=+17.9$; lit: $[\alpha] 20 \mathrm{D}=+24.4$): N. Shibata, T. Nishimine, N. Shibata, E. Tokunaga, K. Kawada, T. Kagawa, J. L. Aceña, A. E. Sorochinsky and V. A. Soloshonok, Org. Biomol. Chem., 2014, 12, 1454-1462.
17 S...O interactions in isothiourea catalysis: (a) V. B. Birman, X. Li and Z. Han, Org. Lett., 2007, 9, 37-40; (b) P. Liu, X. Yang, V. B. Birman and K. N. Houk, Org. Lett., 2012, 14, 3288-3291; (c) M. E. Abbasov, B. M. Hudson, D. J. Tantillo and D. Romo, J. Am. Chem. Soc., 2014, 136, 4492-4495; (d) E. R.-T. Robinson, D. M. Walden, C. Fallan, M. D. Greenhalgh, P. H.-Y. Cheong and A. D. Smith, Chem. Sci., 2016, 7, 6919-6927; (e) M. D. Greenhalgh, S. M. Smith, D. M. Walden, J. E. Taylor, Z. Brice, E. R.-T. Robinson, C. Fallan, D. B. Cordes, A. M.-Z. Slawin, H. C. Richardson, M. A. Grove, P. H.-Y. Cheong and A. D. Smith, Angew. Chem., Int. Ed., 2018, 57, 3200-3206; (f) C. M. Young, A. Elmi, D. J. Pascoe, R. K. Morris, C. McLaughlin, A. M. Woods, A. B. Frost, A. de la Houpliere, K. B. Ling, T. K. Smith, A. M.-Z. Slawin, P. H. Willoughby, S. L. Cockroft and A. D. Smith, Angew. Chem., Int. Ed., 2020, 59, 3705-3710In medicinal chemistry: (g) B. R. Beno, K.-S. Yeung, M. D. Bartberger, L. D. Pennington and N. A. Meanwell, J. Med. Chem., 2015, 58, 4383-4438.

18 For discussion on aryloxide facilitated catalyst turnover: (a) A. Matviitsuk, M. D. Greenhalgh, D. J.-B. Antúnez, A. M.-Z. Slawin and A. D. Smith, Angew. Chem., Int. Ed., 2017, 56, 12282-12287; (b) W. C. Hartley, T. J.-C. O'Riordan and A. D. Smith, Synthesis, 2017, 49, 3303-3310; (c) T. H. West, D. S.-B. Daniels, A. M.-Z. Slawin and A. D. Smith, J. Am. Chem. Soc., 2014, 136, 4476-4479.

19 Research data supporting publication can be accessed at https:// doi.org/10.17630/fb29b2d4-41d4-4143-a19b-5f59cb71447a.

[^0]: EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St. Andrews KY16 9ST, UK. E-mail: ads10@st-andrews.ac.uk
 \dagger Electronic supplementary information (ESI) available. See DOI: https://doi.org/ 10.1039/d2cc01936a

